1
|
Alaei SR, King AJ, Banani K, Reddy A, Ortiz J, Knight AL, Haldeman J, Su TH, Park H, Coats SR, Jain S. Lipid a remodeling modulates outer membrane vesicle biogenesis by Porphyromonas gingivalis. J Bacteriol 2025; 207:e0033624. [PMID: 39660885 PMCID: PMC11784228 DOI: 10.1128/jb.00336-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
Outer membrane vesicles (OMVs) are small membrane enclosed sacs released from bacteria which serve as carriers of biomolecules that shape interactions with the surrounding environment. The periodontal pathogen, Porphyromonas gingivalis, is a prolific OMV producer. Here, we investigated how the structure of lipid A, a core outer membrane molecule, influences P. gingivalis OMV production, OMV-dependent TLR4 activation, and biofilm formation. We examined mutant strains of P. gingivalis 33277 deficient for enzymes that alter lipid A phosphorylation and acylation status. The lipid A C4'-phosphatase (lpxF)-deficient strain and strains bearing inactivating point mutations in the LpxF active site displayed markedly reduced OMV production relative to WT. In contrast, strains deficient for either the lipid A C1-phosphatase (lpxE) or the lipid A deacylase (PGN_1123; lpxZ) genes did not display alterations in OMV abundance compared to WT. These data indicate that lipid A C4'-phosphate removal is required for typical OMV formation. In addition, OMVs produced by ΔlpxF and ΔlpxZ strains, possessing only penta-acylated lipid A, stimulated robust TLR4 activation, whereas OMVs obtained from WT and ΔlpxE strains, containing predominantly tetra-acylated lipid A, did not. Hence, lipid A remodeling modulates the capacity of OMVs to engage host TLR4-dependent immunity. Finally, we demonstrate an inverse relationship between OMV abundance and biofilm density, with the ∆lpxF mutants forming denser biofilms than either WT, ΔlpxE, or ΔlpxZ strains. Therefore, OMVs may also contribute to pathogenesis by regulating biofilm formation and dispersal.IMPORTANCEPorphyromonas gingivalis is a bacterium strongly associated with periodontitis. P. gingivalis exports lipids, proteins, and other biomolecules that contribute to the bacterium's ability to persist in inflammatory conditions encountered during disease. These biomolecules are exported through several mechanisms, including via outer membrane vesicles (OMVs). Despite their ubiquity, the mechanisms that drive outer membrane vesicle production vary among bacteria and are not fully understood. In this study, we report that C4' dephosphorylation of lipid A, a major outer membrane molecule, is required for robust outer membrane vesicle production and biological function in P. gingivalis. This finding adds to the growing body of evidence that lipid A structure is an important factor in outer membrane vesicle biogenesis in diverse bacterial species.
Collapse
Affiliation(s)
- Sarah R. Alaei
- Division of Science and Mathematics, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, Washington, USA
| | - Alisa J. King
- Division of Science and Mathematics, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, Washington, USA
| | - Karim Banani
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Angel Reddy
- Division of Science and Mathematics, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, Washington, USA
| | - Joshua Ortiz
- Division of Science and Mathematics, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, Washington, USA
| | - Alexa L. Knight
- Division of Science and Mathematics, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, Washington, USA
| | - Jessica Haldeman
- Division of Science and Mathematics, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, Washington, USA
| | - Thet Hnin Su
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Hana Park
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Stephen R. Coats
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Sumita Jain
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Gaschignard G, Millet M, Bruley A, Benzerara K, Dezi M, Skouri-Panet F, Duprat E, Callebaut I. AlphaFold2-guided description of CoBaHMA, a novel family of bacterial domains within the heavy-metal-associated superfamily. Proteins 2024; 92:776-794. [PMID: 38258321 DOI: 10.1002/prot.26668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/22/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024]
Abstract
Three-dimensional (3D) structure information, now available at the proteome scale, may facilitate the detection of remote evolutionary relationships in protein superfamilies. Here, we illustrate this with the identification of a novel family of protein domains related to the ferredoxin-like superfold, by combining (i) transitive sequence similarity searches, (ii) clustering approaches, and (iii) the use of AlphaFold2 3D structure models. Domains of this family were initially identified in relation with the intracellular biomineralization of calcium carbonates by Cyanobacteria. They are part of the large heavy-metal-associated (HMA) superfamily, departing from the latter by specific sequence and structural features. In particular, most of them share conserved basic amino acids (hence their name CoBaHMA for Conserved Basic residues HMA), forming a positively charged surface, which is likely to interact with anionic partners. CoBaHMA domains are found in diverse modular organizations in bacteria, existing in the form of monodomain proteins or as part of larger proteins, some of which are membrane proteins involved in transport or lipid metabolism. This suggests that the CoBaHMA domains may exert a regulatory function, involving interactions with anionic lipids. This hypothesis might have a particular resonance in the context of the compartmentalization observed for cyanobacterial intracellular calcium carbonates.
Collapse
Affiliation(s)
- Geoffroy Gaschignard
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Maxime Millet
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Apolline Bruley
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Karim Benzerara
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Manuela Dezi
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Feriel Skouri-Panet
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Elodie Duprat
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| |
Collapse
|
3
|
Jin H, Ji Y, An J, Ha DH, Lee YR, Kim HJ, Lee CG, Jeong W, Kwon IC, Yang EG, Kim KH, Lee C, Chung HS. Engineering Escherichia coli for constitutive production of monophosphoryl lipid A vaccine adjuvant. Biotechnol Bioeng 2024; 121:1144-1162. [PMID: 38184812 DOI: 10.1002/bit.28638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 01/08/2024]
Abstract
During the COVID-19 pandemic, expedient vaccine production has been slowed by the shortage of safe and effective raw materials, such as adjuvants, essential components to enhance the efficacy of vaccines. Monophosphoryl lipid A (MPLA) is a potent and safe adjuvant used in human vaccines, including the Shingles vaccine, Shingrix. 3-O-desacyl-4'-monophosphoryl lipid A (MPL), a representative MPLA adjuvant commercialized by GSK, was prepared via chemical conversion of precursors isolated from Salmonella typhimurium R595. However, the high price of these materials limits their use in premium vaccines. To combat the scarcity and high cost of safe raw materials for vaccines, we need to develop a feasible MPLA production method that is easily scaled up to meet industrial requirements. In this study, we engineered peptidoglycan and outer membrane biosynthetic pathways in Escherichia coli and developed a Escherichia coli strain, KHSC0055, that constitutively produces EcML (E. coli-produced monophosphoryl lipid A) without additives such as antibiotics or overexpression inducers. EcML production was optimized on an industrial scale via high-density fed-batch fermentation, and obtained 2.7 g of EcML (about 135,000 doses of vaccine) from a 30-L-scale fermentation. Using KHSC0055, we simplified the production process and decreased the production costs of MPLA. Then, we applied EcML purified from KHSC0055 as an adjuvant for a COVID-19 vaccine candidate (EuCorVac-19) currently in clinical trial stage III in the Philippines. By probing the efficacy and safety of EcML in humans, we established KHSC0055 as an efficient cell factory for MPLA adjuvant production.
Collapse
Affiliation(s)
- Hyunjung Jin
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Yuhyun Ji
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Jinsu An
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea National University of Science and Technology, Seoul, Republic of Korea
| | - Da Hui Ha
- V Plant 125, Wonmudong-gil, Dongsan-myeon, EuBiologics., Co., Ltd., Chuncheon-si, Gangwon-do, Republic of Korea
| | - Ye-Ram Lee
- V Plant 125, Wonmudong-gil, Dongsan-myeon, EuBiologics., Co., Ltd., Chuncheon-si, Gangwon-do, Republic of Korea
| | - Hye-Ji Kim
- V Plant 125, Wonmudong-gil, Dongsan-myeon, EuBiologics., Co., Ltd., Chuncheon-si, Gangwon-do, Republic of Korea
| | - Choon Geun Lee
- V Plant 125, Wonmudong-gil, Dongsan-myeon, EuBiologics., Co., Ltd., Chuncheon-si, Gangwon-do, Republic of Korea
| | - Wooyeon Jeong
- Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Ick Chan Kwon
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Eun Gyeong Yang
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Ki Hun Kim
- Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Chankyu Lee
- V Plant 125, Wonmudong-gil, Dongsan-myeon, EuBiologics., Co., Ltd., Chuncheon-si, Gangwon-do, Republic of Korea
| | - Hak Suk Chung
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea National University of Science and Technology, Seoul, Republic of Korea
| |
Collapse
|
4
|
Sinclair M, Stein RA, Sheehan JH, Hawes EM, O’Brien RM, Tajkhorshid E, Claxton DP. Integrative analysis of pathogenic variants in glucose-6-phosphatase based on an AlphaFold2 model. PNAS NEXUS 2024; 3:pgae036. [PMID: 38328777 PMCID: PMC10849595 DOI: 10.1093/pnasnexus/pgae036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024]
Abstract
Mediating the terminal reaction of gluconeogenesis and glycogenolysis, the integral membrane protein glucose-6-phosphate catalytic subunit 1 (G6PC1) regulates hepatic glucose production by catalyzing hydrolysis of glucose-6-phosphate (G6P) within the lumen of the endoplasmic reticulum. Consistent with its vital contribution to glucose homeostasis, inactivating mutations in G6PC1 causes glycogen storage disease (GSD) type 1a characterized by hepatomegaly and severe hypoglycemia. Despite its physiological importance, the structural basis of G6P binding to G6PC1 and the molecular disruptions induced by missense mutations within the active site that give rise to GSD type 1a are unknown. In this study, we determine the atomic interactions governing G6P binding as well as explore the perturbations imposed by disease-linked missense variants by subjecting an AlphaFold2 G6PC1 structural model to molecular dynamics simulations and in silico predictions of thermodynamic stability validated with robust in vitro and in situ biochemical assays. We identify a collection of side chains, including conserved residues from the signature phosphatidic acid phosphatase motif, that contribute to a hydrogen bonding and van der Waals network stabilizing G6P in the active site. The introduction of GSD type 1a mutations modified the thermodynamic landscape, altered side chain packing and substrate-binding interactions, and induced trapping of catalytic intermediates. Our results, which corroborate the high quality of the AF2 model as a guide for experimental design and to interpret outcomes, not only confirm the active-site structural organization but also identify previously unobserved mechanistic contributions of catalytic and noncatalytic side chains.
Collapse
Affiliation(s)
- Matt Sinclair
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Center for Applied Artificial Intelligence in Protein Dynamics, Vanderbilt University, Nashville, TN 37240, USA
| | - Jonathan H Sheehan
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Emily M Hawes
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Richard M O’Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Derek P Claxton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Center for Applied Artificial Intelligence in Protein Dynamics, Vanderbilt University, Nashville, TN 37240, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
5
|
Sinclair M, Stein RA, Sheehan JH, Hawes EM, O'Brien RM, Tajkhorshid E, Claxton DP. Molecular mechanisms of catalytic inhibition for active site mutations in glucose-6-phosphatase catalytic subunit 1 linked to glycogen storage disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532485. [PMID: 36993754 PMCID: PMC10054992 DOI: 10.1101/2023.03.13.532485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Mediating the terminal reaction of gluconeogenesis and glycogenolysis, the integral membrane protein G6PC1 regulates hepatic glucose production by catalyzing hydrolysis of glucose-6-phosphate (G6P) within the lumen of the endoplasmic reticulum. Consistent with its vital contribution to glucose homeostasis, inactivating mutations in G6PC1 cause glycogen storage disease (GSD) type 1a characterized by hepatomegaly and severe hypoglycemia. Despite its physiological importance, the structural basis of G6P binding to G6PC1 and the molecular disruptions induced by missense mutations within the active site that give rise to GSD type 1a are unknown. Exploiting a computational model of G6PC1 derived from the groundbreaking structure prediction algorithm AlphaFold2 (AF2), we combine molecular dynamics (MD) simulations and computational predictions of thermodynamic stability with a robust in vitro screening platform to define the atomic interactions governing G6P binding as well as explore the energetic perturbations imposed by disease-linked variants. We identify a collection of side chains, including conserved residues from the signature phosphatidic acid phosphatase motif, that contribute to a hydrogen bonding and van der Waals network stabilizing G6P in the active site. Introduction of GSD type 1a mutations into the G6PC1 sequence elicits changes in G6P binding energy, thermostability and structural properties, suggesting multiple pathways of catalytic impairment. Our results, which corroborate the high quality of the AF2 model as a guide for experimental design and to interpret outcomes, not only confirm active site structural organization but also suggest novel mechanistic contributions of catalytic and non-catalytic side chains.
Collapse
|
6
|
Zang M, Ascari A, Adams FG, Alquethamy S, Eijkelkamp BA. Characterizing the role of phosphatidylglycerol-phosphate phosphatases in Acinetobacter baumannii cell envelope biogenesis and antibiotic resistance. Cell Surf 2022; 9:100092. [PMID: 36545493 PMCID: PMC9760654 DOI: 10.1016/j.tcsw.2022.100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
The dissemination of multi-drug resistant Acinetobacter baumannii threatens global healthcare systems and necessitates the development of novel therapeutic options. The Gram-negative bacterial cell envelope provides a first defensive barrier against antimicrobial assault. Essential components of this multi-layered complex are the phospholipid-rich membranes. Phosphatidylglycerol phosphate (PGP) phosphatases are responsible for a key step in the biosynthesis of a major phospholipid species, phosphatidylglycerol (PG), but these enzymes have also been implicated in the biogenesis of other cell envelope components. Our bioinformatics analyses identified two putative PGP candidates in the A. baumannii genome, PgpA and PgpB. Phospholipid analyses of isogenic pgpA mutants in two distinct A. baumannii strains revealed a shift in the desaturation levels of phosphatidylethanolamine (PE) phospholipid species, possibly due to the activation of the phospholipid desaturase DesA. We also investigated the impact of the inner membrane phosphatases on other cell envelope components, which revealed a role of PgpB in the maintenance of the A. baumannii peptidoglycan layer, and consequently carbapenem resistance. Collectively, this work provides novel insights into the roles of PGP phosphatases on the global lipidomic landscape of A. baumannii and their interconnectivity with the biogenesis of other cell envelope components. The non-essentiality of these candidates exemplifies metabolic versatility of A. baumannii, which is believed to be key to its success as global pathogen.
Collapse
Affiliation(s)
- Maoge Zang
- Molecular Sciences and Technology, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Alice Ascari
- Molecular Sciences and Technology, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia,Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Felise G. Adams
- Molecular Sciences and Technology, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Saleh Alquethamy
- Molecular Sciences and Technology, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Bart A. Eijkelkamp
- Molecular Sciences and Technology, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia,Corresponding author.
| |
Collapse
|
7
|
Senevirathne A, Hewawaduge C, Sivasankar C, Lee JH. Prospective lipid-A altered live attenuated Salmonella Gallinarum confers protectivity, DIVA capability, safety and low endotoxicity against fowl typhoid. Vet Microbiol 2022; 274:109572. [PMID: 36113357 DOI: 10.1016/j.vetmic.2022.109572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 10/31/2022]
Abstract
The present study describes creating an attenuated Salmonella Gallinarum (SG) strain with reduced endotoxicity to prevent fowl typhoid. The strain was attenuated by deleting the lon, cpxR, and rfaL virulence-related genes. Endotoxicity was reduced by deleting the pagL open reading frame and replacing it with the lpxE gene derived from Francisella tularencis. Both events, (1) deletion of the pagL and (2) introduction of the lpxE genes, conferred reduced endotoxicity by detoxifying the lipid A structure. The detoxified SG strain (SGVSdt) was well tolerated in 7-day-old chicks when administered orally at 1 × 108 CFU/bird and in 14-day-old birds administered 1 × 107 CFU/bird subcutaneously. Parenteral immunization of detoxified vaccine strain was completely safe in birds and free of environmental contamination. Subcutaneous immunization conferred disease protection and induced humoral and cell-mediated immune responses marked by Th1-skewed patterns similar to those produced by the commercial SG9R vaccine strain. Compared with the SG9R-based vaccine, the SGVSdt construct generated significantly fewer inflammatory TNF-α responses while significantly inducing IFN-γ cytokine levels as an indication of an adaptive antibacterial response. The differentiating infected from vaccinated animals (DIVA) capability was on par with the predecessor SGVS. This study presents an appealing biological strategy to minimize lipid A-mediated endotoxicity without compromising protective efficacy against the SG challenge. Reduced endotoxicity permits the utilization of higher inoculation doses to maximize protection against fowl typhoid.
Collapse
Affiliation(s)
- Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - Chamith Hewawaduge
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - Chandran Sivasankar
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea.
| |
Collapse
|
8
|
MacDermott-Opeskin HI, Gupta V, O’Mara ML. Lipid-mediated antimicrobial resistance: a phantom menace or a new hope? Biophys Rev 2022; 14:145-162. [PMID: 35251360 PMCID: PMC8880301 DOI: 10.1007/s12551-021-00912-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/14/2021] [Indexed: 02/06/2023] Open
Abstract
Abstract The proposition of a post-antimicrobial era is all the more realistic with the continued rise of antimicrobial resistance. The development of new antimicrobials is failing to counter the ever-increasing rates of bacterial antimicrobial resistance. This necessitates novel antimicrobials and drug targets. The bacterial cell membrane is an essential and highly conserved cellular component in bacteria and acts as the primary barrier for entry of antimicrobials into the cell. Although previously under-exploited as an antimicrobial target, the bacterial cell membrane is attractive for the development of novel antimicrobials due to its importance in pathogen viability. Bacterial cell membranes are diverse assemblies of macromolecules built around a central lipid bilayer core. This lipid bilayer governs the overall membrane biophysical properties and function of its membrane-embedded proteins. This mini-review will outline the mechanisms by which the bacterial membrane causes and controls resistance, with a focus on alterations in the membrane lipid composition, chemical modification of constituent lipids, and the efflux of antimicrobials by membrane-embedded efflux systems. Thorough insight into the interplay between membrane-active antimicrobials and lipid-mediated resistance is needed to enable the rational development of new antimicrobials. In particular, the union of computational approaches and experimental techniques for the development of innovative and efficacious membrane-active antimicrobials is explored.
Collapse
Affiliation(s)
- Hugo I. MacDermott-Opeskin
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601 Australia
| | - Vrinda Gupta
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601 Australia
| | - Megan L. O’Mara
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601 Australia
| |
Collapse
|
9
|
Wu X, Shi Q, Shen S, Huang C, Wu H. Clinical and Bacterial Characteristics of Klebsiella pneumoniae Affecting 30-Day Mortality in Patients With Bloodstream Infection. Front Cell Infect Microbiol 2021; 11:688989. [PMID: 34604103 PMCID: PMC8482843 DOI: 10.3389/fcimb.2021.688989] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/13/2021] [Indexed: 01/17/2023] Open
Abstract
Background There is a paucity of studies using clinical characteristics and whole-genome sequencing together to fully identify the risk factors of patients with Klebsiella pneumoniae (KP) bloodstream infection (BSI). Methods We retrospectively analyzed the clinical and microbiological characteristics of patients with KP BSI. Isolates were processed using Illumina NGS, and relevant bioinformatics analysis was conducted (multi-locus sequence typing, serotype, phylogenetic reconstruction, detection of antibiotic resistance, and virulence genes). A logistic regression model was used to evaluate the risk factors of hosts and causative KP isolates associated with 30-day mortality in patients infected with KP BSI. Results Of the 79 eligible patients, the 30-day mortality rate of patients with KP BSI was 30.4%. Multivariate analysis showed that host-associated factors (increased APACHE II score and septic shock) were strongly associated with increased 30-day mortality. For the pathogenic factors, carriage of iutA (OR, 1.46; 95% CI, 1.11-1.81, p = 0.002) or Kvar_1549 (OR, 1.31; 95% CI, 1.02-1.69, p = 0.043) was an independent risk factor, especially when accompanied by a multidrug-resistant phenotype. In addition, ST11-K64 hypervirulent carbapenem-resistant KP co-harbored acquired blaKPC-2 together with iutA (76.5%, 13/17) and Kvar_1549 (100%, 17/17) genes. Comparative genomic analysis showed that they were clustered together based on a phylogenetic tree, and more virulence genes were observed in the group of ST11-K64 strains compared with ST11-non-K64. The patients infected with ST11-K64 strains were associated with relatively high mortality (47.2%, 7/17). Conclusion The carriage of iutA and Kvar_1549 was seen to be an independent mortality risk factor in patients with KP BSI. The identification of hypervirulent and carbapenem-resistant KP strains associated with high mortality should prompt surveillance.
Collapse
Affiliation(s)
- Xingbing Wu
- Department of Infectious Diseases, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Qingyi Shi
- Department of Rheumatology, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Shimo Shen
- Department of Respiratory Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Chen Huang
- Department of Respiratory Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Hongcheng Wu
- Department of Respiratory Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| |
Collapse
|
10
|
The Xanthomonas RaxH-RaxR Two-Component Regulatory System Is Orthologous to the Zinc-Responsive Pseudomonas ColS-ColR System. Microorganisms 2021; 9:microorganisms9071458. [PMID: 34361895 PMCID: PMC8306577 DOI: 10.3390/microorganisms9071458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 01/08/2023] Open
Abstract
Genome sequence comparisons to infer likely gene functions require accurate ortholog assignments. In Pseudomonas spp., the sensor-regulator ColS-ColR two-component regulatory system responds to zinc and other metals to control certain membrane-related functions, including lipid A remodeling. In Xanthomonas spp., three different two-component regulatory systems, RaxH-RaxR, VgrS-VgrR, and DetS-DetR, have been denoted as ColS-ColR in several different genome annotations and publications. To clarify these assignments, we compared the sensor periplasmic domain sequences and found that those from Pseudomonas ColS and Xanthomonas RaxH share a similar size as well as the location of a Glu-X-X-Glu metal ion-binding motif. Furthermore, we determined that three genes adjacent to raxRH are predicted to encode enzymes that remodel the lipid A component of lipopolysaccharide. The modifications catalyzed by lipid A phosphoethanolamine transferase (EptA) and lipid A 1-phosphatase (LpxE) previously were detected in lipid A from multiple Xanthomonas spp. The third gene encodes a predicted lipid A glycosyl transferase (ArnT). Together, these results indicate that the Xanthomonas RaxH-RaxR system is orthologous to the Pseudomonas ColS-ColR system that regulates lipid A remodeling. To avoid future confusion, we recommend that the terms ColS and ColR no longer be applied to Xanthomonas spp., and that the Vgr, Rax, and Det designations be used instead.
Collapse
|
11
|
Ji Y, An J, Hwang D, Ha DH, Lim SM, Lee C, Zhao J, Song HK, Yang EG, Zhou P, Chung HS. Metabolic engineering of Escherichia coli to produce a monophosphoryl lipid A adjuvant. Metab Eng 2020; 57:193-202. [PMID: 31786244 PMCID: PMC6960009 DOI: 10.1016/j.ymben.2019.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/09/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022]
Abstract
Monophosphoryl lipid A (MPLA) species, including MPL (a trade name of GlaxoSmithKline) and GLA (a trade name of Immune Design, a subsidiary of Merck), are widely used as an adjuvant in vaccines, allergy drugs, and immunotherapy to boost the immune response. Even though MPLA is a derivative of lipopolysaccharide (LPS), a component of the outer membrane of Gram-negative bacteria, bacterial strains producing MPLA have not been found in nature nor engineered. In fact, MPLA generation involves expensive and laborious procedures based on synthetic routes or chemical transformation of precursors isolated from Gram-negative bacteria. Here, we report the engineering of an Escherichia coli strain for in situ production and accumulation of MPLA. Furthermore, we establish a succinct method for purifying MPLA from the engineered E. coli strain. We show that the purified MPLA (named EcML) stimulates the mouse immune system to generate antigen-specific IgG antibodies similarly to commercially available MPLA, but with a dramatically reduced manufacturing time and cost. Our system, employing the first engineered E. coli strain that directly produces the adjuvant EcML, could transform the current standard of industrial MPLA production.
Collapse
Affiliation(s)
- Yuhyun Ji
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Jinsu An
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Dohyeon Hwang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Da Hui Ha
- Eubiologics.CO.,Ltd, V Plant 125, Wonmudong-gil, Dongsan-myeon, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Sang Min Lim
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea; Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Chankyu Lee
- Eubiologics.CO.,Ltd, V Plant 125, Wonmudong-gil, Dongsan-myeon, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Jinshi Zhao
- Department of Biochemistry, Duke University Medical Center, Durham, 27710, USA
| | - Hyun Kyu Song
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Eun Gyeong Yang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Pei Zhou
- Department of Biochemistry, Duke University Medical Center, Durham, 27710, USA
| | - Hak Suk Chung
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
12
|
Lee M, Zhao J, Kwak SH, Cho J, Lee M, Gillespie RA, Kwon DY, Lee H, Park HJ, Wu Q, Zhou P, Hong J. Structure-Activity Relationship of Sulfonyl Piperazine LpxH Inhibitors Analyzed by an LpxE-Coupled Malachite Green Assay. ACS Infect Dis 2019; 5:641-651. [PMID: 30721024 DOI: 10.1021/acsinfecdis.8b00364] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The UDP-2,3-diacylglucosamine pyrophosphatase LpxH in the Raetz pathway of lipid A biosynthesis is an essential enzyme in the vast majority of Gram-negative pathogens and an excellent novel antibiotic target. The 32P-radioautographic thin-layer chromatography assay has been widely used for analysis of LpxH activity, but it is inconvenient for evaluation of a large number of LpxH inhibitors over an extended time period. Here, we report a coupled, nonradioactive LpxH assay that utilizes the recently discovered Aquifex aeolicus lipid A 1-phosphatase LpxE for quantitative removal of the 1-phosphate from lipid X, the product of the LpxH catalysis; the released inorganic phosphate is subsequently quantified by the colorimetric malachite green assay, allowing the monitoring of the LpxH catalysis. Using such a coupled enzymatic assay, we report the biochemical characterization of a series of sulfonyl piperazine LpxH inhibitors. Our analysis establishes a preliminary structure-activity relationship for this class of compounds and reveals a pharmacophore of two aromatic rings, two hydrophobic groups, and one hydrogen-bond acceptor. We expect that our findings will facilitate the development of more effective LpxH inhibitors as potential antibacterial agents.
Collapse
Affiliation(s)
- Minhee Lee
- Department of Chemistry, Duke University, 124 Science Drive, Box 90346, Durham, North Carolina 27708, United States
| | - Jinshi Zhao
- Department of Biochemistry, Duke University Medical Center, Box 3711, Durham, North Carolina 27710, United States
| | - Seung-Hwa Kwak
- Department of Chemistry, Duke University, 124 Science Drive, Box 90346, Durham, North Carolina 27708, United States
| | - Jae Cho
- Department of Biochemistry, Duke University Medical Center, Box 3711, Durham, North Carolina 27710, United States
| | - Myungju Lee
- College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Robert A. Gillespie
- Department of Biochemistry, Duke University Medical Center, Box 3711, Durham, North Carolina 27710, United States
| | - Do-Yeon Kwon
- Department of Chemistry, Duke University, 124 Science Drive, Box 90346, Durham, North Carolina 27708, United States
| | - Hyunji Lee
- Department of Chemistry, Duke University, 124 Science Drive, Box 90346, Durham, North Carolina 27708, United States
| | - Hyun-Ju Park
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Qinglin Wu
- Department of Biochemistry, Duke University Medical Center, Box 3711, Durham, North Carolina 27710, United States
| | - Pei Zhou
- Department of Biochemistry, Duke University Medical Center, Box 3711, Durham, North Carolina 27710, United States
| | - Jiyong Hong
- Department of Chemistry, Duke University, 124 Science Drive, Box 90346, Durham, North Carolina 27708, United States
| |
Collapse
|