1
|
Kundu S, Das S, Maitra P, Halder P, Koley H, Mukhopadhyay AK, Miyoshi SI, Dutta S, Chatterjee NS, Bhattacharya S. Sodium butyrate inhibits the expression of virulence factors in Vibrio cholerae by targeting ToxT protein. mSphere 2025:e0082424. [PMID: 40261078 DOI: 10.1128/msphere.00824-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/21/2025] [Indexed: 04/24/2025] Open
Abstract
Cholera, a diarrheal disease caused by the gram-negative bacterium Vibrio cholerae, remains a global health threat in developing countries due to its high transmissibility and increased antibiotic resistance. There is a pressing need for alternative strategies, with an emphasis on anti-virulent approaches to alter the outcome of bacterial infections, given the increase in antimicrobial-resistant strains. V. cholerae causes cholera by secreting virulence factors in the intestinal epithelial cells. These virulence factors facilitate bacterial colonization and cholera toxin production during infection. Here, we demonstrate that sodium butyrate (SB), a small molecule, had no effect on bacterial viability but was effective in suppressing the virulence attributes of V. cholerae. The production of cholera toxin (CT) was significantly reduced in a standard V. cholerae El Tor strain and two clinical isolates when grown in the presence of SB. Analysis of mRNA and protein levels further revealed that SB reduced the expression of the ToxT-dependent virulence genes like tcpA and ctxAB. DNA-protein interaction assays, conducted at cellular (ChIP) and in vitro conditions (EMSA), indicated that SB weakens the binding between ToxT and its downstream promoter DNA, likely by blocking DNA binding. Furthermore, the anti-virulence efficacy of SB was confirmed in animal models. These findings suggest that SB could be developed as an anti-virulence agent against V. cholerae, serving as a potential alternative to conventional antibiotics or as an adjunctive therapy to combat cholera. IMPORTANCE The world has been facing an upsurge in cholera cases since 2021, a similar trend continuing into 2022, with over 29 countries reporting cholera outbreaks (World Health Organization, 16 December 2022, Disease Outbreak News, Cholera-global situation). Treatment of cholera involves oral rehydration therapy coupled with antibiotics to reduce the duration of the illness. However, in recent years, indiscriminate use of antibiotics has contributed to the emergence of antibiotic-resistant strains. In this study, we have addressed the problem of antibiotic resistance by targeting virulence factors. Screening various compounds using in silico methods led to the identification of a small molecule, SB, that inhibits the virulence cascade in V. cholerae. We demonstrated that (i) SB intervened in ToxT protein-DNA binding and subsequently affected the expression of ToxT-regulated virulence genes (ctxAB and tcpA) and (ii) SB is a potential therapeutic candidate for the development of a novel antimicrobial agent.
Collapse
Affiliation(s)
- Sushmita Kundu
- Division of Biochemistry, ICMR-National Institute for Research in Bacterial Infections (Formerly ICMR-National Institute of Cholera and Enteric Diseases), Kolkata, India
| | - Suman Das
- Division of Biochemistry, ICMR-National Institute for Research in Bacterial Infections (Formerly ICMR-National Institute of Cholera and Enteric Diseases), Kolkata, India
| | - Priyanka Maitra
- Division of Biochemistry, ICMR-National Institute for Research in Bacterial Infections (Formerly ICMR-National Institute of Cholera and Enteric Diseases), Kolkata, India
| | - Prolay Halder
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (Formerly ICMR-National Institute of Cholera and Enteric Diseases), Kolkata, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (Formerly ICMR-National Institute of Cholera and Enteric Diseases), Kolkata, India
| | - Asish K Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (Formerly ICMR-National Institute of Cholera and Enteric Diseases), Kolkata, India
| | - Shin-Ichi Miyoshi
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections (Formerly ICMR-National Institute of Cholera and Enteric Diseases), Kolkata, India
| | - Nabendu Sekhar Chatterjee
- Division of Biochemistry, ICMR-National Institute for Research in Bacterial Infections (Formerly ICMR-National Institute of Cholera and Enteric Diseases), Kolkata, India
| | - Sushmita Bhattacharya
- Division of Biochemistry, ICMR-National Institute for Research in Bacterial Infections (Formerly ICMR-National Institute of Cholera and Enteric Diseases), Kolkata, India
| |
Collapse
|
2
|
Dos Reis TF, Delbaje E, Pinzan CF, Bastos R, Ackloo S, Fallah S, Laflamme B, Robbins N, Cowen LE, Goldman GH. The GPCR antagonist PPTN synergizes with caspofungin providing increased fungicidal activity against Aspergillus fumigatus. Microbiol Spectr 2025:e0331824. [PMID: 40090930 DOI: 10.1128/spectrum.03318-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/31/2025] [Indexed: 03/19/2025] Open
Abstract
Fungal pathogens pose a serious threat to human health, with Candida and Aspergillus spp. representing some of the most significant opportunistic invaders. Aspergillus fumigatus causes aspergillosis, one of the most prevalent fungal diseases of humans. There is a limited number of drugs available to combat these infections, and antifungal drug resistance is on the rise. In this manuscript, we show 4-[4-(4-Piperidinyl) phenyl]-7-[4-(-(trifluoromethyl) phenyl]-2-naphthalenecarboxylic acid (PPTN), a highly specific antagonist of the human P2Y14 receptor, is a promising antifungal adjuvant against diverse fungal pathogens. PPTN interacts with caspofungin (CAS), ibrexafungerp, voriconazole (VOR), and amphotericin against A. fumigatus CAS- and VOR-resistant clinical isolates, and also CAS against Candida spp and Cryptococcus neoformans. The combination of PPTN and CAS increases cell death in A. fumigatus. In the model yeast Saccharomyces cerevisiae, heterozygous deletion of genes involved in chromatin remodeling results in PPTN hypersensitivity, and in A. fumigatus, PPTN can have increased fungicidal activity when combined with the histone deacetylase inhibitor trichostatin A and the DNA methyltransferase inhibitor 5-azacytidine. Finally, PPTN has reduced toxicity to human immortalized cell lineages and partially clears A. fumigatus conidia infection in A549 pulmonary epithelial cells. Our results indicate that PPTN is a novel adjuvant antifungal drug against fungal diseases caused by A. fumigatus and Candida spp. IMPORTANCE Invasive fungal infections have a high mortality rate, causing more deaths annually than tuberculosis or malaria. Aspergillus fumigatus is the main etiological agent of aspergillosis, one of the most prevalent and deadly fungal diseases. There are few therapeutic options for treating this disease, and treatment commonly fails due to host complications or the emergence of antifungal resistance. Drug repurposing, where existing drugs are deployed for other clinical indications, has increasingly been used in the process of drug discovery. Here, we show that 4-[4-(4-Piperidinyl) phenyl]-7-[4-(-(trifluoromethyl) phenyl]-2-naphthalenecarboxylic acid (PPTN), a highly specific antagonist of the human P2Y14 receptor, when combined with caspofungin (CAS), ibrexafungerp, voriconazole (VOR), and amphotericin can increase the fungicidal activity against not only A. fumigatus CAS- and VOR-resistant clinical isolates but also CAS against Candida spp.
Collapse
Affiliation(s)
- Thaila Fernanda Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
| | - Endrews Delbaje
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Camila Figueiredo Pinzan
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Rafael Bastos
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
- Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Suzanne Ackloo
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Sara Fallah
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Bradley Laflamme
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
| |
Collapse
|
3
|
Haghani I, Ebrahimi FK, Abastabar M, Barough RE, Amiri FT, Hedayati MT, Vaseghi N, Javidnia J, Nosratabadi M, Yahyazadeh Z, Davoodi L, Shokohi T, Moazeni M, Hoseinnejad A, Ebrahimnejad P, Houshmand G, Badali H, Rahimnia SM. A Novel Niosomal Gel for Topical Delivery of Miltefosine Against Trichophyton indotineae Dermatophytosis in Animal Model. Mycoses 2025; 68:e70045. [PMID: 40105235 DOI: 10.1111/myc.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/23/2025] [Accepted: 03/03/2025] [Indexed: 03/20/2025]
Abstract
INTRODUCTION Dermatophytosis, a cutaneous fungal infection worldwide, is generally localised to the skin's superficial layers and keratinised structures. Although most agents are susceptible to current antifungal drugs available in clinical settings, frequent relapses and failures, especially in cases due to Trichophyton indotineae, have been frequently reported. Therefore, alternative targets and therapeutic approaches are highly required. In the present study, we compared the efficacies of terbinafine with conventional and niosomal forms of miltefosine (MFS) against dermatophytosis in the guinea pig model. MATERIAL AND METHODS Initially, 30 guinea pigs were divided into five groups (e.g., untreated control, treated groups by MFS niosomal gel 1%, MFS gel 1%, terbinafine 1% and niosome) and were infected with terbinafine-resistant Trichophyton indotineae and subsequently scored both clinically and mycologically until day 35 of inoculation. MFS was encapsulated into niosomes, elastic vesicles made of non-ionic surfactants that enhance drug delivery through the skin. RESULTS Results showed that the MFS niosomal gel 1% significantly reduced lesion scores, mycological evidence of infection and inflammation compared to the untreated control and terbinafine-treated groups (p < 0.05). Moreover, the lesion score in the niosomal gel and terbinafine groups did not differ from the untreated control (p > 0.05). Histopathological analysis confirmed reduced epidermal thickening and fungal burden in treated models with the MFS niosomal gel 1%. CONCLUSION The findings highlighted MFS niosomal gel 1% as a potentially effective, targeted therapy for drug-resistant T. indotineae, offering a safer and more effective alternative to topical and oral antifungal treatments. However, further studies are warranted to continue correlating these findings with more clinical outcomes.
Collapse
Affiliation(s)
- Iman Haghani
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Khosravi Ebrahimi
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Abastabar
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Robab Ebrahimi Barough
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Mohammad Taghi Hedayati
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Narges Vaseghi
- Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Javad Javidnia
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohsen Nosratabadi
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Zahra Yahyazadeh
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Lotfollah Davoodi
- Department of Infectious and Tropical Diseases, Research Center for Microbial Resistance and Communicable Diseases, Mazandaran University of Medical Sciences, Sari, Iran
| | - Tahereh Shokohi
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Moazeni
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Akbar Hoseinnejad
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Pedram Ebrahimnejad
- Pharmaceutical Sciences Research Centre, Haemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Gholamreza Houshmand
- Department of Pharmacology, Psychiatry and Behavioral Sciences Research Center, Addiction Institute, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Badali
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Seyyed Mobin Rahimnia
- Pharmaceutical Sciences Research Centre, Haemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
4
|
Souza CMD, Bezerra BT, Mellon DA, de Oliveira HC. The evolution of antifungal therapy: Traditional agents, current challenges and future perspectives. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100341. [PMID: 39897698 PMCID: PMC11786858 DOI: 10.1016/j.crmicr.2025.100341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Fungal infections kill more than 3 million people every year. This high number reflects the significant challenges that treating these diseases worldwide presents. The current arsenal of antifungal drugs is limited and often accompanied by high toxicity to patients, elevated treatment costs, increased frequency of resistance rates, and the emergence of naturally resistant species. These treatment challenges highlight the urgency of developing new antifungal therapies, which could positively impact millions of lives each year globally. Our review offers an overview of the antifungal drugs currently available for treatment, presents the status of new antifungal drugs under clinical study, and explores ahead to future candidates that aim to help address this important global health issue.
Collapse
Affiliation(s)
| | | | - Daniel Agreda Mellon
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
- Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Haroldo Cesar de Oliveira
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
- Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
5
|
García Carnero LC, Pinzan CF, Diehl C, de Castro PA, Pontes L, Rodrigues AM, dos Reis TF, Goldman GH. Milteforan, a promising veterinary commercial product against feline sporotrichosis. Microbiol Spectr 2024; 12:e0047424. [PMID: 39194287 PMCID: PMC11448087 DOI: 10.1128/spectrum.00474-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024] Open
Abstract
Sporotrichosis, the cutaneous mycosis most commonly reported in Latin America, is caused by the Sporothrix clinical clade species, including Sporothrix brasiliensis and Sporothrix schenckii sensu stricto. Due to its zoonotic transmission in Brazil, S. brasiliensis represents a significant health threat to humans and domestic animals. Itraconazole, terbinafine, and amphotericin B are the most used antifungals for treating sporotrichosis. However, many strains of S. brasiliensis and S. schenckii have shown resistance to these agents, highlighting the importance of finding new therapeutic options. Here, we demonstrate that milteforan, a commercial veterinary product against dog leishmaniasis, whose active principle is miltefosine, is a possible therapeutic alternative for the treatment of sporotrichosis, as observed by its fungicidal activity in vitro against different strains of S. brasiliensis and S. schenckii. Fluorescent miltefosine localizes to the Sporothrix cell membrane and mitochondria and causes cell death through increased permeabilization. Milteforan decreases S. brasiliensis fungal burden in A549 pulmonary cells and bone marrow-derived macrophages and also has an immunomodulatory effect by decreasing TNF-α, IL-6, and IL-10 production. Our results suggest milteforan as a possible alternative to treat feline sporotrichosis. IMPORTANCE Sporotrichosis is an endemic disease in Latin America caused by different species of Sporothrix. This fungus can infect domestic animals, mainly cats and eventually dogs, as well as humans. Few drugs are available to treat this disease, such as itraconazole, terbinafine, and amphotericin B, but resistance to these agents has risen in the last few years. Alternative new therapeutic options to treat sporotrichosis are essential. Here, we propose milteforan, a commercial veterinary product against dog leishmaniasis, whose active principle is miltefosine, as a possible therapeutic alternative for treating sporotrichosis. Milteforan decreases S. brasiliensis fungal burden in human and mouse cells and has an immunomodulatory effect by decreasing several cytokine production.
Collapse
Affiliation(s)
- Laura C. García Carnero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Camila Figueiredo Pinzan
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Camila Diehl
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patricia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Lais Pontes
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Anderson Messias Rodrigues
- Department of Microbiology, Immunology and Parasitology, Discipline of Cellular Biology, Laboratory of Emerging Fungal Pathogens, Federal University of São Paulo, São Paulo, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
| | - Thaila F. dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
| |
Collapse
|
6
|
Bouqellah NA, Abdel-Hafez LJM, Mostafa IY, Faraag AHI. Investigating the antifungal potential of genetically modified hybrid chitinase enzymes derived from Bacillus subtilis and Serratia marcescens. Int Microbiol 2024:10.1007/s10123-024-00591-x. [PMID: 39356373 DOI: 10.1007/s10123-024-00591-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 08/04/2024] [Accepted: 09/06/2024] [Indexed: 10/03/2024]
Abstract
Chitinases are glycosyl hydrolase enzymes that break down chitin, an integral component of fungal cell walls. Bacteria such as Bacillus subtilis and Serratia marcescens produce chitinases with antifungal properties. In this study, we aimed to generate hybrid chitinase enzymes with enhanced antifungal activity by combining functional domains from native chitinases produced by B. subtilis and S. marcescens. Chitinase genes were cloned from both bacteria and fused together using overlap extension PCR. The hybrid constructs were expressed in E. coli and the recombinant enzymes purified. Gel electrophoresis and computational analysis confirmed the molecular weights and isoelectric points of the hybrid chitinases were intermediate between the parental enzymes. Antifungal assays demonstrated that the hybrid chitinases inhibited growth of the fungus Fusarium oxysporum significantly more than the native enzymes and also showed fungicidal activity against Candida albicans, Alternaria solani, and Rhizoctonia solani. The results indicate that hybrid bacterial chitinases are a promising approach to engineer novel antifungal proteins. This study provides insight into structure-function relationships of chitinases and strategies for generating biotherapeutics with enhanced bioactive properties. These hybrid chitinases result in a more potent and versatile antifungal agent.
Collapse
Affiliation(s)
- Nahla Alsayd Bouqellah
- Biology Department, Science College, Taibah University, 42317-8599, Al Madinah Al Munawwarah, Saudi Arabia.
| | | | - Islam Yousif Mostafa
- Department of Microbiology, Faculty of Dentistry and Oral Medicine, Future University, Cairo, Egypt
| | - Ahmed Hassan Ibrahim Faraag
- Department of Botany and Microbiology, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt.
- School of Biotechnology, Badr University in Cairo, Badr City, 11829, Cairo, Egypt.
| |
Collapse
|
7
|
Steenwyk JL, Knowles S, Bastos RW, Balamurugan C, Rinker D, Mead ME, Roberts CD, Raja HA, Li Y, Colabardini AC, de Castro PA, Dos Reis TF, Gumilang A, Almagro-Molto M, Alanio A, Garcia-Hermoso D, Delbaje E, Pontes L, Pinzan CF, Schreiber AZ, Canóvas D, Sanchez Luperini R, Lagrou K, Torrado E, Rodrigues F, Oberlies NH, Zhou X, Goldman GH, Rokas A. Evolutionary origin and population diversity of a cryptic hybrid pathogen. Nat Commun 2024; 15:8412. [PMID: 39333551 PMCID: PMC11436853 DOI: 10.1038/s41467-024-52639-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
Cryptic fungal pathogens pose disease management challenges due to their morphological resemblance to known pathogens. Here, we investigated the genomes and phenotypes of 53 globally distributed isolates of Aspergillus section Nidulantes fungi and found 30 clinical isolates-including four isolated from COVID-19 patients-were A. latus, a cryptic pathogen that originated via allodiploid hybridization. Notably, all A. latus isolates were misidentified. A. latus hybrids likely originated via a single hybridization event during the Miocene and harbor substantial genetic diversity. Transcriptome profiling of a clinical isolate revealed that both parental subgenomes are actively expressed and respond to environmental stimuli. Characterizing infection-relevant traits-such as drug resistance and growth under oxidative stress-revealed distinct phenotypic profiles among A. latus hybrids compared to parental and closely related species. Moreover, we identified four features that could aid A. latus taxonomic identification. Together, these findings deepen our understanding of the origin of cryptic pathogens.
Collapse
Affiliation(s)
- Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, USA
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, USA
| | - Sonja Knowles
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, USA
| | - Rafael W Bastos
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- Department of Microbiology and Parasitology, Bioscience Center, Federal University of Rio Grande do Norte, Natal-RN, Brazil
| | - Charu Balamurugan
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, USA
| | - David Rinker
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, USA
| | - Matthew E Mead
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, USA
- Ginkgo Bioworks, 27 Drydock Avenue, 8th Floor, Boston, USA
| | - Christopher D Roberts
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, USA
| | - Huzefa A Raja
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, USA
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Ana Cristina Colabardini
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Thaila Fernanda Dos Reis
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Adiyantara Gumilang
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, USA
| | - María Almagro-Molto
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Faculty of Medicine, Ludwig Maximilian University, Munich, Germany
| | - Alexandre Alanio
- Institut Pasteur, Paris Cité University, National Reference Center for Invasives Mycoses and Antifungals, Translational Mycology Research Group, Mycology Department, Paris, France
- Laboratoire de parasitologie-mycologie, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Dea Garcia-Hermoso
- Institut Pasteur, Paris Cité University, National Reference Center for Invasives Mycoses and Antifungals, Translational Mycology Research Group, Mycology Department, Paris, France
| | - Endrews Delbaje
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Laís Pontes
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Camila Figueiredo Pinzan
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | - David Canóvas
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
- Clinical Microbiology Unit. Synlab Laboratory at Viamed Sta. Ángela de la Cruz Hospital, Seville, Spain
| | - Rafael Sanchez Luperini
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Laboratory Medicine and National Reference Centre for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Egídio Torrado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4715-495 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4715-495 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Nicholas H Oberlies
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, USA
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Gustavo H Goldman
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil.
- National Institute of Science and Technology in Human Pathogenic, Fungi, Brazil.
| | - Antonis Rokas
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, USA.
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, USA.
| |
Collapse
|
8
|
Carnero LCG, Dos Reis TF, Diehl C, de Castro PA, Pontes L, Pinzan CF, Goldman GH. Milteforan, a promising veterinary commercial product against feline sporotrichosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580352. [PMID: 38405873 PMCID: PMC10888911 DOI: 10.1101/2024.02.14.580352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Sporotrichosis, the cutaneous mycosis most commonly reported in Latin America, is caused by the Sporothrix clinical clade species, including Sporothrix brasiliensis and Sporothrix schenckii sensu stricto. In Brazil, S. brasiliensis represents a vital health threat to humans and domestic animals due to its zoonotic transmission. Itraconazole, terbinafine, and amphotericin B are the most used antifungals for treating sporotrichosis. However, many strains of S. brasiliensis and S. schenckii have shown resistance to these agents, highlighting the importance of finding new therapeutic options. Here, we demonstrate that milteforan, a commercial veterinary product against dog leishmaniasis whose active principle is miltefosine, is a possible therapeutic alternative for the treatment of sporotrichosis, as observed by its fungicidal activity in vitro against different strains of S. brasiliensis and S. schenckii, and by its antifungal activity when used to treat infected epithelial cells and macrophages. Our results suggest milteforan as a possible alternative to treat feline sporotrichosis.
Collapse
Affiliation(s)
- Laura C García Carnero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Thaila F Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Camila Diehl
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patricia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Lais Pontes
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Camila Figueiredo Pinzan
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
9
|
Almeida-Paes R, Frases S. Repurposing drugs for fungal infections: advantages and limitations. Future Microbiol 2023; 18:1013-1016. [PMID: 37721174 DOI: 10.2217/fmb-2023-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Tweetable abstract Repurposing existing drugs for fungal infections has demonstrated potential in both in vitro and animal models, but there are still obstacles to overcome for clinical application. #antifungal #drugrepurposing #fungalinfections.
Collapse
Affiliation(s)
- Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-360, Brazil
- Rede Micologia - FAPERJ, Rio de Janeiro, 21040-360, Brazil
| | - Susana Frases
- Rede Micologia - FAPERJ, Rio de Janeiro, 21040-360, Brazil
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. Cidade Universitária, Ilha do Fundão, Rio de Janeiro, 21040-360, Brazil
| |
Collapse
|
10
|
Spadari CDC, Borba-Santos LP, Rozental S, Ishida K. Miltefosine repositioning: A review of potential alternative antifungal therapy. J Mycol Med 2023; 33:101436. [PMID: 37774486 DOI: 10.1016/j.mycmed.2023.101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
Fungal infections are a global health problem with high mortality and morbidity rates. Available antifungal agents have high toxicity and pharmacodynamic and pharmacokinetic limitations. Moreover, the increased incidence of antifungal-resistant isolates and the emergence of intrinsically resistant species raise concerns about seeking alternatives for efficient antifungal therapy. In this context, we review literature data addressing the potential action of miltefosine (MFS), an anti-Leishmania and anticancer agent, as a repositioning drug for antifungal treatment. Here, we highlight the in vitro and in vivo data, MFS possible mechanisms of action, case reports, and nanocarrier-mediated MFS delivery, focusing on fungal infection therapy. Finally, many studies have demonstrated the promising antifungal action of MFS in vitro, but there is little or no data on antifungal activity in vertebrate animal models and clinical trials, so have a need to develop more research for the repositioning of MFS as an antifungal therapy.
Collapse
Affiliation(s)
| | - Luana Pereira Borba-Santos
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sonia Rozental
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kelly Ishida
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
11
|
Steenwyk JL, Knowles S, Bastos RW, Balamurugan C, Rinker D, Mead ME, Roberts CD, Raja HA, Li Y, Colabardini AC, de Castro PA, dos Reis TF, Canóvas D, Sanchez RL, Lagrou K, Torrado E, Rodrigues F, Oberlies NH, Zhou X, Goldman GH, Rokas A. Evolutionary origin, population diversity, and diagnostics for a cryptic hybrid pathogen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547508. [PMID: 37461539 PMCID: PMC10350022 DOI: 10.1101/2023.07.03.547508] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Cryptic fungal pathogens pose significant identification and disease management challenges due to their morphological resemblance to known pathogenic species while harboring genetic and (often) infectionrelevant trait differences. The cryptic fungal pathogen Aspergillus latus, an allodiploid hybrid originating from Aspergillus spinulosporus and an unknown close relative of Aspergillus quadrilineatus within section Nidulantes, remains poorly understood. The absence of accurate diagnostics for A. latus has led to misidentifications, hindering epidemiological studies and the design of effective treatment plans. We conducted an in-depth investigation of the genomes and phenotypes of 44 globally distributed isolates (41 clinical isolates and three type strains) from Aspergillus section Nidulantes. We found that 21 clinical isolates were A. latus; notably, standard methods of pathogen identification misidentified all A. latus isolates. The remaining isolates were identified as A. spinulosporus (8), A. quadrilineatus (1), or A. nidulans (11). Phylogenomic analyses shed light on the origin of A. latus, indicating one or two hybridization events gave rise to the species during the Miocene, approximately 15.4 to 8.8 million years ago. Characterizing the A. latus pangenome uncovered substantial genetic diversity within gene families and biosynthetic gene clusters. Transcriptomic analysis revealed that both parental genomes are actively expressed in nearly equal proportions and respond to environmental stimuli. Further investigation into infection-relevant chemical and physiological traits, including drug resistance profiles, growth under oxidative stress conditions, and secondary metabolite biosynthesis, highlight distinct phenotypic profiles of the hybrid A. latus compared to its parental and closely related species. Leveraging our comprehensive genomic and phenotypic analyses, we propose five genomic and phenotypic markers as diagnostics for A. latus species identification. These findings provide valuable insights into the evolutionary origin, genomic outcome, and phenotypic implications of hybridization in a cryptic fungal pathogen, thus enhancing our understanding of the underlying processes contributing to fungal pathogenesis. Furthermore, our study underscores the effectiveness of extensive genomic and phenotypic analyses as a promising approach for developing diagnostics applicable to future investigations of cryptic and emerging pathogens.
Collapse
Affiliation(s)
- Jacob L. Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Vanderbilt University, Department of Biological Sciences, VU Station B #35–1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Sonja Knowles
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Rafael W. Bastos
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- Department of Microbiology and Parasitology, Bioscience Center, Federal University of Rio Grande do Norte, Natal-RN, Brazil
| | - Charu Balamurugan
- Vanderbilt University, Department of Biological Sciences, VU Station B #35–1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - David Rinker
- Vanderbilt University, Department of Biological Sciences, VU Station B #35–1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Matthew E. Mead
- Vanderbilt University, Department of Biological Sciences, VU Station B #35–1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Christopher D. Roberts
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Huzefa A. Raja
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Ana Cristina Colabardini
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Thaila Fernanda dos Reis
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - David Canóvas
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Rafael Luperini Sanchez
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- Department of Laboratory Medicine and National Reference Centre for Mycosis, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Egídio Torrado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4715-495 Braga, Portugal; ICVS/3B’s-PT Government Associate Laboratory, 4715-495 Braga, Portugal
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4715-495 Braga, Portugal; ICVS/3B’s-PT Government Associate Laboratory, 4715-495 Braga, Portugal
| | - Nicholas H. Oberlies
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Gustavo H. Goldman
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Antonis Rokas
- Vanderbilt University, Department of Biological Sciences, VU Station B #35–1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
12
|
de Oliveira H, Bezerra BT, Rodrigues ML. Antifungal Development and the Urgency of Minimizing the Impact of Fungal Diseases on Public Health. ACS BIO & MED CHEM AU 2023; 3:137-146. [PMID: 37101810 PMCID: PMC10125384 DOI: 10.1021/acsbiomedchemau.2c00055] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 04/28/2023]
Abstract
Fungal infections are a major public health problem resulting from the lack of public policies addressing these diseases, toxic and/or expensive therapeutic tools, scarce diagnostic tests, and unavailable vaccines. In this Perspective, we discuss the need for novel antifungal alternatives, highlighting new initiatives based on drug repurposing and the development of novel antifungals.
Collapse
Affiliation(s)
| | - Bárbara T. Bezerra
- Instituto
Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba81310-020, Brazil
| | - Marcio L. Rodrigues
- Instituto
Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba81310-020, Brazil
- Instituto
de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro21941-902, Brazil
| |
Collapse
|
13
|
Haghani I, Yahyazadeh Z, Hedayati MT, Shokohi T, Badali H, Khojasteh S, Akhtari J, Javidnia J, Moazeni M, Al-Harrasi A, Aghili SR, Kermani F, Hajheydari Z, Al Hatmi AMS, Abastabar M. Antifungal activity of miltefosine against both azole-susceptible and -resistant Aspergillus strains. Int J Antimicrob Agents 2023; 61:106715. [PMID: 36640844 DOI: 10.1016/j.ijantimicag.2023.106715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/15/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
Miltefosine, an alkylphosphocholine, has been approved recently for the treatment of visceral leishmaniasis. Miltefosine has shown promise as a treatment for paracoccidioidomycosis, and has mixed activity against other fungi and yeast. There are limited data on the in-vitro activity of miltefosine against azole-resistant and -susceptible Aspergillus spp. As such, the aim of this study was to determine the in-vitro activity of miltefosine against Aspergillus strains. Miltefosine was tested against 108 azole-susceptible and -resistant Aspergillus strains isolated from Iran and other countries using the broth microdilution method. Miltefosine was found to be effective against azole-resistant Aspergillus isolates, with minimum inhibitory concentrations (MICs) ranging from 1.562 to 6.25 µg/mL. MIC50 and MIC90 were 1.562 and 3.125 µg/mL, respectively. Miltefosine had a higher geometric mean MIC (2.459 µg/mL) for wild-type Aspergillus isolates than itraconazole (0.220 µg/mL) and voriconazole (0.298 µg/mL). No significant difference was found between miltefosine MICs for azole-resistant Aspergillus isolates and azole-susceptible Aspergillus isolates (P>0.05). Miltefosine appears to have good in-vitro activity against azole-resistant Aspergillus strains, according to these findings. Furthermore, the findings suggest that miltefosine could be used to treat infections caused by azole-resistant Aspergillus spp.
Collapse
Affiliation(s)
- Iman Haghani
- Invasive Fungi Research Centre, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Yahyazadeh
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Mazandaran Province, Iran
| | - Mohammad Taghi Hedayati
- Invasive Fungi Research Centre, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Mazandaran Province, Iran
| | - Tahereh Shokohi
- Invasive Fungi Research Centre, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Mazandaran Province, Iran
| | - Hamid Badali
- Invasive Fungi Research Centre, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Shaghayegh Khojasteh
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Mazandaran Province, Iran
| | - Javad Akhtari
- Department of Nano-biomedicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Javad Javidnia
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Mazandaran Province, Iran
| | - Maryam Moazeni
- Invasive Fungi Research Centre, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Mazandaran Province, Iran
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Seyed Reza Aghili
- Invasive Fungi Research Centre, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Mazandaran Province, Iran
| | - Firoozeh Kermani
- Invasive Fungi Research Centre, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Mazandaran Province, Iran
| | - Zohreh Hajheydari
- Invasive Fungi Research Centre, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Dermatology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdullah M S Al Hatmi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman; Centre of Expertise in Mycology, Radboud University Medical Centre/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands.
| | - Mahdi Abastabar
- Invasive Fungi Research Centre, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Mazandaran Province, Iran.
| |
Collapse
|
14
|
Orekhova A, De Angelis M, Cacciotti A, Reverberi M, Rotili D, Giorgi A, Protto V, Bonincontro G, Fiorentino F, Zgoda V, Mai A, Palamara AT, Simonetti G. Modulation of Virulence-Associated Traits in Aspergillus fumigatus by BET Inhibitor JQ1. Microorganisms 2022; 10:2292. [PMID: 36422362 PMCID: PMC9698166 DOI: 10.3390/microorganisms10112292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 08/18/2024] Open
Abstract
Aspergillus fumigatus is a disease-causing, opportunistic fungus that can establish infection due to its capacity to respond to a wide range of environmental conditions. Secreted proteins and metabolites, which play a critical role in fungal-host interactions and pathogenesis, are modulated by epigenetic players, such as bromodomain and extraterminal domain (BET) proteins. In this study, we evaluated the in vitro and in vivo capability of the BET inhibitor JQ1 to modulate the extracellular proteins and virulence of A. fumigatus. The abundance of 25 of the 76 extracellular proteins identified through LC-MS/MS proteomic analysis changed following JQ1 treatment. Among them, a ribonuclease, a chitinase, and a superoxide dismutase were dramatically downregulated. Moreover, the proteomic analysis of A. fumigatus intracellular proteins indicated that Abr2, an intracellular laccase involved in the last step of melanin synthesis, was absent in the JQ1-treated group. To investigate at which level this downregulation occurred and considering the ability of JQ1 to modulate gene expression we checked the level of ABR2, Chitinase, and Superoxide dismutase mRNA expression by qRT-PCR. Finally, the capacity of JQ1 to reduce the virulence of A. fumigatus has been proved using Galleria mellonella larvae, which are an in vivo model to evaluate fungal virulence. Overall, the promising activity exhibited by JQ1 suggests that A. fumigatus is sensitive to BET inhibition and BET proteins may be a viable target for developing antifungal agents.
Collapse
Affiliation(s)
- Anastasia Orekhova
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Marta De Angelis
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Andrea Cacciotti
- Department of Environmental Biology, “Sapienza” University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Massimo Reverberi
- Department of Environmental Biology, “Sapienza” University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Alessandra Giorgi
- Department of Biochemical Sciences, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Virginia Protto
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Graziana Bonincontro
- Department of Environmental Biology, “Sapienza” University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Francesco Fiorentino
- Department of Drug Chemistry and Technologies, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Victor Zgoda
- Institute of Biomedical Chemistry, Moscow, 10 Pogodinskaya Street, Moscow 119121, Russia
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Giovanna Simonetti
- Department of Environmental Biology, “Sapienza” University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
15
|
Abstract
Lipids play a fundamental role in fungal cell biology, being essential cell membrane components and major targets of antifungal drugs. A deeper knowledge of lipid metabolism is key for developing new drugs and a better understanding of fungal pathogenesis. Here, we built a comprehensive map of the Histoplasma capsulatum lipid metabolic pathway by incorporating proteomic and lipidomic analyses. We performed genetic complementation and overexpression of H. capsulatum genes in Saccharomyces cerevisiae to validate reactions identified in the map and to determine enzymes responsible for catalyzing orphan reactions. The map led to the identification of both the fatty acid desaturation and the sphingolipid biosynthesis pathways as targets for drug development. We found that the sphingolipid biosynthesis inhibitor myriocin, the fatty acid desaturase inhibitor thiocarlide, and the fatty acid analog 10-thiastearic acid inhibit H. capsulatum growth in nanomolar to low-micromolar concentrations. These compounds also reduced the intracellular infection in an alveolar macrophage cell line. Overall, this lipid metabolic map revealed pathways that can be targeted for drug development.
Collapse
|
16
|
Rollin-Pinheiro R, Borba-Santos LP, da Silva Xisto MID, de Castro-Almeida Y, Rochetti VP, Rozental S, Barreto-Bergter E. Identification of Promising Antifungal Drugs against Scedosporium and Lomentospora Species after Screening of Pathogen Box Library. J Fungi (Basel) 2021; 7:jof7100803. [PMID: 34682224 PMCID: PMC8539698 DOI: 10.3390/jof7100803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022] Open
Abstract
Fungal infections have been increasing during the last decades. Scedosporium and Lomentospora species are filamentous fungi most associated to those infections, especially in immunocompromised patients. Considering the limited options of treatment and the emergence of resistant isolates, an increasing concern motivates the development of new therapeutic alternatives. In this context, the present study screened the Pathogen Box library to identify compounds with antifungal activity against Scedosporium and Lomentospora. Using antifungal susceptibility tests, biofilm analysis, scanning electron microscopy (SEM), and synergism assay, auranofin and iodoquinol were found to present promising repurposing applications. Both compounds were active against different Scedosporium and Lomentospora, including planktonic cells and biofilm. SEM revealed morphological alterations and synergism analysis showed that both drugs present positive interactions with voriconazole, fluconazole, and caspofungin. These data suggest that auranofin and iodoquinol are promising compounds to be studied as repurposing approaches against scedosporiosis and lomentosporiosis.
Collapse
Affiliation(s)
- Rodrigo Rollin-Pinheiro
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (R.R.-P.); (M.I.D.d.S.X.); (Y.d.C.-A.); (V.P.R.)
| | - Luana Pereira Borba-Santos
- Programa de Biologia Celular e Parasitologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.P.B.-S.); (S.R.)
| | - Mariana Ingrid Dutra da Silva Xisto
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (R.R.-P.); (M.I.D.d.S.X.); (Y.d.C.-A.); (V.P.R.)
| | - Yuri de Castro-Almeida
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (R.R.-P.); (M.I.D.d.S.X.); (Y.d.C.-A.); (V.P.R.)
| | - Victor Pereira Rochetti
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (R.R.-P.); (M.I.D.d.S.X.); (Y.d.C.-A.); (V.P.R.)
| | - Sonia Rozental
- Programa de Biologia Celular e Parasitologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.P.B.-S.); (S.R.)
| | - Eliana Barreto-Bergter
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (R.R.-P.); (M.I.D.d.S.X.); (Y.d.C.-A.); (V.P.R.)
- Correspondence: ; Tel.: +55-(21)-3938-6741
| |
Collapse
|