1
|
Abrego-Guandique DM, Galmés S, García-Rodríguez A, Cannataro R, Caroleo MC, Ribot J, Bonet ML, Cione E. β-Carotene Impacts the Liver MicroRNA Profile in a Sex-Specific Manner in Mouse Offspring of Western Diet-Fed Mothers: Results from Microarray Analysis by Direct Hybridization. Int J Mol Sci 2024; 25:12899. [PMID: 39684610 DOI: 10.3390/ijms252312899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Maternal unbalanced diets cause adverse metabolic programming and affect the offspring's liver microRNA (miRNA) profile. The liver is a site of β-carotene (BC) metabolism and a target of BC action. We studied the interaction of maternal Western diet (WD) and early-life BC supplementation on the epigenetic remodeling of offspring's liver microRNAs. Mouse offspring of WD-fed mothers were given a daily placebo (controls) or BC during suckling. Biometric parameters and liver miRNAome by microarray hybridization were analyzed in newly weaned animals. BC sex-dependently impacted the liver triacylglycerol content. The liver miRNAome was also differently affected in male and female offspring, with no overlap in differentially expressed (DE) miRNAs between sexes and more impact in females. Bioinformatic analysis of DE miRNA predicted target genes revealed enrichment in biological processes/pathways related to metabolic processes, regulation of developmental growth and circadian rhythm, liver homeostasis and metabolism, insulin resistance, and neurodegeneration, among others, with differences between sexes. Fifty-five percent of the overlapping target genes in both sexes identified were targeted by DE miRNAs changed in opposite directions in males and females. The results identify sex-dependent responses of the liver miRNA expression profile to BC supplementation during suckling and may sustain further investigations regarding the long-term impact of early postnatal life BC supplementation on top of an unbalanced maternal diet.
Collapse
Affiliation(s)
| | - Sebastià Galmés
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (LBNB), Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Research Group, Universitat de les Illes Balears, 07122 Palma, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Adrián García-Rodríguez
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (LBNB), Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Research Group, Universitat de les Illes Balears, 07122 Palma, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Roberto Cannataro
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy
- Research Division, Dynamical Business & Science Society-DBSS International SAS, Bogotá 110311, Colombia
| | - Maria Cristina Caroleo
- Department of Health Sciences, University of Magna Graecia Catanzaro, 88100 Catanzaro, Italy
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (LBNB), Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Research Group, Universitat de les Illes Balears, 07122 Palma, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria Luisa Bonet
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (LBNB), Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Research Group, Universitat de les Illes Balears, 07122 Palma, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| | - Erika Cione
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
2
|
Zhang X, Yang Z, Fu C, Yao R, Li H, Peng F, Li N. Emerging roles of liquid-liquid phase separation in liver innate immunity. Cell Commun Signal 2024; 22:430. [PMID: 39227829 PMCID: PMC11373118 DOI: 10.1186/s12964-024-01787-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/11/2024] [Indexed: 09/05/2024] Open
Abstract
Biomolecular condensates formed by liquid-liquid phase separation (LLPS) have become an extensive mechanism of macromolecular metabolism and biochemical reactions in cells. Large molecules like proteins and nucleic acids will spontaneously aggregate and assemble into droplet-like structures driven by LLPS when the physical and chemical properties of cells are altered. LLPS provides a mature molecular platform for innate immune response, which tightly regulates key signaling in liver immune response spatially and physically, including DNA and RNA sensing pathways, inflammasome activation, and autophagy. Take this, LLPS plays a promoting or protecting role in a range of liver diseases, such as viral hepatitis, non-alcoholic fatty liver disease, liver fibrosis, hepatic ischemia-reperfusion injury, autoimmune liver disease, and liver cancer. This review systematically describes the whole landscape of LLPS in liver innate immunity. It will help us to guide a better-personalized approach to LLPS-targeted immunotherapy for liver diseases.
Collapse
Affiliation(s)
- Xinying Zhang
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Hunan Province, China
| | - Ziyue Yang
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Chunmeng Fu
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Run Yao
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Huan Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Fang Peng
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
| | - Ning Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
- Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
3
|
Abstract
The steatotic diseases of metabolic dysfunction-associated steatotic liver disease (MASLD), alcohol-associated liver disease (ALD), and chronic hepatitis C (HCV) account for the majority of liver disease prevalence, morbidity, and mortality worldwide. While these diseases have distinct pathogenic and clinical features, dysregulated lipid droplet (LD) organelle biology represents a convergence of pathogenesis in all three. With increasing understanding of hepatocyte LD biology, we now understand the roles of LD proteins involved in these diseases but also how genetics modulate LD biology to either exacerbate or protect against the phenotypes associated with steatotic liver diseases. Here, we review the history of the LD organelle and its biogenesis and catabolism. We also review how this organelle is critical not only for the steatotic phenotype of liver diseases but also for their advanced phenotypes. Finally, we summarize the latest attempts and challenges of leveraging LD biology for therapeutic gain in steatotic diseases. In conclusion, the study of dysregulated LD biology may lead to novel therapeutics for the prevention of disease progression in the highly prevalent steatotic liver diseases of MASLD, ALD, and HCV.
Collapse
Affiliation(s)
- Joseph L Dempsey
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington
| | - George N Ioannou
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington
- Division of Gastroenterology, Veterans Affairs Puget Sound Healthcare System Seattle, Washington
| | - Rotonya M Carr
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
4
|
MicroRNA-122 in human cancers: from mechanistic to clinical perspectives. Cancer Cell Int 2023; 23:29. [PMID: 36803831 PMCID: PMC9940444 DOI: 10.1186/s12935-023-02868-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous short non-coding RNAs that can regulate the expression of target genes post-transcriptionally and interact with mRNA-coding genes. MiRNAs play vital roles in many biological functions, and abnormal miRNA expression has been linked to various illnesses, including cancer. Among the miRNAs, miR-122, miR-206, miR-21, miR-210, miR-223, and miR-424 have been extensively studied in various cancers. Although research in miRNAs has grown considerably over the last decade, much is yet to be discovered, especially regarding their role in cancer therapies. Several kinds of cancer have been linked to dysregulation and abnormal expression of miR-122, indicating that miR-122 may serve as a diagnostic and/or prognostic biomarker for human cancer. Consequently, in this review literature, miR-122 has been analyzed in numerous cancer types to sort out the function of cancer cells miR-122 and enhance patient response to standard therapy.
Collapse
|
5
|
Tao L, Ren X, Zhai W, Chen Z. Progress and Prospects of Non-Canonical NF-κB Signaling Pathway in the Regulation of Liver Diseases. Molecules 2022; 27:molecules27134275. [PMID: 35807520 PMCID: PMC9268066 DOI: 10.3390/molecules27134275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Non-canonical nuclear factor kappa B (NF-κB) signaling pathway regulates many physiological and pathological processes, including liver homeostasis and diseases. Recent studies demonstrate that non-canonical NF-κB signaling pathway plays an essential role in hyperglycemia, non-alcoholic fatty liver disease, alcoholic liver disease, liver regeneration, liver injury, autoimmune liver disease, viral hepatitis, and hepatocellular carcinoma. Small-molecule inhibitors targeting to non-canonical NF-κB signaling pathway have been developed and shown promising results in the treatment of liver injuries. Here, the recent advances and future prospects in understanding the roles of the non-canonical NF-κB signaling pathways in the regulation of liver diseases are discussed.
Collapse
Affiliation(s)
- Li Tao
- Emergency Department, 305 Hospital of People’s Liberation Army, Beijing 100017, China; (L.T.); (W.Z.)
| | - Xiaomeng Ren
- College of Pharmaceutical and Biology Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
- Correspondence: (X.R.); (Z.C.); Tel.: +86-45186402029 (Z.C.)
| | - Wenhui Zhai
- Emergency Department, 305 Hospital of People’s Liberation Army, Beijing 100017, China; (L.T.); (W.Z.)
| | - Zheng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
- Correspondence: (X.R.); (Z.C.); Tel.: +86-45186402029 (Z.C.)
| |
Collapse
|
6
|
The Role of Insulin Resistance in Fueling NAFLD Pathogenesis: From Molecular Mechanisms to Clinical Implications. J Clin Med 2022; 11:jcm11133649. [PMID: 35806934 PMCID: PMC9267803 DOI: 10.3390/jcm11133649] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a predominant hepatopathy that is rapidly becoming the most common cause of hepatocellular carcinoma worldwide. The close association with metabolic syndrome’s extrahepatic components has suggested the nature of the systemic metabolic-related disorder based on the interplay between genetic, nutritional, and environmental factors, creating a complex network of yet-unclarified pathogenetic mechanisms in which the role of insulin resistance (IR) could be crucial. This review detailed the clinical and pathogenetic evidence involved in the NAFLD–IR relationship, presenting both the classic and more innovative models. In particular, we focused on the reciprocal effects of IR, oxidative stress, and systemic inflammation on insulin-sensitivity disruption in critical regions such as the hepatic and the adipose tissue, while considering the impact of genetics/epigenetics on the regulation of IR mechanisms as well as nutrients on specific insulin-related gene expression (nutrigenetics and nutrigenomics). In addition, we discussed the emerging capability of the gut microbiota to interfere with physiological signaling of the hormonal pathways responsible for maintaining metabolic homeostasis and by inducing an abnormal activation of the immune system. The translation of these novel findings into clinical practice could promote the expansion of accurate diagnostic/prognostic stratification tools and tailored pharmacological approaches.
Collapse
|
7
|
Huang PS, Liao CJ, Huang YH, Yeh CT, Chen CY, Tang HC, Chang CC, Lin KH. Functional and Clinical Significance of Dysregulated microRNAs in Liver Cancer. Cancers (Basel) 2021; 13:5361. [PMID: 34771525 PMCID: PMC8582514 DOI: 10.3390/cancers13215361] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 11/27/2022] Open
Abstract
Liver cancer is the leading cause of cancer-related mortality in the world. This mainly reflects the lack of early diagnosis tools and effective treatment methods. MicroRNAs (miRNAs) are a class of non-transcribed RNAs, some of which play important regulatory roles in liver cancer. Here, we discuss microRNAs with key impacts on liver cancer, such as miR-122, miR-21, miR-214, and miR-199. These microRNAs participate in various physiological regulatory pathways of liver cancer cells, and their modulation can have non-negligible effects in the treatment of liver cancer. We discuss whether these microRNAs can be used for better clinical diagnosis and/or drug development. With the advent of novel technologies, fast, inexpensive, and non-invasive RNA-based biomarker research has become a new mainstream approach. However, the clinical application of microRNA-based markers has been limited by the high sequence similarity among them and the potential for off-target problems. Therefore, researchers particularly value microRNAs that are specific to or have special functions in liver cancer. These include miR-122, which is specifically expressed in the liver, and miR-34, which is necessary for the replication of the hepatitis C virus in liver cancer. Clinical treatment drugs have been developed based on miR-34 and miR-122 (MRX34 and Miravirsen, respectively), but their side effects have not yet been overcome. Future research is needed to address these weaknesses and establish a feasible microRNA-based treatment strategy for liver cancer.
Collapse
Affiliation(s)
- Po-Shuan Huang
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (P.-S.H.); (C.-J.L.)
- Department of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Chia-Jung Liao
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (P.-S.H.); (C.-J.L.)
- Department of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Ya-Hui Huang
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-H.H.); (C.-T.Y.)
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-H.H.); (C.-T.Y.)
| | - Cheng-Yi Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Hui-Chi Tang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Cheng-Chih Chang
- Department of General Surgery, Chang Gung Memorial Hospital at Chia-yi, Chia-yi 613, Taiwan
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (P.-S.H.); (C.-J.L.)
- Department of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-H.H.); (C.-T.Y.)
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| |
Collapse
|
8
|
Chen Q, Lu X, Zhang X. Noncanonical NF-κB Signaling Pathway in Liver Diseases. J Clin Transl Hepatol 2021; 9:81-89. [PMID: 33604258 PMCID: PMC7868705 DOI: 10.14218/jcth.2020.00063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/04/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
The noncanonical NF-κB signaling pathway is an important branch of NF-κB signaling. It is involved in regulating multiple important biological processes, including inflammation and host immune response. A central adaptor protein of the noncanonical NF-κB pathway is NF-κB-inducing kinase (NIK), which activates the downstream kinase IKKα to process p100 to p52, thereby forming the RelB/p52 heterodimer to initiate the expression of target genes. Currently, many specific inhibitors and monoclonal antibodies targeting or triggering this pathway are being developed and tested for various diseases, including cancers, autoimmune diseases, and virus infection. Given that aberrant activation of the noncanonical NF-κB pathway is frequently observed in various liver diseases, targeting this pathway may be a promising therapeutic strategy to alleviate liver inflammation. Moreover, activation of this pathway may contribute to the antiviral immune response and promote the clearance of persistent hepatotropic virus infection. Here, we review the role of the noncanonical NF-κB pathway in the occurrence and development of different liver diseases, and discuss the potency and application of modulating the noncanonical NF-κB pathway for treatment of these liver diseases.
Collapse
Affiliation(s)
- Qianhui Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou,Guangdong, China
| | - Xinyu Lu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou,Guangdong, China
| | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou,Guangdong, China
- Hepatology Unit, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- Correspondence to: Xiaoyong Zhang, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, Guangdong 510515, China. Tel: +86-20-62787830, E-mail:
| |
Collapse
|
9
|
Dual Effects of Let-7b in the Early Stage of Hepatitis C Virus Infection. J Virol 2021; 95:JVI.01800-20. [PMID: 33208444 DOI: 10.1128/jvi.01800-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022] Open
Abstract
MicroRNA let-7b expression is induced by infection of hepatitis C virus (HCV) and is involved in the regulation of HCV replication by directly targeting the HCV genome. The current study demonstrated that let-7b directly targets negative regulators of type I interferon (IFN) signaling thereby limiting HCV replication in the early stage of HCV infection. Let-7b-regulated genes which are involved in host cellular responses to HCV infection were unveiled by microarray profiling and bioinformatic analyses, followed by various molecular and cellular assays using Huh7 cells expressing wild-type (WT) or the seed region-mutated let-7b. Let-7b targeted the cytokine signaling 1 (SOCS1) protein, a negative regulator of JAK/STAT signaling, which then enhanced STAT1-Y701 phosphorylation leading to increased expression of the downstream interferon-stimulated genes (ISGs). Let-7b augmented retinoic acid-inducible gene I (RIG-I) signaling, but not MDA5, to phosphorylate and nuclear translocate IRF3 leading to increased expression of IFN-β. Let-7b directly targeted the ATG12 and IκB kinase alpha (IKKα) transcripts and reduced the interaction of the ATG5-ATG12 conjugate and RIG-I leading to increased expression of IFN, which may further stimulate JAK/STAT signaling. Let-7b induced by HCV infection elicits dual effects on IFN expression and signaling, along with targeting the coding sequences of NS5B and 5' UTR of the HCV genome, and limits HCV RNA accumulation in the early stage of HCV infection. Controlling let-7b expression is thereby crucial in the intervention of HCV infection.IMPORTANCE HCV is a leading cause of liver disease, with an estimated 71 million people infected worldwide. During HCV infection, type I interferon (IFN) signaling displays potent antiviral and immunomodulatory effects. Host factors, including microRNAs (miRNAs), play a role in upregulating IFN signaling to limit HCV replication. Let-7b is a liver-abundant miRNA that is induced by HCV infection and targets the HCV genome to suppress HCV RNA accumulation. In this study, we demonstrated that let-7b, as a positive regulator of type I IFN signaling, plays dual roles against HCV replication by increasing the expression of IFN and interferon-sensitive response element (ISRE)-driven interferon-stimulated genes (ISGs) in the early stage of HCV infection. This study sheds new insight into understanding the role of let-7b in combatting HCV infection. Clarifying IFN signaling regulated by miRNA during the early phase of HCV infection may help researchers understand the initial defense mechanisms to other RNA viruses.
Collapse
|
10
|
Tabari D, Scholl C, Steffens M, Weickhardt S, Elgner F, Bender D, Herrlein ML, Sabino C, Semkova V, Peitz M, Till A, Brüstle O, Hildt E, Stingl J. Impact of Zika Virus Infection on Human Neural Stem Cell MicroRNA Signatures. Viruses 2020; 12:E1219. [PMID: 33121145 PMCID: PMC7693339 DOI: 10.3390/v12111219] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/09/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne virus, which can cause brain abnormalities in newborns, including microcephaly. MicroRNAs (miRNAs) are small non-coding RNAs, which post- transcriptionally regulate gene expression. They are involved in various processes including neurological development and host responses to viral infection, but their potential role in ZIKV pathogenesis remains poorly understood. MiRNAs can be incorporated into extracellular vesicles (EVs) and mediate cell-to-cell communication. While it is well known that in viral infections EVs carrying miRNAs can play a crucial role in disease pathogenesis, ZIKV effects on EV-delivered miRNAs and their contribution to ZIKV pathogenesis have not been elucidated. In the present study, we profiled intracellular and EV-derived miRNAs by next generation sequencing and analyzed the host mRNA transcriptome of neural stem cells during infection with ZIKV Uganda and French Polynesia strains. We identified numerous miRNAs, including miR-4792, which were dysregulated at the intracellular level and had altered levels in EVs during ZIKV infection. Integrated analyses of differentially expressed genes and miRNAs showed that ZIKV infection had an impact on processes associated with neurodevelopment and oxidative stress. Our results provide insights into the roles of intracellular and EV-associated host miRNAs in ZIKV pathogenesis.
Collapse
Affiliation(s)
- Denna Tabari
- Research Division, Federal Institute for Drugs and Medical Devices, 53175 Bonn, Germany; (D.T.); (M.S.); (S.W.)
| | - Catharina Scholl
- Research Division, Federal Institute for Drugs and Medical Devices, 53175 Bonn, Germany; (D.T.); (M.S.); (S.W.)
| | - Michael Steffens
- Research Division, Federal Institute for Drugs and Medical Devices, 53175 Bonn, Germany; (D.T.); (M.S.); (S.W.)
| | - Sandra Weickhardt
- Research Division, Federal Institute for Drugs and Medical Devices, 53175 Bonn, Germany; (D.T.); (M.S.); (S.W.)
| | - Fabian Elgner
- Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (F.E.); (D.B.); (M.-L.H.); (C.S.); (E.H.)
| | - Daniela Bender
- Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (F.E.); (D.B.); (M.-L.H.); (C.S.); (E.H.)
| | - Marie-Luise Herrlein
- Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (F.E.); (D.B.); (M.-L.H.); (C.S.); (E.H.)
| | - Catarina Sabino
- Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (F.E.); (D.B.); (M.-L.H.); (C.S.); (E.H.)
| | - Vesselina Semkova
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn Medical Faculty & University Hospital Bonn, 53127 Bonn, Germany; (V.S.); (M.P.); (A.T.); (O.B.)
| | - Michael Peitz
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn Medical Faculty & University Hospital Bonn, 53127 Bonn, Germany; (V.S.); (M.P.); (A.T.); (O.B.)
- Cell Programming Core Facility, Medical Faculty, University of Bonn, 53172 Bonn, Germany
| | - Andreas Till
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn Medical Faculty & University Hospital Bonn, 53127 Bonn, Germany; (V.S.); (M.P.); (A.T.); (O.B.)
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn Medical Faculty & University Hospital Bonn, 53127 Bonn, Germany; (V.S.); (M.P.); (A.T.); (O.B.)
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (F.E.); (D.B.); (M.-L.H.); (C.S.); (E.H.)
| | - Julia Stingl
- Department of Clinical Pharmacology, University Hospital, RWTH Aachen University, 52074 Aachen, Germany;
| |
Collapse
|
11
|
Pielok A, Marycz K. Non-Coding RNAs as Potential Novel Biomarkers for Early Diagnosis of Hepatic Insulin Resistance. Int J Mol Sci 2020; 21:ijms21114182. [PMID: 32545342 PMCID: PMC7313458 DOI: 10.3390/ijms21114182] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/30/2020] [Accepted: 06/04/2020] [Indexed: 12/22/2022] Open
Abstract
In the recent years, the prevalence of metabolic conditions such as type 2 Diabetes (T2D) and metabolic syndrome (MetS) raises. The impairment of liver metabolism resulting in hepatic insulin resistance is a common symptom and a critical step in the development of T2D and MetS. The liver plays a crucial role in maintaining glucose homeostasis. Hepatic insulin resistance can often be identified before other symptoms arrive; therefore, establishing methods for its early diagnosis would allow for the implementation of proper treatment in patients before the disease develops. Non-coding RNAs such as miRNAs (micro-RNA) and lncRNAs (long-non-coding RNA) are being recognized as promising novel biomarkers and therapeutic targets—especially due to their regulatory function. The dysregulation of miRNA and lncRNA activity has been reported in the livers of insulin-resistant patients. Many of those transcripts are involved in the regulation of the hepatic insulin signaling cascade. Furthermore, for several miRNAs (miR-802, miR-499-5p, and miR-122) and lncRNAs (H19 imprinted maternally expressed transcript (H19), maternally expressed gene 3 (MEG3), and metastasis associated lung adenocarcinoma transcript 1 (MALAT1)), circulating levels were altered in patients with prediabetes, T2D, and MetS. In the course of this review, the role of the aforementioned ncRNAs in hepatic insulin signaling cascade, as well as their potential application in diagnostics, is discussed. Overall, circulating ncRNAs are precise indicators of hepatic insulin resistance in the development of metabolic diseases and could be applied as early diagnostic and/or therapeutic tools in conditions associated with insulin resistance.
Collapse
Affiliation(s)
- Ariadna Pielok
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
- Correspondence: (A.P.); (K.M.)
| | - Krzysztof Marycz
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
- International Institute of Translational Medicine, Jesionowa 11 St., 55-124 Malin, Poland
- Collegium Medicum, Cardinal Stefan Wyszyński University (UKSW), Woycickiego 1/3, 01-938 Warsaw, Poland
- Correspondence: (A.P.); (K.M.)
| |
Collapse
|
12
|
Klieser E, Mayr C, Kiesslich T, Wissniowski T, Fazio PD, Neureiter D, Ocker M. The Crosstalk of miRNA and Oxidative Stress in the Liver: From Physiology to Pathology and Clinical Implications. Int J Mol Sci 2019; 20:5266. [PMID: 31652839 PMCID: PMC6862076 DOI: 10.3390/ijms20215266] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/14/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
The liver is the central metabolic organ of mammals. In humans, most diseases of the liver are primarily caused by an unhealthy lifestyle-high fat diet, drug and alcohol consumption- or due to infections and exposure to toxic substances like aflatoxin or other environmental factors. All these noxae cause changes in the metabolism of functional cells in the liver. In this literature review we focus on the changes at the miRNA level, the formation and impact of reactive oxygen species and the crosstalk between those factors. Both, miRNAs and oxidative stress are involved in the multifactorial development and progression of acute and chronic liver diseases, as well as in viral hepatitis and carcinogenesis, by influencing numerous signaling and metabolic pathways. Furthermore, expression patterns of miRNAs and antioxidants can be used for biomonitoring the course of disease and show potential to serve as possible therapeutic targets.
Collapse
Affiliation(s)
- Eckhard Klieser
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
- Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Christian Mayr
- Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
- Institute of Physiology and Pathophysiology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
| | - Tobias Kiesslich
- Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
- Institute of Physiology and Pathophysiology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
| | - Till Wissniowski
- Department of Gastroenterology and Endocrinology, Philipps University Marburg, 35043 Marburg, Germany.
| | - Pietro Di Fazio
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, 35043 Marburg, Germany.
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
- Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Matthias Ocker
- Translational Medicine Oncology, Bayer AG, 13353 Berlin, Germany.
- Department of Gastroenterology CBF, Charité University Medicine Berlin, 12200 Berlin, Germany.
| |
Collapse
|
13
|
Magalhaes I, Yogev O, Mattsson J, Schurich A. The Metabolic Profile of Tumor and Virally Infected Cells Shapes Their Microenvironment Counteracting T Cell Immunity. Front Immunol 2019; 10:2309. [PMID: 31636636 PMCID: PMC6788393 DOI: 10.3389/fimmu.2019.02309] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022] Open
Abstract
Upon activation naïve T cells undergo metabolic changes to support the differentiation into subsets of effector or regulatory cells, and enable subsequent metabolic adaptations to form memory. Interfering with these metabolic alterations leads to abrogation or reprogramming of T cell differentiation, demonstrating the importance of these pathways in T cell development. It has long been appreciated that the conversion of a healthy cell to a cancerous cell is accompanied by metabolic changes, which support uncontrolled proliferation. Especially in solid tumors these metabolic changes significantly influence the tumor microenvironment (TME) and affect tumor infiltrating immune cells. The TME is often hypoxic and nutrient depleted, additionally tumor cells produce co-inhibitory signals, together suppressing the immune response. Interestingly, viruses can stimulate a metabolism akin to that seen in tumor cells in their host cells and even in neighboring cells (e.g., via transfer of virally modified extracellular vesicles). Thus, viruses create their own niche which favors viral persistence and propagation, while again keeping the immune response at bay. In this review we will focus on the mechanisms employed by tumor cells and viruses influencing T cell metabolic regulation and the impact they have on shaping T cell fate.
Collapse
Affiliation(s)
- Isabelle Magalhaes
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ohad Yogev
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Jonas Mattsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Gloria and Seymour Epstein Chair in Cell Therapy and Transplantation, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Anna Schurich
- Department of Infectious Diseases, King's College London, London, United Kingdom
| |
Collapse
|