1
|
Fuchs S, Fiedler MK, Heiduk N, Wanisch A, Mibus C, Singh D, Debowski AW, Marshall BJ, Vieth M, Josenhans C, Suerbaum S, Sieber SA, Gerhard M, Mejías-Luque R. Helicobacter pylori γ-glutamyltransferase is linked to proteomic adaptions important for colonization. Gut Microbes 2025; 17:2488048. [PMID: 40205659 PMCID: PMC11988274 DOI: 10.1080/19490976.2025.2488048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/18/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
Helicobacter pylori γ-glutamyltransferase (gGT) is a virulence factor that promotes bacterial colonization and immune tolerance. Although some studies addressed potential functional mechanisms, the supportive role of gGT for in vivo colonization remains unclear. Additionally, it is unknown how different gGT expression levels may lead to compensatory mechanisms ensuring infection and persistence. Hence, it is crucial to unravel the in vivo function of gGT. We assessed acid survival under conditions mimicking the human gastric fluid and elevated the pH in the murine stomach prior to H. pylori infection to link gGT-mediated acid resistance to colonization. By comparing proteomes of gGT-proficient and -deficient isolates before and after infecting mice, we investigated proteomic adaptations of gGT-deficient bacteria during infection. Our data indicate that gGT is crucial to sustain urease activity in acidic environments, thereby supporting survival and successful colonization. Absence of gGT triggers expression of proteins involved in the nitrogen and iron metabolism and boosts the expression of adhesins and flagellar proteins during infection, resulting in increased motility and adhesion capacity. In summary, gGT-dependent mechanisms confer a growth advantage to the bacterium in the gastric environment, which renders gGT a valuable target for the development of new treatments against H. pylori infection.
Collapse
Affiliation(s)
- Sonja Fuchs
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Michaela K. Fiedler
- Center for Functional Protein Assemblies (CPA), Chair of Organic Chemistry II, Department Biosciences, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| | - Nicole Heiduk
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Andreas Wanisch
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Cora Mibus
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Dharmesh Singh
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Aleksandra W. Debowski
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, Australia
| | - Barry J. Marshall
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia
| | - Michael Vieth
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg, Klinikum Bayreuth, Bayreuth, Germany
| | - Christine Josenhans
- Max von Pettenkofer Institute, Faculty of Medicine, Medical Microbiology and Hospital Epidemiology, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- DZIF - German Center for Infection Research, Partner Site Munich, Munich, Germany
| | - Sebastian Suerbaum
- Max von Pettenkofer Institute, Faculty of Medicine, Medical Microbiology and Hospital Epidemiology, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- DZIF - German Center for Infection Research, Partner Site Munich, Munich, Germany
| | - Stephan A. Sieber
- Center for Functional Protein Assemblies (CPA), Chair of Organic Chemistry II, Department Biosciences, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| | - Markus Gerhard
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Raquel Mejías-Luque
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| |
Collapse
|
2
|
Liu M, Wang Y, Kong Q, Wang Z, Zhou W, Tao L, Xia Y, Liu Y, Yang Z, Wang B, Liu M, Du B. Knowledge, attitude, and practice toward Helicobacter pylori among residents in Northeast China. Sci Rep 2025; 15:15288. [PMID: 40312460 PMCID: PMC12046017 DOI: 10.1038/s41598-025-00323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/28/2025] [Indexed: 05/03/2025] Open
Abstract
The primary aim of this study was to investigate the knowledge, attitude, and practice(KAP) concerning Helicobacter pylori (H. pylori) and the factors influencing them among northeast China individuals. A questionnaire regarding H. pylori, grounded in the KAP theoretical framework, was tailored for northeast China individuals. The questionnaire was conducted online and analyzed statistically. Additionally, structural equation modeling was applied to verify the interconnections among social media usage, knowledge, attitude, and practice. A total of 712 valid questionnaires were analyzed. The mean scores were 2.69 ± 1.03 for knowledge, 4.09 ± 0.81 for attitude, and 3.40 ± 0.73 for practice. Various factors including sex, occupation, and social media usage influenced knowledge, attitude, and practice scores, with social media usage exerting a notable impact on all facets. The structural equation modeling analysis demonstrated that social media usage promoted higher levels of knowledge, attitude, and practice regarding H. pylori. Individuals possessing a higher level of knowledge and attitude concerning H. pylori demonstrated superior preventive practice. Northeast China residents have limited H. pylori knowledge but show a positive attitude and good preventive practice. The utilization of social media has significantly improved the population's knowledge, attitude, and practice concerning H. pylori.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yong Wang
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qinghui Kong
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhongxing Wang
- Department of Health Statistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Wei Zhou
- Department of Gastroenterology, Daqing No. 4 Hospital, Daqing, China
| | - Liying Tao
- Department of Gastroenterology, Jilin People's Hospital, Jilin, China
| | - Yan Xia
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yuwei Liu
- Department of Endocrinology, Dalian Medical University, Dalian, China
| | - Zhenni Yang
- Department of Gastroenterology, Xing'an League, Xing'an League People's Hospital, Ulanhot, Inner Mongolia Autonomous Region, China
| | - Binglai Wang
- Department of Gastroenterology, Manzhouli South District Hospital, Inner Mongolia Autonomous Region, Beijing, China
| | - Meiyan Liu
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bing Du
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
3
|
Wang J, Zou Z, Hu M, Shan X, Zhang Y, Miao Y, Zhang X, Islam N, Hu Q. Riemerella anatipestifer UvrC is required for iron utilization, biofilm formation and virulence. Avian Pathol 2024; 53:247-256. [PMID: 38420684 DOI: 10.1080/03079457.2024.2317431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
UvrC is a subunit of excinuclease ABC, which mediates nucleotide excision repair (NER) in bacteria. Our previous studies showed that transposon Tn4531 insertion in the UvrC encoding gene Riean_1413 results in reduced biofilm formation by Riemerella anatipestifer strain CH3 and attenuates virulence of strain YZb1. In this study, whether R. anatipestifer UvrC has some biological functions other than NER was investigated. Firstly, the uvrC of R. anatipestifer strain Yb2 was in-frame deleted by homologous recombination, generating deletion mutant ΔuvrC, and its complemented strain cΔuvrC was constructed based on Escherichia coli - R. anatipestifer shuttle plasmid pRES. Compared to the wild-type (WT) R. anatipestifer strain Yb2, uvrC deleted mutant ΔuvrC significantly reduced biofilm formation, tolerance to H2O2- and HOCl-induced oxidative stress, iron utilization, and adhesion to and invasion of duck embryonic hepatocytes, but not its growth curve and proteolytic activity. In addition, animal experiments showed that the LD50 value of ΔuvrC in ducklings was about 13-fold higher than that of the WT, and the bacterial loads in ΔuvrC infected ducklings were significantly lower than those in Yb2-infected ducklings, indicating uvrC deletion in R. anatipestifer attenuated virulence. Taken together, the results of this study indicate that R. anatipestifer UvrC is required for iron utilization, biofilm formation, oxidative stress tolerance and virulence of strain Yb2, demonstrating multiple functions of UvrC.RESEARCH HIGHLIGHTSDeletion of uvrC in R. anatipestfer Yb2 significantly reduced its biofilm formation.uvrC deletion led to reduced tolerance to H2O2- and HOCl-induced oxidative stress.The iron utilization of uvrC deleted mutant was significantly reduced.The uvrC deletion in R. anatipestifer Yb2 attenuated its virulence.
Collapse
Affiliation(s)
- Jialing Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Zuocheng Zou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Mengmeng Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Xinggen Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Ying Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Yiqin Miao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - XiaoYing Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Nazrul Islam
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Qinghai Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Suerbaum S, Ailloud F. Genome and population dynamics during chronic infection with Helicobacter pylori. Curr Opin Immunol 2023; 82:102304. [PMID: 36958230 DOI: 10.1016/j.coi.2023.102304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/25/2023]
Abstract
Helicobacter pylori is responsible for one of the most prevalent bacterial infections worldwide. Chronic infection typically leads to chronic active gastritis. Clinical sequelae, including peptic ulcers, mucosa-associated lymphoid tissue lymphoma or, most importantly, gastric adenocarcinoma develop in 10-15% of cases. H. pylori is characterized by extensive inter-strain diversity which is the result of a high mutation rate, recombination, and a large repertoire of restriction-modification systems. This diversity is thought to be a major contributor to H. pylori's persistence and exceptional aptitude to adapt to the gastric environment and evade the immune system. This review covers efforts in the last decade to characterize and understand the multiple layers of H. pylori's diversity in different biological contexts.
Collapse
Affiliation(s)
- Sebastian Suerbaum
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Medical Faculty, LMU Munich, Pettenkoferstr. 9a, 80336 Munich, Germany; DZIF German Centre for Infection Research, Munich Partner Site, Pettenkoferstr. 9a, 80336 Munich, Germany; German National Reference Centre for Helicobacter pylori, Pettenkoferstr. 9a, 80336 Munich, Germany.
| | - Florent Ailloud
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Medical Faculty, LMU Munich, Pettenkoferstr. 9a, 80336 Munich, Germany; DZIF German Centre for Infection Research, Munich Partner Site, Pettenkoferstr. 9a, 80336 Munich, Germany
| |
Collapse
|
5
|
The Remarkable Genetics of Helicobacter pylori. mBio 2022; 13:e0215822. [PMID: 36286549 PMCID: PMC9765472 DOI: 10.1128/mbio.02158-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Helicobacter pylori genome is more thoroughly mixed by homologous recombination than by any other organism that has been investigated, leading to apparent "free recombination" within populations. A recent mBio article by F. Ailloud, I. Estibariz, G. Pfaffinger, and S. Suerbaum (mBio 13:e01811-22, 2022, https://doi.org/10.1128/mbio.01811-22) helps to elucidate the cellular machinery that is used to achieve these unusual rates of genetic exchange. Specifically, they show that the UvrC gene, which is part of the repair machinery for DNA damage caused by ultraviolet light, has evolved an additional function in H. pylori, allowing very short tracts of DNA-with a mean length of only 28 bp-to be imported into the genome during natural transformation.
Collapse
|