1
|
Watanabe Y, Kumeta H, Watanabe S. Structural basis for phosphatidylcholine synthesis by bacterial phospholipid N-methyltransferases. J Biol Chem 2025; 301:108507. [PMID: 40222548 PMCID: PMC12139422 DOI: 10.1016/j.jbc.2025.108507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/21/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025] Open
Abstract
In phosphatidylcholine (PC)-containing bacteria, PC is synthesized by phospholipid N-methyltransferases (Pmts) and plays an important role in the interactions between symbiotic and pathogenic bacteria and their eukaryotic host cells. Pmts catalyze the SAM-dependent three methylation reactions of the head group of phosphatidylethanolamine (PE) to form PC through monomethyl PE and dimethyl PE. However, the precise molecular mechanisms underlying PC biosynthesis by PmtA remain largely unclear, owing to the lack of structural information. Here, we determined the crystal structures of Agrobacterium tumefaciens Pmt (AtPmtA) in complex with SAH or 5'-methylthioadenosine. Crystal structures and NMR analysis revealed the binding mode of AtPmtA to SAH in solution. Structure-based mutational analyses showed that a conserved tyrosine residue in the substrate-binding groove is involved in methylation. Furthermore, we showed that differences in substrate specificity among Pmt homologs were determined by whether the amino acid residues comprising the substrate-binding groove were isoleucine or phenylalanine. These findings provide a structural basis for understanding the mechanisms underlying Pmts-mediated PC biosynthesis.
Collapse
Affiliation(s)
| | - Hiroyuki Kumeta
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Seiya Watanabe
- Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan; Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan; Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| |
Collapse
|
2
|
Salsabila SD, Kim J. Structural insights into phosphatidylethanolamine N-methyltransferase PmtA mediating bacterial phosphatidylcholine synthesis. SCIENCE ADVANCES 2024; 10:eadr0122. [PMID: 39356767 PMCID: PMC11446283 DOI: 10.1126/sciadv.adr0122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024]
Abstract
Phosphatidylethanolamine N-methyltransferase (PmtA) catalyzes the biosynthesis of phosphatidylcholine (PC) from phosphatidylethanolamine (PE). Although PC is one of the major phospholipids constituting bilayer membranes in eukaryotes, certain bacterial species encode PmtA, a membrane-associated methyltransferase, to produce PC, which is correlated with cellular stress responses, adaptability to environmental changes, and symbiosis or virulence with eukaryotic hosts. Depending on the organism, multiple PmtAs may be required for producing monomethyl- and dimethyl-PE derivatives along with PC, whereas in organisms such as Rubellimicrobium thermophilum, a single enzyme is sufficient to direct all three methylation steps. In this study, we present the x-ray crystal structures of PmtA from R. thermophilum in complex with dimethyl-PE and S-adenosyl-l-homocysteine, as well as in its lipid-free form. Moreover, we demonstrate that the enzyme associates with the cellular membrane via electrostatic interactions facilitated by a group of critical basic residues and can successively methylate PE and its methylated derivatives, culminating in the production of PC.
Collapse
Affiliation(s)
- Salma D Salsabila
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jungwook Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
3
|
Mozaheb N, Rasouli P, Kaur M, Van Der Smissen P, Larrouy-Maumus G, Mingeot-Leclercq MP. A Mildly Acidic Environment Alters Pseudomonas aeruginosa Virulence and Causes Remodeling of the Bacterial Surface. Microbiol Spectr 2023; 11:e0483222. [PMID: 37278652 PMCID: PMC10433952 DOI: 10.1128/spectrum.04832-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/14/2023] [Indexed: 06/07/2023] Open
Abstract
Pseudomonas aeruginosa is a versatile pathogen that resists environmental stress, such as suboptimal pH. As a result of exposure to environmental stress, P. aeruginosa shows an altered virulence-related phenotype. This study investigated the modifications that P. aeruginosa undertakes at a mildly low pH (pH 5.0) compared with the bacteria grown in a neutral medium (pH 7.2). Results indicated that in a mildly acidic environment, expression of two-component system genes (phoP/phoQ and pmrA/pmrB), lipid A remodeling genes such as arnT and pagP and virulence genes, i.e., pqsE and rhlA, were induced. Moreover, lipid A of the bacteria grown at a mildly low pH is modified by adding 4-amino-arabinose (l-Ara4N). Additionally, the production of virulence factors such as rhamnolipid, alginate, and membrane vesicles is significantly higher in a mildly low-pH environment than in a neutral medium. Interestingly, at a mildly low pH, P. aeruginosa produces a thicker biofilm with higher biofilm biomass. Furthermore, studies on inner membrane viscosity and permeability showed that a mildly low pH causes a decrease in the inner membrane permeability and increases its viscosity. Besides, despite the importance of PhoP, PhoQ, PmrA, and PmrB in Gram-negative bacteria for responding to low pH stress, we observed that the absence of each of these two-component systems does not meaningfully impact the remodeling of the P. aeruginosa envelope. Given that P. aeruginosa is likely to encounter mildly acidic environments during infection in its host, the alterations that the bacterium undertakes under such conditions must be considered in designing antibacterial strategies against P. aeruginosa. IMPORTANCE P. aeruginosa encounters environments with acidic pH when establishing infections in hosts. The bacterium develops an altered phenotype to tolerate a moderate decrease in the environmental pH. At the level of the bacterial envelope, modified lipid A composition and a reduction of the bacterial inner membrane permeability and fluidity are among the changes P. aeruginosa undergoes at a mildly low pH. Also, the bacterium is more likely to form biofilm in a mildly acidic environment. Overall, these alterations in the P. aeruginosa phenotype put obstacles in the way of antibacterial activities. Thus, considering physiological changes in the bacterium at low pH helps design and implement antimicrobial approaches against this hostile microorganism.
Collapse
Affiliation(s)
- Negar Mozaheb
- Université catholique de Louvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology Unit (FACM), Brussels, Belgium
| | - Paria Rasouli
- Université catholique de Louvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology Unit (FACM), Brussels, Belgium
| | - Mandeep Kaur
- Université catholique de Louvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology Unit (FACM), Brussels, Belgium
| | - Patrick Van Der Smissen
- Université catholique de Louvain, de Duve Institute, CELL Unit and PICT Platform, Brussels, Belgium
| | - Gerald Larrouy-Maumus
- Imperial College London, Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Faculty of Natural Science, London, United Kingdom
| | - Marie-Paule Mingeot-Leclercq
- Université catholique de Louvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology Unit (FACM), Brussels, Belgium
| |
Collapse
|
4
|
Phillips DA, Zacharoff LA, Hampton CM, Chong GW, Malanoski AP, Metskas LA, Xu S, Bird LJ, Eddie BJ, Miklos AE, Jensen GJ, Drummy LF, El-Naggar MY, Glaven SM. A bacterial membrane sculpting protein with BAR domain-like activity. eLife 2021; 10:60049. [PMID: 34643180 PMCID: PMC8687657 DOI: 10.7554/elife.60049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Bin/Amphiphysin/RVS (BAR) domain proteins belong to a superfamily of coiled-coil proteins influencing membrane curvature in eukaryotes and are associated with vesicle biogenesis, vesicle-mediated protein trafficking, and intracellular signaling. Here, we report a bacterial protein with BAR domain-like activity, BdpA, from Shewanella oneidensis MR-1, known to produce redox-active membrane vesicles and micrometer-scale outer membrane extensions (OMEs). BdpA is required for uniform size distribution of membrane vesicles and influences scaffolding of OMEs into a consistent diameter and curvature. Cryo-TEM reveals that a strain lacking BdpA produces lobed, disordered OMEs rather than membrane tubules or narrow chains produced by the wild-type strain. Overexpression of BdpA promotes OME formation during planktonic growth of S. oneidensis where they are not typically observed. Heterologous expression results in OME production in Marinobacter atlanticus and Escherichia coli. Based on the ability of BdpA to alter membrane architecture in vivo, we propose that BdpA and its homologs comprise a newly identified class of bacterial BAR domain-like proteins.
Collapse
Affiliation(s)
- Daniel A Phillips
- Oak Ridge Institute for Science and Education / US Army DEVCOM Chemical Biological Center, Aberdeen Proving Grounds, United States
| | - Lori A Zacharoff
- Department of Physics and Astronomy, University of Southern California, Los Angeles, United States
| | - Cheri M Hampton
- Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, United States
| | - Grace W Chong
- Department of Biological Sciences, University of Southern California, Los Angeles, United States
| | - Anthony P Malanoski
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, United States
| | - Lauren Ann Metskas
- Biological Sciences, Chemistry, California Institute of Technology, Pasadena, United States
| | - Shuai Xu
- Department of Physics and Astronomy, University of Southern California, Los Angeles, United States
| | - Lina J Bird
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, United States
| | - Brian J Eddie
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, United States
| | - Aleksandr E Miklos
- BioSciences Division, BioChemistry Branch, US Army DEVCOM Chemical Biological Center, Aberdeen Proving Ground, United States
| | - Grant J Jensen
- Biology and Bioengineering, California Institute of Technology, Pasadena, United States
| | - Lawrence F Drummy
- Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, United States
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, Biological Sciences, and Chemistry, University of Southern California, Los Angeles, United States
| | - Sarah M Glaven
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, United States
| |
Collapse
|
5
|
Phospholipid N-methyltransferases produce various methylated phosphatidylethanolamine derivatives in thermophilic bacteria. Appl Environ Microbiol 2021; 87:e0110521. [PMID: 34288711 DOI: 10.1128/aem.01105-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the most common pathways for the biosynthesis of the phospholipid phosphatidylcholine (PC) in bacteria is the successive three-fold N-methylation of phosphatidylethanolamine (PE) catalyzed by phospholipid N-methyltransferases (Pmts). Pmts with different activities have been described in a number of mesophilic bacteria. In the present study, we identified and characterized the substrate and product spectrum of four Pmts from thermophilic bacteria. Three of these enzymes were purified in an active form. The Pmts from Melghirimyces thermohalophilus, Thermochromogena staphylospora and Thermobifida fusca produce monomethyl-PE (MMPE) and dimethyl-PE (DMPE). T. fusca encodes two Pmt candidates, one is mutationally inactivated and the other is responsible for the accumulation of large amounts of MMPE. The Pmt enzyme from Rubellimicrobium thermophilum catalyzes all three methylation reactions to synthesize PC. Moreover, we show that PE, previously reported to be absent in R. thermophilum, is in fact produced and serves as precursor for the methylation pathway. In an alternative route, the strain is able to produce PC by the PC synthase pathway when choline is available. The activity of all purified thermophilic Pmt enzymes was stimulated by anionic lipids suggesting membrane recruitment of these cytoplasmic proteins via electrostatic interactions. Our study provides novel insights into the functional characteristics of phospholipid N-methyltransferases in a previously unexplored set of thermophilic environmental bacteria. Importance In recent years, the presence of phosphatidylcholine (PC) in bacterial membranes has gained increasing attention, partly due to its critical role in the interaction with eukaryotic hosts. PC biosynthesis via a three-step methylation of phosphatidylethanolamine, catalyzed by phospholipid N-methyltransferases (Pmts), has been described in a range of mesophilic bacteria. Here, we expand our knowledge on bacterial PC formation by the identification, purification and characterization of Pmts from phylogenetically diverse thermophilic bacteria, and thereby provide insights into the functional characteristics of Pmt enzymes in thermophilic actinomycetes and proteobacteria.
Collapse
|
6
|
Pospíšil J, Vítovská D, Kofroňová O, Muchová K, Šanderová H, Hubálek M, Šiková M, Modrák M, Benada O, Barák I, Krásný L. Bacterial nanotubes as a manifestation of cell death. Nat Commun 2020; 11:4963. [PMID: 33009406 PMCID: PMC7532143 DOI: 10.1038/s41467-020-18800-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/03/2020] [Indexed: 12/18/2022] Open
Abstract
Bacterial nanotubes are membranous structures that have been reported to function as conduits between cells to exchange DNA, proteins, and nutrients. Here, we investigate the morphology and formation of bacterial nanotubes using Bacillus subtilis. We show that nanotube formation is associated with stress conditions, and is highly sensitive to the cells' genetic background, growth phase, and sample preparation methods. Remarkably, nanotubes appear to be extruded exclusively from dying cells, likely as a result of biophysical forces. Their emergence is extremely fast, occurring within seconds by cannibalizing the cell membrane. Subsequent experiments reveal that cell-to-cell transfer of non-conjugative plasmids depends strictly on the competence system of the cell, and not on nanotube formation. Our study thus supports the notion that bacterial nanotubes are a post mortem phenomenon involved in cell disintegration, and are unlikely to be involved in cytoplasmic content exchange between live cells.
Collapse
Affiliation(s)
- Jiří Pospíšil
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Dragana Vítovská
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Olga Kofroňová
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Katarína Muchová
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51, Bratislava, Slovakia
| | - Hana Šanderová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 160 00, Prague 6, Czech Republic
| | - Michaela Šiková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Martin Modrák
- Laboratory of Bioinformatics/Core Facility, Institute of Microbiology of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Oldřich Benada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic.
| | - Imrich Barák
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51, Bratislava, Slovakia.
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
7
|
Royes J, Biou V, Dautin N, Tribet C, Miroux B. Inducible intracellular membranes: molecular aspects and emerging applications. Microb Cell Fact 2020; 19:176. [PMID: 32887610 PMCID: PMC7650269 DOI: 10.1186/s12934-020-01433-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/27/2020] [Indexed: 02/08/2023] Open
Abstract
Membrane remodeling and phospholipid biosynthesis are normally tightly regulated to maintain the shape and function of cells. Indeed, different physiological mechanisms ensure a precise coordination between de novo phospholipid biosynthesis and modulation of membrane morphology. Interestingly, the overproduction of certain membrane proteins hijack these regulation networks, leading to the formation of impressive intracellular membrane structures in both prokaryotic and eukaryotic cells. The proteins triggering an abnormal accumulation of membrane structures inside the cells (or membrane proliferation) share two major common features: (1) they promote the formation of highly curved membrane domains and (2) they lead to an enrichment in anionic, cone-shaped phospholipids (cardiolipin or phosphatidic acid) in the newly formed membranes. Taking into account the available examples of membrane proliferation upon protein overproduction, together with the latest biochemical, biophysical and structural data, we explore the relationship between protein synthesis and membrane biogenesis. We propose a mechanism for the formation of these non-physiological intracellular membranes that shares similarities with natural inner membrane structures found in α-proteobacteria, mitochondria and some viruses-infected cells, pointing towards a conserved feature through evolution. We hope that the information discussed in this review will give a better grasp of the biophysical mechanisms behind physiological and induced intracellular membrane proliferation, and inspire new applications, either for academia (high-yield membrane protein production and nanovesicle production) or industry (biofuel production and vaccine preparation).
Collapse
Affiliation(s)
- Jorge Royes
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France. .,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France. .,Département de Chimie, École Normale Supérieure, PASTEUR, PSL University, CNRS, Sorbonne Université, 24 Rue Lhomond, 75005, Paris, France.
| | - Valérie Biou
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France.,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France
| | - Nathalie Dautin
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France.,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France
| | - Christophe Tribet
- Département de Chimie, École Normale Supérieure, PASTEUR, PSL University, CNRS, Sorbonne Université, 24 Rue Lhomond, 75005, Paris, France
| | - Bruno Miroux
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France. .,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France.
| |
Collapse
|
8
|
Zhukovsky MA, Filograna A, Luini A, Corda D, Valente C. Protein Amphipathic Helix Insertion: A Mechanism to Induce Membrane Fission. Front Cell Dev Biol 2019; 7:291. [PMID: 31921835 PMCID: PMC6914677 DOI: 10.3389/fcell.2019.00291] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/06/2019] [Indexed: 12/19/2022] Open
Abstract
One of the fundamental features of biomembranes is the ability to fuse or to separate. These processes called respectively membrane fusion and fission are central in the homeostasis of events such as those related to intracellular membrane traffic. Proteins that contain amphipathic helices (AHs) were suggested to mediate membrane fission via shallow insertion of these helices into the lipid bilayer. Here we analyze the AH-containing proteins that have been identified as essential for membrane fission and categorize them in few subfamilies, including small GTPases, Atg proteins, and proteins containing either the ENTH/ANTH- or the BAR-domain. AH-containing fission-inducing proteins may require cofactors such as additional proteins (e.g., lipid-modifying enzymes), or lipids (e.g., phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], phosphatidic acid [PA], or cardiolipin). Both PA and cardiolipin possess a cone shape and a negative charge (-2) that favor the recruitment of the AHs of fission-inducing proteins. Instead, PtdIns(4,5)P2 is characterized by an high negative charge able to recruit basic residues of the AHs of fission-inducing proteins. Here we propose that the AHs of fission-inducing proteins contain sequence motifs that bind lipid cofactors; accordingly (K/R/H)(K/R/H)xx(K/R/H) is a PtdIns(4,5)P2-binding motif, (K/R)x6(F/Y) is a cardiolipin-binding motif, whereas KxK is a PA-binding motif. Following our analysis, we show that the AHs of many fission-inducing proteins possess five properties: (a) at least three basic residues on the hydrophilic side, (b) ability to oligomerize, (c) optimal (shallow) depth of insertion into the membrane, (d) positive cooperativity in membrane curvature generation, and (e) specific interaction with one of the lipids mentioned above. These lipid cofactors favor correct conformation, oligomeric state and optimal insertion depth. The most abundant lipid in a given organelle possessing high negative charge (more negative than -1) is usually the lipid cofactor in the fission event. Interestingly, naturally occurring mutations have been reported in AH-containing fission-inducing proteins and related to diseases such as centronuclear myopathy (amphiphysin 2), Charcot-Marie-Tooth disease (GDAP1), Parkinson's disease (α-synuclein). These findings add to the interest of the membrane fission process whose complete understanding will be instrumental for the elucidation of the pathogenesis of diseases involving mutations in the protein AHs.
Collapse
Affiliation(s)
- Mikhail A. Zhukovsky
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | | | | | - Daniela Corda
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Carmen Valente
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
9
|
Zhukovsky MA, Filograna A, Luini A, Corda D, Valente C. Phosphatidic acid in membrane rearrangements. FEBS Lett 2019; 593:2428-2451. [PMID: 31365767 DOI: 10.1002/1873-3468.13563] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022]
Abstract
Phosphatidic acid (PA) is the simplest cellular glycerophospholipid characterized by unique biophysical properties: a small headgroup; negative charge; and a phosphomonoester group. Upon interaction with lysine or arginine, PA charge increases from -1 to -2 and this change stabilizes protein-lipid interactions. The biochemical properties of PA also allow interactions with lipids in several subcellular compartments. Based on this feature, PA is involved in the regulation and amplification of many cellular signalling pathways and functions, as well as in membrane rearrangements. Thereby, PA can influence membrane fusion and fission through four main mechanisms: it is a substrate for enzymes producing lipids (lysophosphatidic acid and diacylglycerol) that are involved in fission or fusion; it contributes to membrane rearrangements by generating negative membrane curvature; it interacts with proteins required for membrane fusion and fission; and it activates enzymes whose products are involved in membrane rearrangements. Here, we discuss the biophysical properties of PA in the context of the above four roles of PA in membrane fusion and fission.
Collapse
Affiliation(s)
- Mikhail A Zhukovsky
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Angela Filograna
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Corda
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Carmen Valente
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
10
|
Zhukovsky MA, Filograna A, Luini A, Corda D, Valente C. The Structure and Function of Acylglycerophosphate Acyltransferase 4/ Lysophosphatidic Acid Acyltransferase Delta (AGPAT4/LPAATδ). Front Cell Dev Biol 2019; 7:147. [PMID: 31428612 PMCID: PMC6688108 DOI: 10.3389/fcell.2019.00147] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/16/2019] [Indexed: 12/27/2022] Open
Abstract
Lipid-modifying enzymes serve crucial roles in cellular processes such as signal transduction (producing lipid-derived second messengers), intracellular membrane transport (facilitating membrane remodeling needed for membrane fusion/fission), and protein clustering (organizing lipid domains as anchoring platforms). The lipid products crucial in these processes can derive from different metabolic pathways, thus it is essential to know the localization, substrate specificity, deriving products (and their function) of all lipid-modifying enzymes. Here we discuss an emerging family of these enzymes, the lysophosphatidic acid acyltransferases (LPAATs), also known as acylglycerophosphate acyltransferases (AGPATs), that produce phosphatidic acid (PA) having as substrates lysophosphatidic acid (LPA) and acyl-CoA. Eleven LPAAT/AGPAT enzymes have been identified in mice and humans based on sequence homologies, and their localization, specific substrates and functions explored. We focus on one member of the family, LPAATδ, a protein expressed mainly in brain and in muscle (though to a lesser extent in other tissues); while at the cellular level it is localized at the trans-Golgi network membranes and at the mitochondrial outer membranes. LPAATδ is a physiologically essential enzyme since mice knocked-out for Lpaatδ show severe dysfunctions including cognitive impairment, impaired force contractility and altered white adipose tissue. The LPAATδ physiological roles are related to the formation of its product PA. PA is a multifunctional lipid involved in cell signaling as well as in membrane remodeling. In particular, the LPAATδ-catalyzed conversion of LPA (inverted-cone-shaped lipid) to PA (cone-shaped lipid) is considered a mechanism of deformation of the bilayer that favors membrane fission. Indeed, LPAATδ is an essential component of the fission-inducing machinery driven by the protein BARS. In this process, a protein-tripartite complex (BARS/14-3-3γ/phosphoinositide kinase PI4KIIIβ) is recruited at the trans-Golgi network, at the sites where membrane fission is to occur; there, LPAATδ directly interacts with BARS and is activated by BARS. The resulting formation of PA is essential for membrane fission occurring at those spots. Also in mitochondria PA formation has been related to fusion/fission events. Since PA is formed by various enzymatic pathways in different cell compartments, the BARS-LPAATδ interaction indicates the relevance of lipid-modifying enzymes acting exactly where their products are needed (i.e., PA at the Golgi membranes).
Collapse
Affiliation(s)
- Mikhail A Zhukovsky
- Institute of Biochemistry and Cell Biology and Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Angela Filograna
- Institute of Biochemistry and Cell Biology and Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Alberto Luini
- Institute of Biochemistry and Cell Biology and Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Daniela Corda
- Institute of Biochemistry and Cell Biology and Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Carmen Valente
- Institute of Biochemistry and Cell Biology and Institute of Protein Biochemistry, National Research Council, Naples, Italy
| |
Collapse
|
11
|
Dilworth MV, Piel MS, Bettaney KE, Ma P, Luo J, Sharples D, Poyner DR, Gross SR, Moncoq K, Henderson PJF, Miroux B, Bill RM. Microbial expression systems for membrane proteins. Methods 2018; 147:3-39. [PMID: 29656078 DOI: 10.1016/j.ymeth.2018.04.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/08/2018] [Accepted: 04/10/2018] [Indexed: 12/19/2022] Open
Abstract
Despite many high-profile successes, recombinant membrane protein production remains a technical challenge; it is still the case that many fewer membrane protein structures have been published than those of soluble proteins. However, progress is being made because empirical methods have been developed to produce the required quantity and quality of these challenging targets. This review focuses on the microbial expression systems that are a key source of recombinant prokaryotic and eukaryotic membrane proteins for structural studies. We provide an overview of the host strains, tags and promoters that, in our experience, are most likely to yield protein suitable for structural and functional characterization. We also catalogue the detergents used for solubilization and crystallization studies of these proteins. Here, we emphasize a combination of practical methods, not necessarily high-throughput, which can be implemented in any laboratory equipped for recombinant DNA technology and microbial cell culture.
Collapse
Affiliation(s)
- Marvin V Dilworth
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Mathilde S Piel
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS, Université Paris Diderot, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Kim E Bettaney
- Astbury Centre for Structural Molecular Biology and School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Pikyee Ma
- Astbury Centre for Structural Molecular Biology and School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Ji Luo
- Astbury Centre for Structural Molecular Biology and School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - David Sharples
- Astbury Centre for Structural Molecular Biology and School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - David R Poyner
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Stephane R Gross
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Karine Moncoq
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS, Université Paris Diderot, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Peter J F Henderson
- Astbury Centre for Structural Molecular Biology and School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Bruno Miroux
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS, Université Paris Diderot, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | - Roslyn M Bill
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|
12
|
Saeloh D, Tipmanee V, Jim KK, Dekker MP, Bitter W, Voravuthikunchai SP, Wenzel M, Hamoen LW. The novel antibiotic rhodomyrtone traps membrane proteins in vesicles with increased fluidity. PLoS Pathog 2018; 14:e1006876. [PMID: 29451901 PMCID: PMC5833292 DOI: 10.1371/journal.ppat.1006876] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 03/01/2018] [Accepted: 01/12/2018] [Indexed: 12/11/2022] Open
Abstract
The acylphloroglucinol rhodomyrtone is a promising new antibiotic isolated from the rose myrtle Rhodomyrtus tomentosa, a plant used in Asian traditional medicine. While many studies have demonstrated its antibacterial potential in a variety of clinical applications, very little is known about the mechanism of action of rhodomyrtone. Preceding studies have been focused on intracellular targets, but no specific intracellular protein could be confirmed as main target. Using live cell, high-resolution, and electron microscopy we demonstrate that rhodomyrtone causes large membrane invaginations with a dramatic increase in fluidity, which attract a broad range of membrane proteins. Invaginations then form intracellular vesicles, thereby trapping these proteins. Aberrant protein localization impairs several cellular functions, including the respiratory chain and the ATP synthase complex. Being uncharged and devoid of a particular amphipathic structure, rhodomyrtone did not seem to be a typical membrane-inserting molecule. In fact, molecular dynamics simulations showed that instead of inserting into the bilayer, rhodomyrtone transiently binds to phospholipid head groups and causes distortion of lipid packing, providing explanations for membrane fluidization and induction of membrane curvature. Both its transient binding mode and its ability to form protein-trapping membrane vesicles are unique, making it an attractive new antibiotic candidate with a novel mechanism of action. Bacterial antibiotic resistance constitutes a major public healthcare issue and deaths caused by antimicrobial resistance are expected to soon exceed the number of cancer-related fatalities. In order to fight resistance, new antibiotics have to be developed that are not affected by existing microbial resistance strategies. Thus, antibiotics with novel or multiple targets are urgently needed. Rhodomyrtone displays excellent antibacterial activity, has been safely used in traditional Asian medicine for a long time, and resistance against this promising antibiotic candidate could not be detected in multiple passaging experiments. Here we demonstrate that rhodomyrtone possesses a completely novel mechanism of action, which is opposed to that of existing cell envelope-targeting drugs, minimizing the risk of cross-resistance, and in fact rhodomyrtone is highly active against e.g. vancomycin-resistant Staphylococcus aureus. Thus, rhodomyrtone is an extremely interesting compound for further antibacterial drug development.
Collapse
Affiliation(s)
- Dennapa Saeloh
- Excellence Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Varomyalin Tipmanee
- Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Kin Ki Jim
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, The Netherlands
| | - Marien P. Dekker
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, The Netherlands
- Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Supayang P. Voravuthikunchai
- Excellence Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Michaela Wenzel
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, The Netherlands
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail: (MW); (LWH)
| | - Leendert W. Hamoen
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail: (MW); (LWH)
| |
Collapse
|
13
|
Dissection of membrane-binding and -remodeling regions in two classes of bacterial phospholipid N-methyltransferases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2279-2288. [PMID: 28912104 DOI: 10.1016/j.bbamem.2017.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/25/2017] [Accepted: 09/10/2017] [Indexed: 01/08/2023]
Abstract
Bacterial phospholipid N-methyltransferases (Pmts) catalyze the formation of phosphatidylcholine (PC) via successive N-methylation of phosphatidylethanolamine (PE). They are classified into Sinorhizobium-type and Rhodobacter-type enzymes. The Sinorhizobium-type PmtA protein from the plant pathogen Agrobacterium tumefaciens is recruited to anionic lipids in the cytoplasmic membrane via two amphipathic helices called αA and αF. Besides its enzymatic activity, PmtA is able to remodel membranes mediated by the αA domain. According to the Heliquest program, αA- and αF-like amphipathic helices are also present in other Sinorhizobium- and Rhodobacter-type Pmt enzymes suggesting a conserved architecture of α-helical membrane-binding regions in these methyltransferases. As representatives of the two Pmt families, we investigated the membrane binding and remodeling capacity of Bradyrhizobium japonicum PmtA (Sinorhizobium-type) and PmtX1 (Rhodobacter-type), which act cooperatively to produce PC in consecutive methylation steps. We found that the αA regions in both enzymes bind anionic lipids similar to αA of A. tumefaciens PmtA. Membrane binding of PmtX1 αA is enhanced by its substrate monomethyl-PE indicating a substrate-controlled membrane association. The αA regions of all investigated enzymes remodel spherical liposomes into tubular filaments suggesting a conserved membrane-remodeling capacity of bacterial Pmts. Based on these results we propose that the molecular details of membrane-binding and remodeling are conserved among bacterial Pmts.
Collapse
|