1
|
Simeone CA, McNulty MT, Gupta Y, Genovese G, Sampson MG, Sanna-Cherchi S, Friedman DJ, Pollak MR. The APOL1 p.N264K variant is co-inherited with the G2 kidney disease risk variant through a proximity recombination event. G3 (BETHESDA, MD.) 2025; 15:jkae290. [PMID: 39658338 PMCID: PMC11797048 DOI: 10.1093/g3journal/jkae290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024]
Abstract
Black Americans are 3-4 times more likely to develop nondiabetic kidney disease than other populations. Exclusively found in people of recent African (AFR) ancestry, risk variants in Apolipoprotein L1 (APOL1) termed G1 and G2 contribute significantly to this increased susceptibility. Our group and others showed that a missense variant in APOL1, rs73885316 (p.N264K, "M1"), is remarkably protective against APOL1 kidney disease when co-inherited with the G2 risk allele. Since the distance between the M1 and G2 variants is only 367 base pairs, we initially suspected that 2 independent mutation events occurred to create non-risk M1-G0 and M1-G2 haplotypes. Here, we examined APOL1 haplotypes in individuals of AFR ancestry from the 1000 Genomes Project, the Nephrotic Syndrome Study Network (NEPTUNE), and an ancient individual from the Allen Ancient Genome Diversity Project to determine how the M1-G2 haplotype arose. We demonstrate that M1 most likely first appeared on a non-risk G0 haplotype, and that a subsequent recombination event bypassed strong recombination hotspots flanking APOL1 and occurred between p.N388Y389del on a G2 haplotype and M1 on a G0 haplotype to create the M1-G2 haplotype. Observing a recombination event within a small region between clinically relevant loci emphasizes the importance of studying the entire haplotype repertoire of a disease gene and the impact of haplotype backgrounds in disease susceptibility.
Collapse
Affiliation(s)
- Christopher A Simeone
- Harvard Medical School, Boston, MA 02215, USA
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Michelle T McNulty
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, MA 02215, USA
- Kidney Disease Initiative and Medical and Population Genetics Program, Broad Institute, Cambridge, MA 02142, USA
| | - Yask Gupta
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, Columbia University, New York City, NY 10032, USA
| | - Giulio Genovese
- Harvard Medical School, Boston, MA 02215, USA
- Stanley Center, Broad Institute of MIT and Harvard, Boston, MA 02215, USA
| | - Matthew G Sampson
- Harvard Medical School, Boston, MA 02215, USA
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, MA 02215, USA
- Kidney Disease Initiative and Medical and Population Genetics Program, Broad Institute, Cambridge, MA 02142, USA
- Division of Nephrology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Simone Sanna-Cherchi
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, Columbia University, New York City, NY 10032, USA
| | - David J Friedman
- Harvard Medical School, Boston, MA 02215, USA
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Martin R Pollak
- Harvard Medical School, Boston, MA 02215, USA
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| |
Collapse
|
2
|
Wang QS, Huang J, Chan L, Haste N, Olsson N, Gaun A, McAllister F, Madhireddy D, Baruch A, Melamud E, Baryshnikova A. Platform-dependent effects of genetic variants on plasma APOL1 and their implications for kidney disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635763. [PMID: 39975113 PMCID: PMC11838367 DOI: 10.1101/2025.01.30.635763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Mutations in apolipoprotein L1 (APOL1) are strongly associated with an increased risk of kidney disease in individuals of African ancestry, yet the underlying mechanisms remain largely unknown. Plasma proteomics provides opportunities to elucidate mechanisms of disease by studying the effects of disease-associated variants on circulating protein levels. Here, we examine the genetic drivers of circulating APOL1 in individuals of African and European ancestry from four independent cohorts (UK Biobank, AASK, deCODE and Health ABC) employing three proteomic technologies (Olink, SomaLogic and mass spectrometry). We find that disease-associated APOL1 G1 and G2 variants are strong pQTLs for plasma APOL1 in Olink and SomaLogic, but the direction of their effects depends on the proteomic platform. We identify an additional APOL1 missense variant (rs2239785), common in Europeans, exhibiting the same platform-dependent directional discrepancy. Similarly, variants in the kallikrein-kinin pathway ( KLKB1 , F12 , KNG1 ) and their genetic interactions exhibit strong trans -pQTL effects for APOL1 measured by Olink, but not SomaLogic. To explain these discrepancies, we propose a model in which APOL1 mutations and the kallikrein-kinin pathway influence the relative abundance of two distinct APOL1 forms, corresponding to APOL1 bound to trypanolytic factors 1 and 2, which are differentially recognized by different proteomic platforms. We hypothesize that this shift in relative abundance of APOL1 forms may contribute to the development of kidney disease.
Collapse
|
3
|
Pays E. Apolipoprotein-L1 (APOL1): From Sleeping Sickness to Kidney Disease. Cells 2024; 13:1738. [PMID: 39451256 PMCID: PMC11506758 DOI: 10.3390/cells13201738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Apolipoprotein-L1 (APOL1) is a membrane-interacting protein induced by inflammation, which confers human resistance to infection by African trypanosomes. APOL1 kills Trypanosoma brucei through induction of apoptotic-like parasite death, but two T. brucei clones acquired resistance to APOL1, allowing them to cause sleeping sickness. An APOL1 C-terminal sequence alteration, such as occurs in natural West African variants G1 and G2, restored human resistance to these clones. However, APOL1 unfolding induced by G1 or G2 mutations enhances protein hydrophobicity, resulting in kidney podocyte dysfunctions affecting renal filtration. The mechanism involved in these dysfunctions is debated. The ability of APOL1 to generate ion pores in trypanosome intracellular membranes or in synthetic membranes was provided as an explanation. However, transmembrane insertion of APOL1 strictly depends on acidic conditions, and podocyte cytopathology mainly results from secreted APOL1 activity on the plasma membrane, which occurs under non-acidic conditions. In this review, I argue that besides inactivation of APOL3 functions in membrane dynamics (fission and fusion), APOL1 variants induce inflammation-linked podocyte toxicity not through pore formation, but through plasma membrane disturbance resulting from increased interaction with cholesterol, which enhances cation channels activity. A natural mutation in the membrane-interacting domain (N264K) abrogates variant APOL1 toxicity at the expense of slightly increased sensitivity to trypanosomes, further illustrating the continuous mutual adaptation between host and parasite.
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular Parasitology, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, 6041 Gosselies, Belgium
| |
Collapse
|
4
|
Nystrom SE, Soldano KL, Rockett M, Datta S, Li G, Silas D, Garrett ME, Ashley-Koch AE, Olabisi OA. APOL1 High-Risk Genotype is Not Associated With New or Worsening of Proteinuria or Kidney Function Decline Following COVID-19 Vaccination. Kidney Int Rep 2024; 9:2657-2666. [PMID: 39291186 PMCID: PMC11403097 DOI: 10.1016/j.ekir.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction SARS-CoV-2 infection increases systemic inflammatory cytokines which act as a second-hit driver of Apolipoprotein L1 (APOL1)-mediated collapsing glomerulopathy. SARS-CoV-2 vaccination also increases cytokines. Recent reports of new glomerular disease in individuals with APOL1 high-risk genotype (HRG) following SARS-CoV-2 vaccination raised the concern SARS-CoV-2 vaccination may also act as a second-hit driver of APOL1-mediated glomerulopathy. Methods We screened 1507 adults in the Duke's Measurement to Understand Reclassification of Disease of Cabarrus and Kannapolis (MURDOCK) registry and enrolled 105 eligible participants with available SARS-CoV-2 vaccination data, prevaccination and postvaccination serum creatinine, and urine protein measurements. Paired data were stratified by number of APOL1 risk alleles (RAs) and compared within groups using Wilcoxon signed rank test and across groups by analysis of variance. Results Among 105 participants, 30 (28.6%) had 2, 39 (37.1%) had 1, and 36 (34.3%) had 0 APOL1 RA. Most of the participants (94%) received at least 2 doses of vaccine. Most (98%) received the BNT162B2 (Pfizer) or mRNA-1273 (Moderna) vaccine. On average, the prevaccine and postvaccine laboratory samples were drawn 648 days apart. There were no detectable differences between pre- and post-serum creatinine or pre- and post-urine albumin creatinine ratio irrespective of the participants' APOL1 genotype. Finally, most participants with APOL1 RA had the most common haplotype (E150, I228, and K255) and lacked the recently described protective N264K haplotype. Conclusion In this observational study, APOL1 HRG is not associated with new or worsening of proteinuria or decline in kidney function following SARS-CoV-2 vaccination. Validation of this result in larger cohorts would further support the renal safety of SARS-CoV-2 vaccine in individuals with APOL1 HRG.
Collapse
Affiliation(s)
- Sarah E Nystrom
- Division of Nephrology, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Karen L Soldano
- Division of Nephrology, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Micki Rockett
- Duke Clinical and Translational Science Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Somenath Datta
- Division of Nephrology, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Guojie Li
- Division of Nephrology, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Daniel Silas
- Division of Nephrology, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Melanie E Garrett
- Division of Nephrology, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Allison E Ashley-Koch
- Division of Nephrology, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Opeyemi A Olabisi
- Division of Nephrology, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
5
|
Madhavan SM, Schlöndorff JS. Variant upon variant: kidney-disease risk associated with APOL1 G2 genetic variants is abrogated by the APOL1 p.N264K variant. Kidney Int 2024; 106:345-348. [PMID: 38750901 DOI: 10.1016/j.kint.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/12/2024] [Indexed: 05/25/2024]
Affiliation(s)
- Sethu M Madhavan
- Division of Nephrology, Department of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Johannes S Schlöndorff
- Division of Nephrology, Department of Medicine, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
6
|
Gulati A, Moxey-Mims M. Defining Risk in APOL1-Associated Kidney Disease: The Story is Evolving! Am J Kidney Dis 2024; 84:388-391. [PMID: 38648881 DOI: 10.1053/j.ajkd.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/16/2024] [Accepted: 03/30/2024] [Indexed: 04/25/2024]
Affiliation(s)
- Ashima Gulati
- Division of Pediatric Nephrology, Children's National Hospital, Washington, DC; Department of Pediatrics, The George Washington University School of Medicine, Washington, DC
| | - Marva Moxey-Mims
- Division of Pediatric Nephrology, Children's National Hospital, Washington, DC; Department of Pediatrics, The George Washington University School of Medicine, Washington, DC.
| |
Collapse
|
7
|
Tabachnikov O, Skorecki K, Kruzel-Davila E. APOL1 nephropathy - a population genetics success story. Curr Opin Nephrol Hypertens 2024; 33:447-455. [PMID: 38415700 PMCID: PMC11139250 DOI: 10.1097/mnh.0000000000000977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
PURPOSE OF REVIEW More than a decade ago, apolipoprotein L1 ( APOL1 ) risk alleles designated G1 and G2, were discovered to be causally associated with markedly increased risk for progressive kidney disease in individuals of recent African ancestry. Gratifying progress has been made during the intervening years, extending to the development and clinical testing of genomically precise small molecule therapy accompanied by emergence of RNA medicine platforms and clinical testing within just over a decade. RECENT FINDINGS Given the plethora of excellent prior review articles, we will focus on new findings regarding unresolved questions relating mechanism of cell injury with mode of inheritance, regulation and modulation of APOL1 activity, modifiers and triggers for APOL1 kidney risk penetrance, the pleiotropic spectrum of APOL1 related disease beyond the kidney - all within the context of relevance to therapeutic advances. SUMMARY Notwithstanding remaining controversies and uncertainties, promising genomically precise therapies targeted at APOL1 mRNA using antisense oligonucleotides (ASO), inhibitors of APOL1 expression, and small molecules that specifically bind and inhibit APOL1 cation flux are emerging, many already at the clinical trial stage. These therapies hold great promise for mitigating APOL1 kidney injury and possibly other systemic phenotypes as well. A challenge will be to develop guidelines for appropriate use in susceptible individuals who will derive the greatest benefit.
Collapse
Affiliation(s)
- Orly Tabachnikov
- Department of Nephrology, Rambam Healthcare Campus, Haifa, Israel
| | - Karl Skorecki
- Department of Nephrology, Rambam Healthcare Campus, Haifa, Israel
- Departments of Genetics and Developmental Biology and Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa, Israel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Etty Kruzel-Davila
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Department of Nephrology, Galilee Medical Center, Nahariya, Israel
| |
Collapse
|
8
|
Gbadegesin R, Martinelli E, Gupta Y, Friedman DJ, Sampson MG, Pollak MR, Sanna-Cherchi S. APOL1 Genotyping Is Incomplete without Testing for the Protective M1 Modifier p.N264K Variant. GLOMERULAR DISEASES 2024; 4:43-48. [PMID: 38495868 PMCID: PMC10942791 DOI: 10.1159/000537948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 03/19/2024]
Affiliation(s)
- Rasheed Gbadegesin
- Division of Nephrology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Elena Martinelli
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Yask Gupta
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Institute for Inflammation Medicine, University of Lübeck, Lübeck, Germany
| | - David J Friedman
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Matthew G Sampson
- Harvard Medical School, Boston, MA, USA
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, MA, USA
- Kidney Disease Initiative and Medical and Population Genetics Program, Broad Institute, Boston, MA, USA
- Division of Nephrology, Brigham and Women's Hospital, Boston, MA, USA
| | - Martin R Pollak
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Simone Sanna-Cherchi
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
9
|
Gupta Y, Friedman DJ, McNulty MT, Khan A, Lane B, Wang C, Ke J, Jin G, Wooden B, Knob AL, Lim TY, Appel GB, Huggins K, Liu L, Mitrotti A, Stangl MC, Bomback A, Westland R, Bodria M, Marasa M, Shang N, Cohen DJ, Crew RJ, Morello W, Canetta P, Radhakrishnan J, Martino J, Liu Q, Chung WK, Espinoza A, Luo Y, Wei WQ, Feng Q, Weng C, Fang Y, Kullo IJ, Naderian M, Limdi N, Irvin MR, Tiwari H, Mohan S, Rao M, Dube GK, Chaudhary NS, Gutiérrez OM, Judd SE, Cushman M, Lange LA, Lange EM, Bivona DL, Verbitsky M, Winkler CA, Kopp JB, Santoriello D, Batal I, Pinheiro SVB, Oliveira EA, Simoes E Silva AC, Pisani I, Fiaccadori E, Lin F, Gesualdo L, Amoroso A, Ghiggeri GM, D'Agati VD, Magistroni R, Kenny EE, Loos RJF, Montini G, Hildebrandt F, Paul DS, Petrovski S, Goldstein DB, Kretzler M, Gbadegesin R, Gharavi AG, Kiryluk K, Sampson MG, Pollak MR, Sanna-Cherchi S. Strong protective effect of the APOL1 p.N264K variant against G2-associated focal segmental glomerulosclerosis and kidney disease. Nat Commun 2023; 14:7836. [PMID: 38036523 PMCID: PMC10689833 DOI: 10.1038/s41467-023-43020-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
African Americans have a significantly higher risk of developing chronic kidney disease, especially focal segmental glomerulosclerosis -, than European Americans. Two coding variants (G1 and G2) in the APOL1 gene play a major role in this disparity. While 13% of African Americans carry the high-risk recessive genotypes, only a fraction of these individuals develops FSGS or kidney failure, indicating the involvement of additional disease modifiers. Here, we show that the presence of the APOL1 p.N264K missense variant, when co-inherited with the G2 APOL1 risk allele, substantially reduces the penetrance of the G1G2 and G2G2 high-risk genotypes by rendering these genotypes low-risk. These results align with prior functional evidence showing that the p.N264K variant reduces the toxicity of the APOL1 high-risk alleles. These findings have important implications for our understanding of the mechanisms of APOL1-associated nephropathy, as well as for the clinical management of individuals with high-risk genotypes that include the G2 allele.
Collapse
Affiliation(s)
- Yask Gupta
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Institute for Inflammation Medicine, University of Lubeck, Lübeck, Germany
| | - David J Friedman
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Michelle T McNulty
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, MA, USA
- Kidney Disease Initiative and Medical and Population Genetics Program, Broad Institute, Boston, MA, USA
| | - Atlas Khan
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Brandon Lane
- Division of Nephrology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Chen Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Juntao Ke
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Gina Jin
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Benjamin Wooden
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrea L Knob
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Tze Y Lim
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Unit of Genomic Variability and Complex Diseases, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Gerald B Appel
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Kinsie Huggins
- Division of Nephrology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Lili Liu
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Adele Mitrotti
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J) Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Megan C Stangl
- Division of Nephrology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Andrew Bomback
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Rik Westland
- Department of Pediatric Nephrology, Emma Children's Hospital, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Monica Bodria
- Division of Nephrology and Renal Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Laboratory on Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maddalena Marasa
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Ning Shang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - David J Cohen
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Russell J Crew
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - William Morello
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milano, Italy
| | - Pietro Canetta
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Jai Radhakrishnan
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Jeremiah Martino
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Qingxue Liu
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Angelica Espinoza
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yuan Luo
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Wei-Qi Wei
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qiping Feng
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chunhua Weng
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - Yilu Fang
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - Iftikhar J Kullo
- Atherosclerosis and Lipid Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | | | - Nita Limdi
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marguerite R Irvin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hemant Tiwari
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sumit Mohan
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Maya Rao
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Geoffrey K Dube
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Ninad S Chaudhary
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Orlando M Gutiérrez
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
- Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Suzanne E Judd
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mary Cushman
- Department of Medicine and Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, USA
| | - Leslie A Lange
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ethan M Lange
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel L Bivona
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Miguel Verbitsky
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Cheryl A Winkler
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health and Basic Research Program, Frederick National Laboratory, Frederick, MD, USA
| | - Jeffrey B Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Dominick Santoriello
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ibrahim Batal
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sérgio Veloso Brant Pinheiro
- Universidade Federal de Minas Gerais (UFMG), Faculdade de Medicina, Laboratório Interdisciplinar de Investigação Médica, Departamento de Pediatria, Unidade de Nefrologia Pediátrica, Belo Horizonte, MG, Brazil
| | - Eduardo Araújo Oliveira
- Universidade Federal de Minas Gerais (UFMG), Faculdade de Medicina, Laboratório Interdisciplinar de Investigação Médica, Departamento de Pediatria, Unidade de Nefrologia Pediátrica, Belo Horizonte, MG, Brazil
| | - Ana Cristina Simoes E Silva
- Universidade Federal de Minas Gerais (UFMG), Faculdade de Medicina, Laboratório Interdisciplinar de Investigação Médica, Departamento de Pediatria, Unidade de Nefrologia Pediátrica, Belo Horizonte, MG, Brazil
| | - Isabella Pisani
- Nephrology Unit, Parma University Hospital, and Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Enrico Fiaccadori
- Nephrology Unit, Parma University Hospital, and Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Fangming Lin
- Division of Pediatric Nephrology, Department of Pediatrics, Columbia University, New York, NY, USA
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J) Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Amoroso
- Immunogenetics and Transplant Biology Service, University Hospital "Città della Salute e della Scienza di Torino", Department of Medical Sciences, University of Turin, Turin, Italy
| | - Gian Marco Ghiggeri
- Division of Nephrology and Renal Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Laboratory on Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Vivette D D'Agati
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Riccardo Magistroni
- Surgical, Medical and Dental Department of Morphological Sciences, Section of Nephrology, University of Modena and Reggio Emilia, Modena, Italy
| | - Eimear E Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Translational Genomics, Icahn School of Medicine, New York, NY, 10027, USA
- Division of Genomic Medicine, Department of Medicine, Icahn School of Medicine, New York, NY, 10027, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Giovanni Montini
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milano, Italy
- Department of Clinical Sciences and Community Health, Giuliana and Bernardo Caprotti Chair of Pediatrics, University of Milano, Milano, Italy
| | - Friedhelm Hildebrandt
- Harvard Medical School, Boston, MA, USA
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, MA, USA
| | - Dirk S Paul
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Slavé Petrovski
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Matthias Kretzler
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Rasheed Gbadegesin
- Division of Nephrology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Ali G Gharavi
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Krzysztof Kiryluk
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Matthew G Sampson
- Harvard Medical School, Boston, MA, USA
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, MA, USA
- Kidney Disease Initiative and Medical and Population Genetics Program, Broad Institute, Boston, MA, USA
| | - Martin R Pollak
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Simone Sanna-Cherchi
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
10
|
Hung AM, Assimon VA, Chen HC, Yu Z, Vlasschaert C, Triozzi JL, Chan H, Wheless L, Wilson O, Shah SC, Mack T, Thompson T, Matheny ME, Chandrasekar S, Mozaffari SV, Chung CP, Tsao P, Susztak K, Siew ED, Estrada K, Gaziano JM, Graham RR, Tao R, Hoek M, Robinson-Cohen C, Green EM, Bick AG. Genetic Inhibition of APOL1 Pore-Forming Function Prevents APOL1-Mediated Kidney Disease. J Am Soc Nephrol 2023; 34:1889-1899. [PMID: 37798822 PMCID: PMC10631602 DOI: 10.1681/asn.0000000000000219] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/17/2023] [Indexed: 10/07/2023] Open
Abstract
SIGNIFICANCE STATEMENT African Americans are at increased risk of CKD in part due to high-risk (HR) variants in the apolipoprotein L1 ( APOL1 ) gene, termed G1/G2. A different APOL1 variant, p.N264K , reduced the risk of CKD and ESKD among carriers of APOL1 HR variants to levels comparable with individuals with APOL1 low-risk variants in an analysis of 121,492 participants of African ancestry from the Million Veteran Program (MVP). Functional genetic studies in cell models showed that APOL1 p.N264K blocked APOL1 pore-forming function and ion channel conduction and reduced toxicity of APOL1 HR mutations. Pharmacologic inhibitors that mimic this mutation blocking APOL1 -mediated pore formation may be able to prevent and/or treat APOL1 -associated kidney disease. BACKGROUND African Americans are at increased risk for nondiabetic CKD in part due to HR variants in the APOL1 gene. METHODS We tested whether a different APOL1 variant, p.N264K , modified the association between APOL1 HR genotypes (two copies of G1/G2) and CKD in a cross-sectional analysis of 121,492 participants of African ancestry from the MVP. We replicated our findings in the Vanderbilt University Biobank ( n =14,386) and National Institutes of Health All of Us ( n =14,704). Primary outcome was CKD and secondary outcome was ESKD among nondiabetic patients. Primary analysis compared APOL1 HR genotypes with and without p.N264K . Secondary analyses included APOL1 low-risk genotypes and tested for interaction. In MVP, we performed sequential logistic regression models adjusting for demographics, comorbidities, medications, and ten principal components of ancestry. Functional genomic studies expressed APOL1 HR variants with and without APOL1 p.N264K in cell models. RESULTS In the MVP cohort, 15,604 (12.8%) had two APOL1 HR variants, of which 582 (0.5%) also had APOL1 p.N264K . In MVP, 18,831 (15%) had CKD, 4177 (3%) had ESKD, and 34% had diabetes. MVP APOL1 HR, without p.N264K , was associated with increased odds of CKD (odds ratio [OR], 1.72; 95% confidence interval [CI], 1.60 to 1.85) and ESKD (OR, 3.94; 95% CI, 3.52 to 4.41). In MVP, APOL1 p.N264K mitigated the renal risk of APOL1 HR, in CKD (OR, 0.43; 95% CI, 0.28 to 0.65) and ESKD (OR, 0.19; CI 0.07 to 0.51). In the replication cohorts meta-analysis, APOL1 p.N264K mitigated the renal risk of APOL1 HR in CKD (OR, 0.40; 95% CI, 0.18 to 0.92) and ESKD (OR, 0.19; 95% CI, 0.05 to 0.79). In the mechanistic studies, APOL1 p.N264K blocked APOL1 pore-forming function and ion channel conduction and reduced toxicity of APOL1 HR variants. CONCLUSIONS APOL1 p.N264K is associated with reduced risk of CKD and ESKD among carriers of APOL1 HR to levels comparable with individuals with APOL1 low-risk genotypes.
Collapse
Affiliation(s)
- Adriana M. Hung
- Nashville VA Medical Center, VA Tennessee Valley Healthcare System, Nashville, Tennessee
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Hua-Chang Chen
- Nashville VA Medical Center, VA Tennessee Valley Healthcare System, Nashville, Tennessee
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Zhihong Yu
- Nashville VA Medical Center, VA Tennessee Valley Healthcare System, Nashville, Tennessee
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Jefferson L. Triozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Helen Chan
- Maze Therapeutics, South San Francisco, California
| | - Lee Wheless
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Otis Wilson
- Nashville VA Medical Center, VA Tennessee Valley Healthcare System, Nashville, Tennessee
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shailja C. Shah
- VA San Diego Healthcare System and UC San Diego Health, La Jolla, California
| | - Taralynn Mack
- Nashville VA Medical Center, VA Tennessee Valley Healthcare System, Nashville, Tennessee
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Trevor Thompson
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michael E. Matheny
- Nashville VA Medical Center, VA Tennessee Valley Healthcare System, Nashville, Tennessee
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | - Cecilia P. Chung
- Department of Rheumatology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Philip Tsao
- VA Palo Alto Health Care System, Palo Alto, California
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Edward D. Siew
- Nashville VA Medical Center, VA Tennessee Valley Healthcare System, Nashville, Tennessee
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - J. Michael Gaziano
- VA Cooperative Studies Program, VA Boston Healthcare System, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital and Harvard School of Medicine, Boston, Massachusetts
| | | | - Ran Tao
- Nashville VA Medical Center, VA Tennessee Valley Healthcare System, Nashville, Tennessee
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Maarten Hoek
- Maze Therapeutics, South San Francisco, California
| | - Cassianne Robinson-Cohen
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Alexander G. Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- VA Cooperative Studies Program, VA Boston Healthcare System, Boston, Massachusetts
| |
Collapse
|
11
|
Kumar R, Gupta S, Bhutia WD, Vaid RK, Kumar S. Atypical human trypanosomosis: Potentially emerging disease with lack of understanding. Zoonoses Public Health 2022; 69:259-276. [PMID: 35355422 DOI: 10.1111/zph.12945] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 02/03/2023]
Abstract
Trypanosomes are the hemoflagellate kinetoplastid protozoan parasites affecting a wide range of vertebrate hosts having insufficient host specificity. Climatic change, deforestation, globalization, trade agreements, close association and genetic selection in links with environmental, vector, reservoir and potential susceptible hosts' parameters have led to emergence of atypical human trypanosomosis (a-HT). Poor recording of such neglected tropical disease, low awareness in health professions and farming community has approached a serious intimidation for mankind. Reports of animal Trypanosoma species are now gradually increasing in humans, and lack of any compiled literature has diluted the issue. In the present review, global reports of livestock and rodent trypanosomes reported from human beings are assembled and discrepancies with the available literature are discussed along with morphological features of Trypanosoma species. We have described 21 human cases from the published information. Majority of cases 10 (47%) are due to T. lewisi, followed by 5 (24%) cases of T. evansi, 4 (19%) cases of T. brucei and 1 (5%) case each of T. vivax and T. congolense. Indian subcontinent witnessed 13 cases of a-HT, of which 9 cases are reported from India, which includes 7 cases of T. lewisi and 2 cases of T. evansi. Apart from, a-HT case reports, epidemiological investigation and treatment aspects are also discussed. An attempt has been made to provide an overview of the current situation of atypical human trypanosomosis caused by salivarian animal Trypanosoma globally. The probable role of Trypanosoma lytic factors (TLF) present in normal human serum (NHS) in providing innate immunity against salivarian animal Trypanosoma species and the existing paradox in medical science after the finding on intact functional apolipoprotein L1 (ApoL1) in Vietnam T. evansi Type A case is also discussed to provide an update on all aspects of a-HT. Insufficient data and poor reporting in Asian and African countries are the major hurdle resulting in under-reporting of a-HT, which is a potential emerging threat. Therefore, concerted efforts must be directed to address attentiveness, preparedness and regular surveillance in suspected areas with training of field technicians, medical health professionals and veterinarians. Enhancing a one health approach is specifically important in case of trypanosomosis.
Collapse
Affiliation(s)
- Rajender Kumar
- Parasitology Lab, ICAR-National Research Centre on Equines, Hisar, India
| | - Snehil Gupta
- Department of Veterinary Parasitology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | | | | | - Sanjay Kumar
- Parasitology Lab, ICAR-National Research Centre on Equines, Hisar, India
| |
Collapse
|
12
|
Atutornu J, Milne R, Costa A, Patch C, Middleton A. Towards equitable and trustworthy genomics research. EBioMedicine 2022; 76:103879. [PMID: 35158310 PMCID: PMC8850759 DOI: 10.1016/j.ebiom.2022.103879] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/04/2022] [Accepted: 01/28/2022] [Indexed: 12/11/2022] Open
Abstract
The representation of traditionally scientifically underserved groups in genomic research continues to be low despite concerns about equity and social justice and the scientific and clinical need. Among the factors that account for this are a lack of trust in the research community and limited diversity in this community. The success of the multiple initiatives that aim to improve representation relies on the willingness of underrepresented populations to make data and samples available for research and clinical use. In this narrative review, we propose that this requires building trust, and set out four approaches to demonstrating trustworthiness, including increasing diversity in the research workforce, and meaningful engagement with underrepresented communities in a culturally and linguistically appropriate manner. Capacity building globally will ensure that actual and perceived exploitation and ‘helicopter’ research could be eliminated.
Collapse
Affiliation(s)
- Jerome Atutornu
- Engagement and Society, Wellcome Connecting Science, Wellcome Genome Campus, Cambridge CB10 1SA, UK; School of Health and Sports Sciences, University of Suffolk, Ipswich, IP4 1QJ
| | - Richard Milne
- Engagement and Society, Wellcome Connecting Science, Wellcome Genome Campus, Cambridge CB10 1SA, UK; Kavli Centre for Ethics, Science and the Public, Faculty of Education, University of Cambridge, CB2 8PQ
| | - Alesia Costa
- Engagement and Society, Wellcome Connecting Science, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Christine Patch
- Engagement and Society, Wellcome Connecting Science, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Anna Middleton
- Engagement and Society, Wellcome Connecting Science, Wellcome Genome Campus, Cambridge CB10 1SA, UK; Kavli Centre for Ethics, Science and the Public, Faculty of Education, University of Cambridge, CB2 8PQ.
| |
Collapse
|
13
|
Geerts M, Schnaufer A, Van den Broeck F. rKOMICS: an R package for processing mitochondrial minicircle assemblies in population-scale genome projects. BMC Bioinformatics 2021; 22:468. [PMID: 34583651 PMCID: PMC8479924 DOI: 10.1186/s12859-021-04384-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022] Open
Abstract
Background The advent of population-scale genome projects has revolutionized our biological understanding of parasitic protozoa. However, while hundreds to thousands of nuclear genomes of parasitic protozoa have been generated and analyzed, information about the diversity, structure and evolution of their mitochondrial genomes remains fragmentary, mainly because of their extraordinary complexity. Indeed, unicellular flagellates of the order Kinetoplastida contain structurally the most complex mitochondrial genome of all eukaryotes, organized as a giant network of homogeneous maxicircles and heterogeneous minicircles. We recently developed KOMICS, an analysis toolkit that automates the assembly and circularization of the mitochondrial genomes of Kinetoplastid parasites. While this tool overcomes the limitation of extracting mitochondrial assemblies from Next-Generation Sequencing datasets, interpreting and visualizing the genetic (dis)similarity within and between samples remains a time-consuming process. Results Here, we present a new analysis toolkit—rKOMICS—to streamline the analyses of minicircle sequence diversity in population-scale genome projects. rKOMICS is a user-friendly R package that has simple installation requirements and that is applicable to all 27 trypanosomatid genera. Once minicircle sequence alignments are generated, rKOMICS allows to examine, summarize and visualize minicircle sequence diversity within and between samples through the analyses of minicircle sequence clusters. We showcase the functionalities of the (r)KOMICS tool suite using a whole-genome sequencing dataset from a recently published study on the history of diversification of the Leishmania braziliensis species complex in Peru. Analyses of population diversity and structure highlighted differences in minicircle sequence richness and composition between Leishmania subspecies, and between subpopulations within subspecies. Conclusion The rKOMICS package establishes a critical framework to manipulate, explore and extract biologically relevant information from mitochondrial minicircle assemblies in tens to hundreds of samples simultaneously and efficiently. This should facilitate research that aims to develop new molecular markers for identifying species-specific minicircles, or to study the ancestry of parasites for complementary insights into their evolutionary history.
Collapse
Affiliation(s)
- Manon Geerts
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000, Antwerp, Belgium
| | - Achim Schnaufer
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Frederik Van den Broeck
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000, Antwerp, Belgium. .,Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
14
|
Giovinazzo JA, Thomson RP, Khalizova N, Zager PJ, Malani N, Rodriguez-Boulan E, Raper J, Schreiner R. Apolipoprotein L-1 renal risk variants form active channels at the plasma membrane driving cytotoxicity. eLife 2020; 9:51185. [PMID: 32427098 PMCID: PMC7292663 DOI: 10.7554/elife.51185] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 05/14/2020] [Indexed: 12/25/2022] Open
Abstract
Recently evolved alleles of Apolipoprotein L-1 (APOL1) provide increased protection against African trypanosome parasites while also significantly increasing the risk of developing kidney disease in humans. APOL1 protects against trypanosome infections by forming ion channels within the parasite, causing lysis. While the correlation to kidney disease is robust, there is little consensus concerning the underlying disease mechanism. We show in human cells that the APOL1 renal risk variants have a population of active channels at the plasma membrane, which results in an influx of both Na+ and Ca2+. We propose a model wherein APOL1 channel activity is the upstream event causing cell death, and that the activate-state, plasma membrane-localized channel represents the ideal drug target to combat APOL1-mediated kidney disease.
Collapse
Affiliation(s)
- Joseph A Giovinazzo
- Department of Biological Sciences, Hunter College at City University of New York, New York, United States
| | - Russell P Thomson
- Department of Biological Sciences, Hunter College at City University of New York, New York, United States
| | - Nailya Khalizova
- Department of Biological Sciences, Hunter College at City University of New York, New York, United States
| | - Patrick J Zager
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, United States
| | | | - Enrique Rodriguez-Boulan
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, United States
| | - Jayne Raper
- Department of Biological Sciences, Hunter College at City University of New York, New York, United States
| | - Ryan Schreiner
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, United States
| |
Collapse
|
15
|
Trypanosoma brucei gambiense Group 2: The Unusual Suspect. Trends Parasitol 2019; 35:983-995. [DOI: 10.1016/j.pt.2019.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/31/2019] [Accepted: 09/08/2019] [Indexed: 11/23/2022]
|
16
|
Lannon H, Shah SS, Dias L, Blackler D, Alper SL, Pollak MR, Friedman DJ. Apolipoprotein L1 (APOL1) risk variant toxicity depends on the haplotype background. Kidney Int 2019; 96:1303-1307. [PMID: 31611067 DOI: 10.1016/j.kint.2019.07.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/27/2019] [Accepted: 07/03/2019] [Indexed: 01/01/2023]
Abstract
The Apolipoprotein L1 (APOL1) risk variants G1 and G2 are associated with high rates of kidney disease in African Americans in genetic studies. However, our understanding of APOL1 biology has lagged far behind. Here we report that engineering G1 and G2 mutations on unnatural haplotype backgrounds instead of on the specific G1 and G2 haplotype backgrounds that occur in nature profoundly alters APOL1-mediated cytotoxicity in experimental systems. Thus, in addition to helping resolve some important controversies in the APOL1 field, our demonstration of the critical influence of haplotype background may apply more generally to the study of other genetic variants that cause or predispose to human disease.
Collapse
Affiliation(s)
- Herbert Lannon
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Shrijal S Shah
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Leny Dias
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel Blackler
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Seth L Alper
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Martin R Pollak
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - David J Friedman
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
17
|
Lee H, Roshanravan H, Wang Y, Okamoto K, Ryu J, Shrivastav S, Qu P, Kopp JB. ApoL1 renal risk variants induce aberrant THP-1 monocyte differentiation and increase eicosanoid production via enhanced expression of cyclooxygenase-2. Am J Physiol Renal Physiol 2018; 315:F140-F150. [PMID: 29357411 PMCID: PMC6087794 DOI: 10.1152/ajprenal.00254.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 01/09/2023] Open
Abstract
Apolipoprotein L1 ( ApoL1) genetic variants are strongly associated with kidney diseases. We investigated the role of ApoL1 variants in monocyte differentiation and eicosanoid production in macrophages, as activated tissue macrophages in kidney might contribute to kidney injury. In human monocyte THP-1 cells, transient overexpression of ApoL1 (G0, G1, G2) by transfection resulted in a 5- to 11-fold increase in CD14 and CD68 gene expression, similar to that seen with phorbol-12-myristate acetate treatment. All ApoL1 variants caused monocytes to differentiate into atypical M1 macrophages with marked increase in M1 markers CD80, TNF, IL1B, and IL6 and modest increase in the M2 marker CD163 compared with control cells. ApoL1-G1 transfection induced additional CD206 and TGFB1 expression, and ApoL1-G2 transfection induced additional CD204 and TGFB1 expression. Gene expression of prostaglandin E2 (PGE2) synthase and thromboxane synthase and both gene and protein expression of cyclooxygenase-2 (COX-2) were increased by ApoL1-G1 and -G2 variants compared with -G0 transfection. Higher levels of PGE2 and thromboxane B2, a stable metabolite of thromboxane A2, and transforming growth factor (TGF)-β1 were released into the supernatant of cultured THP-1 cells transfected with ApoL1-G1 and -G2, but not -G0. The increase in PGE2, thromboxane B2, and TGF-β1 was inhibited by COX-2-specific inhibitor CAY10404 but not by COX-1-specific inhibitor SC-560. These results demonstrate a novel role of ApoL1 variants in the regulation of monocyte differentiation and eicosanoid metabolism, which could modify the immune response and promote inflammatory signaling within the local targeted organs and tissues including the kidney.
Collapse
Affiliation(s)
- Hewang Lee
- Institute of Heart and Vessel Diseases, Second Hospital, Dalian Medical University , Dalian , China
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Hila Roshanravan
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Ying Wang
- Institute of Heart and Vessel Diseases, Second Hospital, Dalian Medical University , Dalian , China
| | - Koji Okamoto
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Junghwa Ryu
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Shashi Shrivastav
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Peng Qu
- Institute of Heart and Vessel Diseases, Second Hospital, Dalian Medical University , Dalian , China
| | - Jeffrey B Kopp
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| |
Collapse
|
18
|
Cuypers B, Van den Broeck F, Van Reet N, Meehan CJ, Cauchard J, Wilkes JM, Claes F, Goddeeris B, Birhanu H, Dujardin JC, Laukens K, Büscher P, Deborggraeve S. Genome-Wide SNP Analysis Reveals Distinct Origins of Trypanosoma evansi and Trypanosoma equiperdum. Genome Biol Evol 2018; 9:1990-1997. [PMID: 28541535 PMCID: PMC5566637 DOI: 10.1093/gbe/evx102] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2017] [Indexed: 12/22/2022] Open
Abstract
Trypanosomes cause a variety of diseases in man and domestic animals in Africa, Latin America, and Asia. In the Trypanozoon subgenus, Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense cause human African trypanosomiasis, whereas Trypanosoma brucei brucei, Trypanosoma evansi, and Trypanosoma equiperdum are responsible for nagana, surra, and dourine in domestic animals, respectively. The genetic relationships between T. evansi and T. equiperdum and other Trypanozoon species remain unclear because the majority of phylogenetic analyses has been based on only a few genes. In this study, we have conducted a phylogenetic analysis based on genome-wide SNP analysis comprising 56 genomes from the Trypanozoon subgenus. Our data reveal that T. equiperdum has emerged at least once in Eastern Africa and T. evansi at two independent occasions in Western Africa. The genomes within the T. equiperdum and T. evansi monophyletic clusters show extremely little variation, probably due to the clonal spread linked to the independence from tsetse flies for their transmission.
Collapse
Affiliation(s)
- Bart Cuypers
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Mathematics and Computer Sciences, University of Antwerp, Belgium
| | | | - Nick Van Reet
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Conor J Meehan
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Julien Cauchard
- Anses Dozulé Laboratory for Equine Diseases, Goustranville, France
| | - Jonathan M Wilkes
- Wellcome Trust Centre of Molecular Parasitology, University of Glasgow, United Kingdom
| | - Filip Claes
- Food and Agriculture Organization of the United Nations (FAO), Regional Office for Asia and the Pacific, Bangkok, Thailand
| | | | - Hadush Birhanu
- College of Veterinary Medicine, Mekelle University, Tigray, Ethiopia
| | - Jean-Claude Dujardin
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kris Laukens
- Department of Mathematics and Computer Sciences, University of Antwerp, Belgium
| | - Philippe Büscher
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Stijn Deborggraeve
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
19
|
Reidy KJ, Hjorten R, Parekh RS. Genetic risk of APOL1 and kidney disease in children and young adults of African ancestry. Curr Opin Pediatr 2018; 30:252-259. [PMID: 29406442 PMCID: PMC6002812 DOI: 10.1097/mop.0000000000000603] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Understanding the genetic risk of APOL1 in children and young adults is important given the lifetime risk of hypertension and kidney disease among children of African descent. We review recent epidemiologic and biologic findings on the effects of APOL1 and kidney disease. RECENT FINDINGS APOL1 in children and young adults is associated with hypertension, albuminuria and more rapid decline in kidney function and progression to end-stage kidney disease, especially among those with glomerular causes of kidney disease, and those affected by sickle cell disease or HIV. There are conflicting data on the APOL1 association with cardiovascular disease in children and young adults. APOL1 functions as part of the innate immune system. Podocyte expression of APOL1 likely contributes to the development of kidney disease. In cell culture and model organisms, APOL1 expression disrupts autophagic and ion flux, leads to defects in mitochondrial respiration and induces cell death. SUMMARY APOL1 explains almost 70% of the excess risk of kidney disease in those of African descent, and is common in children with glomerular disease. An evolving understanding of the pathogenesis of APOL1-mediated kidney damage may aid in personalized medicine approaches to APOL1 attributable kidney disease.
Collapse
Affiliation(s)
- Kimberly J Reidy
- Children’s Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rebecca Hjorten
- Children’s Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center
| | - Rulan S. Parekh
- Departments of Pediatrics and Medicine, Hospital for Sick Children, University Health Network and University of Toronto, Toronto, Canada
| |
Collapse
|
20
|
Büscher P, Bart JM, Boelaert M, Bucheton B, Cecchi G, Chitnis N, Courtin D, Figueiredo LM, Franco JR, Grébaut P, Hasker E, Ilboudo H, Jamonneau V, Koffi M, Lejon V, MacLeod A, Masumu J, Matovu E, Mattioli R, Noyes H, Picado A, Rock KS, Rotureau B, Simo G, Thévenon S, Trindade S, Truc P, Van Reet N. Do Cryptic Reservoirs Threaten Gambiense-Sleeping Sickness Elimination? Trends Parasitol 2018; 34:197-207. [PMID: 29396200 PMCID: PMC5840517 DOI: 10.1016/j.pt.2017.11.008] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/18/2017] [Accepted: 11/27/2017] [Indexed: 12/22/2022]
Abstract
Trypanosoma brucei gambiense causes human African trypanosomiasis (HAT). Between 1990 and 2015, almost 440000 cases were reported. Large-scale screening of populations at risk, drug donations, and efforts by national and international stakeholders have brought the epidemic under control with <2200 cases in 2016. The World Health Organization (WHO) has set the goals of gambiense-HAT elimination as a public health problem for 2020, and of interruption of transmission to humans for 2030. Latent human infections and possible animal reservoirs may challenge these goals. It remains largely unknown whether, and to what extend, they have an impact on gambiense-HAT transmission. We argue that a better understanding of the contribution of human and putative animal reservoirs to gambiense-HAT epidemiology is mandatory to inform elimination strategies.
Collapse
Affiliation(s)
- Philippe Büscher
- Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium.
| | - Jean-Mathieu Bart
- INTERTRYP, IRD, CIRAD, Univ Montpellier, Montpellier, France; Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III, Calle Sinesio Delgado 4, 28029 Madrid, Spain
| | - Marleen Boelaert
- Department of Public Health, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium
| | - Bruno Bucheton
- INTERTRYP, IRD, CIRAD, Univ Montpellier, Montpellier, France
| | - Giuliano Cecchi
- Sub-regional Office for Eastern Africa, Food and Agriculture Organization of the United Nations, CMC Road, Bole Sub City, Kebele 12/13, P O Box 5536, Addis Ababa, Ethiopia
| | - Nakul Chitnis
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, Postfach, 4002 Basel, Switzerland; University of Basel, Switzerland
| | - David Courtin
- Université Paris Descartes, Institut de Recherche pour le Développement, Unité MERIT, Mère et enfant face aux infections tropicales, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Luisa M Figueiredo
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Prof Egas Moniz, 1649-028 Lisboa, Portugal
| | - José-Ramon Franco
- Control of Neglected Tropical Diseases, Innovative and Intensified Disease Management, World Health Organization, Via Appia 20, 1202 Geneva, Switzerland
| | - Pascal Grébaut
- INTERTRYP, IRD, CIRAD, Univ Montpellier, Montpellier, France
| | - Epco Hasker
- Department of Public Health, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium
| | - Hamidou Ilboudo
- Institut de Recherche sur les Bases Biologiques de la Lutte Intégrée, Centre International de Recherche-Développement sur l'Élevage en zone Subhumide, 01 BP 454 Bobo-Dioulasso 01, Burkina Faso
| | | | - Mathurin Koffi
- Université Jean Lorougnon Guédé, BP 150 Daloa, Côte d'Ivoire
| | - Veerle Lejon
- INTERTRYP, IRD, CIRAD, Univ Montpellier, Montpellier, France
| | - Annette MacLeod
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Henry Wellcome Building, 464 Bearsden Road, Glasgow, UK
| | - Justin Masumu
- Département de Parasitologie, Institut National de Recherche Biomédicale, Avenue de la Démocratie, BP 1197 Kinshasa 1, République Démocratique du Congo
| | - Enock Matovu
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P O Box 7062 Kampala, Uganda
| | - Raffaele Mattioli
- Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153 Rome, Italy
| | - Harry Noyes
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Albert Picado
- Foundation for Innovative New Diagnostics, 9 Chemin des Mines, 1202 Geneva, Switzerland
| | - Kat S Rock
- Zeeman Institute for Systems Biology & Infectious Disease Research, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201 and Department of Parasites and Insect Vectors, Institut Pasteur, 25, rue du Docteur Roux, 75015 Paris, France
| | - Gustave Simo
- Department of Biochemistry, Faculty of Science, University of Dschang, P O Box 67 Dschang, Cameroon
| | - Sophie Thévenon
- INTERTRYP, IRD, CIRAD, Univ Montpellier, Montpellier, France; CIRAD, INTERTRYP, Montpellier, France
| | - Sandra Trindade
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Prof Egas Moniz, 1649-028 Lisboa, Portugal
| | - Philippe Truc
- INTERTRYP, IRD, CIRAD, Univ Montpellier, Montpellier, France
| | - Nick Van Reet
- Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium
| |
Collapse
|
21
|
|
22
|
Candidate gene polymorphisms study between human African trypanosomiasis clinical phenotypes in Guinea. PLoS Negl Trop Dis 2017; 11:e0005833. [PMID: 28827791 PMCID: PMC5595334 DOI: 10.1371/journal.pntd.0005833] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/12/2017] [Accepted: 07/25/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Human African trypanosomiasis (HAT), a lethal disease induced by Trypanosoma brucei gambiense, has a range of clinical outcomes in its human host in West Africa: an acute form progressing rapidly to second stage, spontaneous self-cure and individuals able to regulate parasitaemia at very low levels, have all been reported from endemic foci. In order to test if this clinical diversity is influenced by host genetic determinants, the association between candidate gene polymorphisms and HAT outcome was investigated in populations from HAT active foci in Guinea. METHODOLOGY AND RESULTS Samples were collected from 425 individuals; comprising of 232 HAT cases, 79 subjects with long lasting positive and specific serology but negative parasitology and 114 endemic controls. Genotypes of 28 SNPs in eight genes passed quality control and were used for an association analysis. IL6 rs1818879 allele A (p = 0.0001, OR = 0.39, CI95 = [0.24-0.63], BONF = 0.0034) was associated with a lower risk of progressing from latent infection to active disease. MIF rs36086171 allele G seemed to be associated with an increased risk (p = 0.0239, OR = 1.65, CI95 = [1.07-2.53], BONF = 0.6697) but did not remain significant after Bonferroni correction. Similarly MIF rs12483859 C allele seems be associated with latent infections (p = 0.0077, OR = 1.86, CI95 = [1.18-2.95], BONF = 0.2157). We confirmed earlier observations that APOL1 G2 allele (DEL) (p = 0.0011, OR = 2.70, CI95 = [1.49-4.91], BONF = 0.0301) is associated with a higher risk and APOL1 G1 polymorphism (p = 0.0005, OR = 0.45, CI95 = [0.29-0.70], BONF = 0.0129) with a lower risk of developing HAT. No associations were found with other candidate genes. CONCLUSION Our data show that host genes are involved in modulating Trypanosoma brucei gambiense infection outcome in infected individuals from Guinea with IL6 rs1818879 being associated with a lower risk of progressing to active HAT. These results enhance our understanding of host-parasite interactions and, ultimately, may lead to the development of new control tools.
Collapse
|