1
|
James CD, Lewis RL, Witt AJ, Carter C, Rais NM, Wang X, Bristol ML. Fibroblasts regulate the transcriptional signature of human papillomavirus-positive keratinocytes. Tumour Virus Res 2024; 19:200302. [PMID: 39667669 PMCID: PMC11699615 DOI: 10.1016/j.tvr.2024.200302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024] Open
Abstract
Persistent human papillomavirus (HPV) infection is necessary but insufficient for viral oncogenesis. Additional contributing co-factors, such as immune evasion and viral integration have been implicated in HPV-induced cancer progression. It is widely accepted that HPV + keratinocytes require co-culture with fibroblasts to maintain viral DNA as episomes. How fibroblasts regulate viral episome maintenance is a critical knowledge gap. Here we present comprehensive RNA sequencing and proteomic analysis demonstrating that coculture with fibroblasts is supportive of the viral life cycle, and is confirmatory of previous observations. Novel observations suggest that errors in "cross-talk" between fibroblasts and infected keratinocytes may regulate HPV integration and drive oncogenic progression. Our co-culture models offer new insights into HPV-related transformation mechanisms.
Collapse
Affiliation(s)
- Claire D James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Rachel L Lewis
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Austin J Witt
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | | | - Nabiha M Rais
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Xu Wang
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Molly L Bristol
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA, USA; VCU Massey Comprehensive Cancer Center, Richmond, VA, USA.
| |
Collapse
|
2
|
Gelbard MK, Munger K. Human papillomaviruses: Knowns, mysteries, and unchartered territories. J Med Virol 2023; 95:e29191. [PMID: 37861365 PMCID: PMC10608791 DOI: 10.1002/jmv.29191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
There has been an explosion in the number of papillomaviruses that have been identified and fully sequenced. Yet only a minute fraction of these has been studied in any detail. Most of our molecular research efforts have focused on the E6 and E7 proteins of "high-risk," cancer-associated human papillomaviruses (HPVs). Interactions of the high-risk HPV E6 and E7 proteins with their respective cellular targets, the p53 and the retinoblastoma tumor suppressors, have been investigated in minute detail. Some have thus questioned if research on papillomaviruses remains an exciting and worthwhile area of investigation. However, fundamentally new insights on the biological activities and cellular targets of the high-risk HPV E6 and E7 proteins have been discovered and previously unstudied HPVs have been newly associated with human diseases. HPV infections continue to be an important cause of human morbidity and mortality and since there are no antivirals to combat HPV infections, research on HPVs should remain attractive to new investigators and biomedical funding agencies, alike.
Collapse
Affiliation(s)
- Maya K. Gelbard
- Genetics, Molecular and Cellular Biology Program, Graduate School of Biomedical Sciences
- Department of Developmental, Molecular and Cellular Biology, Tufts University School of Medicine, Boston, MA 02111
| | - Karl Munger
- Genetics, Molecular and Cellular Biology Program, Graduate School of Biomedical Sciences
- Department of Developmental, Molecular and Cellular Biology, Tufts University School of Medicine, Boston, MA 02111
| |
Collapse
|
3
|
Ye J, Zheng L, He Y, Qi X. Human papillomavirus associated cervical lesion: pathogenesis and therapeutic interventions. MedComm (Beijing) 2023; 4:e368. [PMID: 37719443 PMCID: PMC10501338 DOI: 10.1002/mco2.368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Human papillomavirus (HPV) is the most prevalent sexually transmitted virus globally. Persistent high-risk HPV infection can result in cervical precancerous lesions and cervical cancer, with 70% of cervical cancer cases associated with high-risk types HPV16 and 18. HPV infection imposes a significant financial and psychological burden. Therefore, studying methods to eradicate HPV infection and halt the progression of precancerous lesions remains crucial. This review comprehensively explores the mechanisms underlying HPV-related cervical lesions, including the viral life cycle, immune factors, epithelial cell malignant transformation, and host and environmental contributing factors. Additionally, we provide a comprehensive overview of treatment methods for HPV-related cervical precancerous lesions and cervical cancer. Our focus is on immunotherapy, encompassing HPV therapeutic vaccines, immune checkpoint inhibitors, and advanced adoptive T cell therapy. Furthermore, we summarize the commonly employed drugs and other nonsurgical treatments currently utilized in clinical practice for managing HPV infection and associated cervical lesions. Gene editing technology is currently undergoing clinical research and, although not yet employed officially in clinical treatment of cervical lesions, numerous preclinical studies have substantiated its efficacy. Therefore, it holds promise as a precise treatment strategy for HPV-related cervical lesions.
Collapse
Affiliation(s)
- Jiatian Ye
- Department of Gynecology and ObstetricsKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan UniversityChengduChina
| | - Lan Zheng
- Department of Pathology and Lab MedicineUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Yuedong He
- Department of Gynecology and ObstetricsKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan UniversityChengduChina
| | - Xiaorong Qi
- Department of Gynecology and ObstetricsKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
4
|
Abstract
High-risk human papillomaviruses (HPVs) are associated with several human cancers. HPVs are small, DNA viruses that rely on host cell machinery for viral replication. The HPV life cycle takes place in the stratified epithelium, which is composed of different cell states, including terminally differentiating cells that are no longer active in the cell cycle. HPVs have evolved mechanisms to persist and replicate in the stratified epithelium by hijacking and modulating cellular pathways, including the DNA damage response (DDR). HPVs activate and exploit DDR pathways to promote viral replication, which in turn increases the susceptibility of the host cell to genomic instability and carcinogenesis. Here, we review recent advances in our understanding of the regulation of the host cell DDR by high-risk HPVs during the viral life cycle and discuss the potential cellular consequences of modulating DDR pathways.
Collapse
Affiliation(s)
- Caleb J Studstill
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;
| | - Cary A Moody
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;
| |
Collapse
|
5
|
Borkosky SS, Fassolari M, Campos-León K, Rossi AH, Salgueiro M, Pascuale CA, Martínez RP, Gaston K, de Prat Gay G. Biomolecular Condensation of the Human Papillomavirus E2 Master Regulator with p53: Implications in Viral Replication. J Mol Biol 2023; 435:167889. [PMID: 36402224 DOI: 10.1016/j.jmb.2022.167889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/21/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
p53 exerts its tumour suppressor activity by modulating hundreds of genes and it can also repress viral replication. Such is the case of human papillomavirus (HPV) through targeting the E2 master regulator, but the biochemical mechanism is not known. We show that the C-terminal DNA binding domain of HPV16 E2 protein (E2C) triggers heterotypic condensation with p53 at a precise 2/1 E2C/p53 stoichiometry at the onset for demixing, yielding large regular spherical droplets that increase in size with E2C concentration. Interestingly, transfection experiments show that E2 co-localizes with p53 in the nucleus with a grainy pattern, and recruits p53 to chromatin-associated foci, a function independent of the DNA binding capacity of p53 as judged by a DNA binding impaired mutant. Depending on the length, DNA can either completely dissolve or reshape heterotypic droplets into irregular condensates containing p53, E2C, and DNA, and reminiscent of that observed linked to chromatin. We propose that p53 is a scaffold for condensation in line with its structural and functional features, in particular as a promiscuous hub that binds multiple cellular proteins. E2 appears as both client and modulator, likely based on its homodimeric DNA binding nature. Our results, in line with the known role of condensation in eukaryotic gene enhancement and silencing, point at biomolecular condensation of E2 with p53 as a means to modulate HPV gene function, strictly dependent on host cell replication and transcription machinery.
Collapse
Affiliation(s)
- Silvia Susana Borkosky
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - CONICET, Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina.
| | - Marisol Fassolari
- Fundación para Investigaciones Biológicas Aplicadas (FIBA), Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC)-CONICET, Mar del Plata, Argentina
| | - Karen Campos-León
- Division of Immunity and Infection, School of Medicine, University of Birmingham, United Kingdom
| | - Andrés Hugo Rossi
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - CONICET, Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Mariano Salgueiro
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - CONICET, Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Carla Antonela Pascuale
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - CONICET, Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Ramón Peralta Martínez
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - CONICET, Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Kevin Gaston
- School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Gonzalo de Prat Gay
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - CONICET, Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina.
| |
Collapse
|
6
|
Mac M, DeVico BM, Raspanti SM, Moody CA. The SETD2 Methyltransferase Supports Productive HPV31 Replication through the LEDGF/CtIP/Rad51 Pathway. J Virol 2023; 97:e0020123. [PMID: 37154769 PMCID: PMC10231177 DOI: 10.1128/jvi.00201-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023] Open
Abstract
The human papillomavirus (HPV) life cycle takes place in the stratified epithelium, with the productive phase being activated by epithelial differentiation. The HPV genome is histone-associated, and the life cycle is epigenetically regulated, in part, by histone tail modifications that facilitate the recruitment of DNA repair factors that are required for viral replication. We previously showed that the SETD2 methyltransferase facilitates the productive replication of HPV31 through the trimethylation of H3K36 on viral chromatin. SETD2 regulates numerous cellular processes, including DNA repair via homologous recombination (HR) and alternative splicing, through the recruitment of various effectors to histone H3 lysine 36 trimethylation (H3K36me3). We previously demonstrated that the HR factor Rad51 is recruited to HPV31 genomes and is required for productive replication; however, the mechanism of Rad51 recruitment has not been defined. SET domain containing 2 (SETD2) promotes the HR repair of double-strand breaks (DSBs) in actively transcribed genes through the recruitment of carboxy-terminal binding protein (CtBP)-interacting protein (CtIP) to lens epithelium-derived growth factor (LEDGF)-bound H3K36me3, which promotes DNA end resection and thereby allows for the recruitment of Rad51 to damaged sites. In this study, we found that reducing H3K36me3 through the depletion of SETD2 or the overexpression of an H3.3K36M mutant leads to an increase in γH2AX, which is a marker of damage, on viral DNA upon epithelial differentiation. This is coincident with decreased Rad51 binding. Additionally, LEDGF and CtIP are bound to HPV DNA in a SETD2-dependent and H3K36me3-dependent manner, and they are required for productive replication. Furthermore, CtIP depletion increases DNA damage on viral DNA and blocks Rad51 recruitment upon differentiation. Overall, these studies indicate that H3K36me3 enrichment on transcriptionally active viral genes promotes the rapid repair of viral DNA upon differentiation through the LEDGF-CtIP-Rad51 axis. IMPORTANCE The productive phase of the HPV life cycle is restricted to the differentiating cells of the stratified epithelium. The HPV genome is histone-associated and subject to epigenetic regulation, though the manner in which epigenetic modifications contribute to productive replication is largely undefined. In this study, we demonstrate that SETD2-mediated H3K36me3 on HPV31 chromatin promotes productive replication through the repair of damaged DNA. We show that SETD2 facilitates the recruitment of the homologous recombination repair factors CtIP and Rad51 to viral DNA through LEDGF binding to H3K36me3. CtIP is recruited to damaged viral DNA upon differentiation, and, in turn, recruits Rad51. This likely occurs through the end resection of double-strand breaks. SETD2 trimethylates H3K36me3 during transcription, and active transcription is necessary for Rad51 recruitment to viral DNA. We propose that the enrichment of SETD2-mediated H3K36me3 on transcriptionally active viral genes upon differentiation facilitates the repair of damaged viral DNA during the productive phase of the viral life cycle.
Collapse
Affiliation(s)
- Michelle Mac
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brianna M. DeVico
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sophia M. Raspanti
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Cary A. Moody
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
7
|
Bienkowska-Haba M, Zwolinska K, Keiffer T, Scott RS, Sapp M. Human Papillomavirus Genome Copy Number Is Maintained by S-Phase Amplification, Genome Loss to the Cytosol during Mitosis, and Degradation in G 1 Phase. J Virol 2023; 97:e0187922. [PMID: 36749071 PMCID: PMC9972943 DOI: 10.1128/jvi.01879-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/17/2023] [Indexed: 02/08/2023] Open
Abstract
The current model of human papillomavirus (HPV) replication is comprised of three modes of replication. Following infectious delivery, the viral genome is amplified during the establishment phase to reach up to some hundred copies per cell. The HPV genome copy number remains constant during the maintenance stage. The differentiation of infected cells induces HPV genome amplification. Using highly sensitive in situ hybridization (DNAscope) and freshly HPV16-infected as well as established HPV16-positive cell lines, we observed that the viral genome is amplified in each S phase of undifferentiated keratinocytes cultured as monolayers. The nuclear viral genome copy number is reset to pre-S-phase levels during mitosis. The majority of the viral genome fails to tether to host chromosomes and is lost to the cytosol. Cytosolic viral genomes gradually decrease during cell cycle progression. The loss of cytosolic genomes is blocked in the presence of NH4Cl or other drugs that interfere with lysosomal acidification, suggesting the involvement of autophagy in viral genome degradation. These observations were also made with HPV31 cell lines obtained from patient samples. Cytosolic viral genomes were not detected in UMSCC47 cells carrying integrated HPV16 DNA. Analyses of organotypic raft cultures derived from keratinocytes harboring episomal HPV16 revealed the presence of cytosolic viral genomes as well. We conclude that HPV maintains viral genome copy numbers by balancing viral genome amplification during S phase with the loss of viral genomes to the cytosol during mitosis. It seems plausible that restrictions to viral genome tethering to mitotic chromosomes reset genome copy numbers in each cell cycle. IMPORTANCE HPV genome maintenance is currently thought to be achieved by regulating the expression and activity of the viral replication factors E1 and E2. In addition, the E8^E2 repressor has been shown to be important for restricting genome copy numbers by competing with E1 and E2 for binding to the viral origin of replication and by recruiting repressor complexes. Here, we demonstrate that the HPV genome is amplified in each S phase. The nuclear genome copy number is reset during mitosis by a failure of the majority of the genomes to tether to mitotic chromosomes. Rather, HPV genomes accumulate in the cytoplasm of freshly divided cells. Cytosolic viral DNA is degraded in G1 in a lysosome-dependent manner, contributing to the genome copy reset. Our data imply that the mode of replication during establishment and maintenance is the same and further suggest that restrictions to genome tethering significantly contribute to viral genome maintenance.
Collapse
Affiliation(s)
- Malgorzata Bienkowska-Haba
- Department of Microbiology and Immunology, Feist Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Katarzyna Zwolinska
- Department of Microbiology and Immunology, Feist Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Timothy Keiffer
- Department of Microbiology and Immunology, Feist Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Rona S. Scott
- Department of Microbiology and Immunology, Feist Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Martin Sapp
- Department of Microbiology and Immunology, Feist Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| |
Collapse
|
8
|
Oberdoerffer P, Miller KM. Histone H2A variants: Diversifying chromatin to ensure genome integrity. Semin Cell Dev Biol 2023; 135:59-72. [PMID: 35331626 PMCID: PMC9489817 DOI: 10.1016/j.semcdb.2022.03.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Histone variants represent chromatin components that diversify the structure and function of the genome. The variants of H2A, primarily H2A.X, H2A.Z and macroH2A, are well-established participants in DNA damage response (DDR) pathways, which function to protect the integrity of the genome. Through their deposition, post-translational modifications and unique protein interaction networks, these variants guard DNA from endogenous threats including replication stress and genome fragility as well as from DNA lesions inflicted by exogenous sources. A growing body of work is now providing a clearer picture on the involvement and mechanistic basis of H2A variant contribution to genome integrity. Beyond their well-documented role in gene regulation, we review here how histone H2A variants promote genome stability and how alterations in these pathways contribute to human diseases including cancer.
Collapse
Affiliation(s)
- Philipp Oberdoerffer
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA.
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
9
|
Arman W, Munger K. Mechanistic Contributions of lncRNAs to Cellular Signaling Pathways Crucial to the Lifecycle of Human Papillomaviruses. Viruses 2022; 14:2439. [PMID: 36366537 PMCID: PMC9697900 DOI: 10.3390/v14112439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Papillomaviruses are ubiquitous epitheliotropic viruses with double-stranded circular DNA genomes of approximately 8000 base pairs. The viral life cycle is somewhat unusual in that these viruses can establish persistent infections in the mitotically active basal epithelial cells that they initially infect. High-level viral genome replication ("genome amplification"), the expression of capsid proteins, and the formation of infectious progeny are restricted to terminally differentiated cells where genomes are synthesized at replication factories at sites of double-strand DNA breaks. To establish persistent infections, papillomaviruses need to retain the basal cell identity of the initially infected cells and restrain and delay their epithelial differentiation program. To enable high-level viral genome replication, papillomaviruses also need to hold the inherently growth-arrested terminally differentiated cells in a replication-competent state. To provide ample sites for viral genome synthesis, they target the DNA damage and repair machinery. Studies focusing on delineating cellular factors that are targeted by papillomaviruses may aid the development of antivirals. Whilst most of the current research efforts focus on protein targets, the majority of the human transcriptome consists of noncoding RNAs. This review focuses on one specific class of noncoding RNAs, long noncoding RNAs (lncRNAs), and summarizes work on lncRNAs that may regulate the cellular processes that are subverted by papillomavirus to enable persistent infections and progeny synthesis.
Collapse
Affiliation(s)
- Warda Arman
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
- Molecular Microbiology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Karl Munger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
- Molecular Microbiology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
10
|
Kuehner F, Stubenrauch F. Functions of Papillomavirus E8^E2 Proteins in Tissue Culture and In Vivo. Viruses 2022; 14:v14050953. [PMID: 35632695 PMCID: PMC9143700 DOI: 10.3390/v14050953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 12/04/2022] Open
Abstract
Papillomaviruses (PV) replicate in undifferentiated keratinocytes at low levels and to high levels in differentiated cells. The restricted replication in undifferentiated cells is mainly due to the expression of the conserved viral E8^E2 repressor protein, a fusion protein consisting of E8 and the hinge, DNA-binding, and dimerization domain of E2. E8^E2 binds to viral genomes and represses viral transcription and genome replication by recruiting cellular NCoR/SMRT-HDAC3 corepressor complexes. Tissue culture experiments have revealed that E8^E2 modulates long-term maintenance of extrachromosomal genomes, productive replication, and immortalization properties in a virus type-dependent manner. Furthermore, in vivo experiments have indicated that Mus musculus PV1 E8^E2 is required for tumor formation in immune-deficient mice. In summary, E8^E2 is a crucial inhibitor whose levels might determine the outcome of PV infections.
Collapse
|