1
|
Menon AR, Prest RJ, Tobin DM, Champion PA. Mycobacterium marinum as a model for understanding principles of mycobacterial pathogenesis. J Bacteriol 2025; 207:e0004725. [PMID: 40304497 PMCID: PMC12096832 DOI: 10.1128/jb.00047-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Mycobacterium marinum is a fish pathogen that has become a powerful and well-established model that has accelerated our understanding of the mechanisms of mycobacterial disease. M. marinum is a versatile surrogate for understanding the closely related human pathogen M. tuberculosis, which causes tuberculosis in humans. M. marinum has defined key mechanisms of pathogenesis, both shared with M. tuberculosis and unique to this species. In this review, we discuss the discovery of M. marinum as an occasional human pathogen, the shared aspects of pathogenesis with M. tuberculosis, and how M. marinum has been exploited as a model to define the molecular mechanisms of mycobacterial pathogenesis across several phases of infection.
Collapse
Affiliation(s)
- Aruna R. Menon
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Rebecca J. Prest
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - David M. Tobin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Patricia A. Champion
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
2
|
Wang Z, Sun X, Lin Y, Fu Y, Yi Z. Stealth in non-tuberculous mycobacteria: clever challengers to the immune system. Microbiol Res 2025; 292:128039. [PMID: 39752805 DOI: 10.1016/j.micres.2024.128039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025]
Abstract
Non-tuberculous Mycobacteria (NTM) are found extensively in various environments, yet most are non-pathogenic. Only a limited number of these organisms can cause various infections, including those affecting the lungs, skin, and central nervous system, particularly when the host's autoimmune function is compromised. Among these, Non-tuberculous Mycobacteria Pulmonary Diseases (NTM-PD) are the most prevalent. Currently, there is a lack of effective treatments and preventive measures for NTM infections. This article aims to deepen the comprehension of the pathogenic mechanisms linked to NTM and to formulate new intervention strategies by synthesizing current research and detailing the different tactics used by NTM to avoid elimination by the host's immune response. These intricate mechanisms not only affect the innate immune response but also successfully oppose the adaptive immune response, establishing persistent infections within the host. This includes effects on the functions of macrophages, neutrophils, dendritic cells, and T lymphocytes, as well as modulation of cytokine production. The article particularly emphasizes the survival strategies of NTM within macrophages, such as inhibiting phagosome maturation and acidification, resisting intracellular killing mechanisms, and interfering with autophagy and cell death pathways. This review aims to deepen the understanding of NTM's immune evasion mechanisms, thereby facilitating efforts to inhibit its proliferation and spread within the host, ultimately providing new methods and strategies for NTM-related treatments.
Collapse
Affiliation(s)
- Zhenghao Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Xiurong Sun
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Yuli Lin
- School of Medical Laboratory, Shandong Second Medical University, Weifang 261053, China
| | - Yurong Fu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| | - Zhengjun Yi
- School of Medical Laboratory, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
3
|
Peters RG, Kelly JM, Bibeau S, Zhou Y, Shell SS. Functional Analysis of Promoters, mRNA Cleavage, and mRNA Secondary Structure on esxB-esxA in Mycolicibacterium smegmatis. Pathogens 2024; 13:1041. [PMID: 39770301 PMCID: PMC11728522 DOI: 10.3390/pathogens13121041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
The ESX-1 secretion system is critical for the virulence of Mycobacterium tuberculosis as well as for conjugation in the saprophytic model Mycolicibacterium smegmatis. EsxB (CFP-10) and EsxA (ESAT-6) are secreted effectors required for the function of ESX-1 systems. While some transcription factors regulating the expression of esxB and esxA have been identified, little work has addressed their promoter structures or other determinants of their expression. Here, we defined two promoters, one located two genes upstream of esxB and one located immediately upstream, that contribute substantially to the expression of esxB and esxA. We also defined an mRNA cleavage site within the esxB 5' untranslated region (UTR) and found that a single-nucleotide substitution reprogramed the position of this cleavage event without impacting esxB-esxA transcript abundance. We furthermore investigated the impact of a double stem-loop structure in the esxB 5' UTR and found that it does not confer stability on a reporter gene transcript. Consistent with this, there was no detectable correlation between mRNA half-life and secondary structure near the 5' ends of 5' UTRs on a transcriptome-wide basis. Collectively, these data shed light on the determinants of esxB-esxA expression in M. smegmatis as well as provide broader insight into the determinants of mRNA cleavage in mycobacteria and the relationship between 5' UTR secondary structure and mRNA stability.
Collapse
Affiliation(s)
| | | | | | | | - Scarlet S. Shell
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA; (R.G.P.); (J.M.K.); (S.B.); (Y.Z.)
| |
Collapse
|
4
|
Prest RJ, Korotkov KV, Champion PA. The regulatory functions of ESX-1 substrates, EspE and EspF, are separable from secretion. J Bacteriol 2024; 206:e0027124. [PMID: 39136451 PMCID: PMC11411940 DOI: 10.1128/jb.00271-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 09/07/2024] Open
Abstract
Pathogenic mycobacteria are a significant global health burden. The ESX-1 secretion system is essential for mycobacterial pathogenesis. The secretion of ESX-1 substrates is required for phagosomal lysis, which allows the bacteria to enter the macrophage cytoplasm, induce a Type I IFN response, and spread to new host cells. EspE and EspF are dual-functioning ESX-1 substrates. Inside the mycobacterial cell, they regulate transcription of ESX-1-associated genes. Following secretion, EspE and EspF are essential for lytic activity. The link between EspE/F secretion and regulatory function has not been investigated. We investigated the relationship between EspE and EspF using molecular genetics in Mycobacterium marinum, a non-tuberculous mycobacterial species that serves as an established model for ESX-1 secretion and function in Mycobacterium tuberculosis. Our data support that EspE and EspF, which require each other for secretion, directly interact. The disruption of the predicted protein-protein interaction abrogates hemolytic activity and secretion but does not impact their gene regulatory activities in the mycobacterial cell. In addition, we predict a direct protein-protein interaction between the EsxA/EsxB heterodimer and EspF. Our data support that the EspF/EsxA interaction is also required for hemolytic activity and EspE secretion. Our study sheds light on the intricate molecular mechanisms governing the interactions between ESX-1 substrates, regulatory function, and ESX-1 secretion, moving the field forward.IMPORTANCETuberculosis (TB), caused by Mycobacterium tuberculosis, is a historical and pervasive disease responsible for millions of deaths annually. The rise of antibiotic and treatment-resistant TB, as well as the rise of infection by non-tuberculous mycobacterial species, calls for a better understanding of pathogenic mycobacteria. The ESX-1 secreted substrates, EspE and EspF, are required for mycobacterial virulence and may be responsible for phagosomal lysis. This study focuses on the mechanism of EspE and EspF secretion from the mycobacterial cell.
Collapse
Affiliation(s)
- Rebecca J. Prest
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Konstantin V. Korotkov
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Patricia A. Champion
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
5
|
Yan L, Lai HY, Leung TCN, Cheng HF, Chen X, Tsui SKW, Ngai SM, Au SWN. PE/PPE Proteome and ESX-5 Substrate Spectrum in Mycobacterium marinum. Int J Mol Sci 2024; 25:9550. [PMID: 39273496 PMCID: PMC11395111 DOI: 10.3390/ijms25179550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
PE/PPE proteins secreted by the ESX-5 type VII secretion system constitute a major protein repertoire in pathogenic mycobacteria and are essential for bacterial survival, pathogenicity, and host-pathogen interaction; however, little is known about their expression and secretion. The scarcity of arginine and lysine residues in PE/PPE protein sequences and the high homology of their N-terminal domains limit protein identification using classical trypsin-based proteomic methods. This study used endoproteinase AspN and trypsin to characterize the proteome of Mycobacterium marinum. Twenty-seven PE/PPE proteins were uniquely identified in AspN digests, especially PE_PGRS proteins. These treatments allowed the identification of approximately 50% of the PE/PPE pool encoded in the genome. Moreover, EspG5 pulldown assays retrieved 44 ESX-5-associated PPE proteins, covering 85% of the PPE pool in the identified proteome. The identification of PE/PE_PGRS proteins in the EspG5 interactome suggested the presence of PE-PPE pairs. The correlation analysis between protein abundance and phylogenetic relationships found potential PE/PPE pairs, indicating the presence of multiple PE/PE_PGRS partners in one PPE. We validated that EspG5 interacted with PPE31 and PPE32 and mapped critical residues for complex formation. The modified proteomic platform increases the coverage of PE/PPE proteins and elucidates the expression and localization of these proteins.
Collapse
Affiliation(s)
- Lili Yan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Hiu Ying Lai
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Thomas Chun Ning Leung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Hiu Fu Cheng
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Xin Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Stephen Kwok Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Sai Ming Ngai
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Shannon Wing Ngor Au
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| |
Collapse
|
6
|
Avila‐Cobian LF, De Benedetti S, Hoshino H, Nguyen VT, El‐Araby AM, Sader S, Hu DD, Cole SL, Kim C, Fisher JF, Champion MM, Mobashery S. Lytic transglycosylase Slt of Pseudomonas aeruginosa as a periplasmic hub protein. Protein Sci 2024; 33:e5038. [PMID: 38864725 PMCID: PMC11168074 DOI: 10.1002/pro.5038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 06/13/2024]
Abstract
Peptidoglycan is a major constituent of the bacterial cell wall. Its integrity as a polymeric edifice is critical for bacterial survival and, as such, it is a preeminent target for antibiotics. The peptidoglycan is a dynamic crosslinked polymer that undergoes constant biosynthesis and turnover. The soluble lytic transglycosylase (Slt) of Pseudomonas aeruginosa is a periplasmic enzyme involved in this dynamic turnover. Using amber-codon-suppression methodology in live bacteria, we incorporated a fluorescent chromophore into the structure of Slt. Fluorescent microscopy shows that Slt populates the length of the periplasmic space and concentrates at the sites of septation in daughter cells. This concentration persists after separation of the cells. Amber-codon-suppression methodology was also used to incorporate a photoaffinity amino acid for the capture of partner proteins. Mass-spectrometry-based proteomics identified 12 partners for Slt in vivo. These proteomics experiments were complemented with in vitro pulldown analyses. Twenty additional partners were identified. We cloned the genes and purified to homogeneity 22 identified partners. Biophysical characterization confirmed all as bona fide Slt binders. The identities of the protein partners of Slt span disparate periplasmic protein families, inclusive of several proteins known to be present in the divisome. Notable periplasmic partners (KD < 0.5 μM) include PBPs (PBP1a, KD = 0.07 μM; PBP5 = 0.4 μM); other lytic transglycosylases (SltB2, KD = 0.09 μM; RlpA, KD = 0.4 μM); a type VI secretion system effector (Tse5, KD = 0.3 μM); and a regulatory protease for alginate biosynthesis (AlgO, KD < 0.4 μM). In light of the functional breadth of its interactome, Slt is conceptualized as a hub protein within the periplasm.
Collapse
Affiliation(s)
- Luis F. Avila‐Cobian
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Stefania De Benedetti
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Hidekazu Hoshino
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Van T. Nguyen
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Amr M. El‐Araby
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Safaa Sader
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Daniel D. Hu
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Sara L. Cole
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Choon Kim
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jed F. Fisher
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Matthew M. Champion
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Shahriar Mobashery
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
7
|
Jones BS, Hu DD, Nicholson KR, Cronin RM, Weaver SD, Champion MM, Champion PA. The loss of the PDIM/PGL virulence lipids causes differential secretion of ESX-1 substrates in Mycobacterium marinum. mSphere 2024; 9:e0000524. [PMID: 38661343 PMCID: PMC11237470 DOI: 10.1128/msphere.00005-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
The mycobacterial cell envelope is a major virulence determinant in pathogenic mycobacteria. Specific outer lipids play roles in pathogenesis, modulating the immune system and promoting the secretion of virulence factors. ESX-1 (ESAT-6 system-1) is a conserved protein secretion system required for mycobacterial pathogenesis. Previous studies revealed that mycobacterial strains lacking the outer lipid PDIM have impaired ESX-1 function during laboratory growth and infection. The mechanisms underlying changes in ESX-1 function are unknown. We used a proteo-genetic approach to measure phthiocerol dimycocerosate (PDIM)- and phenolic glycolipid (PGL)-dependent protein secretion in M. marinum, a non-tubercular mycobacterial pathogen that causes tuberculosis-like disease in ectothermic animals. Importantly, M. marinum is a well-established model for mycobacterial pathogenesis. Our findings showed that M. marinum strains without PDIM and PGL showed specific, significant reductions in protein secretion compared to the WT and complemented strains. We recently established a hierarchy for the secretion of ESX-1 substrates in four (I-IV) groups. Loss of PDIM differentially impacted secretion of Group III and IV ESX-1 substrates, which are likely the effectors of pathogenesis. Our data suggest that the altered secretion of specific ESX-1 substrates is responsible for the observed ESX-1-related effects in PDIM-deficient strains.IMPORTANCEMycobacterium tuberculosis, the cause of human tuberculosis, killed an estimated 1.3 million people in 2022. Non-tubercular mycobacterial species cause acute and chronic human infections. Understanding how these bacteria cause disease is critical. Lipids in the cell envelope are essential for mycobacteria to interact with the host and promote disease. Strains lacking outer lipids are attenuated for infection, but the reasons are unclear. Our research aims to identify a mechanism for attenuation of mycobacterial strains without the PDIM and PGL outer lipids in M. marinum. These findings will enhance our understanding of the importance of lipids in pathogenesis and how these lipids contribute to other established virulence mechanisms.
Collapse
Affiliation(s)
- Bradley S. Jones
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Daniel D. Hu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Kathleen R. Nicholson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Rachel M. Cronin
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Simon D. Weaver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Matthew M. Champion
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Patricia A. Champion
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
8
|
Bates TA, Trank-Greene M, Nguyenla X, Anastas A, Gurmessa SK, Merutka IR, Dixon SD, Shumate A, Groncki AR, Parson MAH, Ingram JR, Barklis E, Burke JE, Shinde U, Ploegh HL, Tafesse FG. ESAT-6 undergoes self-association at phagosomal pH and an ESAT-6-specific nanobody restricts M. tuberculosis growth in macrophages. eLife 2024; 12:RP91930. [PMID: 38805257 PMCID: PMC11132683 DOI: 10.7554/elife.91930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) is known to survive within macrophages by compromising the integrity of the phagosomal compartment in which it resides. This activity primarily relies on the ESX-1 secretion system, predominantly involving the protein duo ESAT-6 and CFP-10. CFP-10 likely acts as a chaperone, while ESAT-6 likely disrupts phagosomal membrane stability via a largely unknown mechanism. we employ a series of biochemical analyses, protein modeling techniques, and a novel ESAT-6-specific nanobody to gain insight into the ESAT-6's mode of action. First, we measure the binding kinetics of the tight 1:1 complex formed by ESAT-6 and CFP-10 at neutral pH. Subsequently, we demonstrate a rapid self-association of ESAT-6 into large complexes under acidic conditions, leading to the identification of a stable tetrameric ESAT-6 species. Using molecular dynamics simulations, we pinpoint the most probable interaction interface. Furthermore, we show that cytoplasmic expression of an anti-ESAT-6 nanobody blocks Mtb replication, thereby underlining the pivotal role of ESAT-6 in intracellular survival. Together, these data suggest that ESAT-6 acts by a pH-dependent mechanism to establish two-way communication between the cytoplasm and the Mtb-containing phagosome.
Collapse
Affiliation(s)
- Timothy A Bates
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Mila Trank-Greene
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Xammy Nguyenla
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Aidan Anastas
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Sintayehu K Gurmessa
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Ilaria R Merutka
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Shandee D Dixon
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Anthony Shumate
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science UniversityPortlandUnited States
| | - Abigail R Groncki
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Matthew AH Parson
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
| | - Jessica R Ingram
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical SchoolBostonUnited States
| | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - John E Burke
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
- Department of Biochemistry and Molecular Biology, The University of British ColumbiaVancouverCanada
| | - Ujwal Shinde
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science UniversityPortlandUnited States
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical SchoolBostonUnited States
| | - Fikadu G Tafesse
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| |
Collapse
|
9
|
Nicholson KR, Cronin RM, Prest RJ, Menon AR, Yang Y, Jennisch MK, Champion MM, Tobin DM, Champion PA. The antagonistic transcription factors, EspM and EspN, regulate the ESX-1 secretion system in M. marinum. mBio 2024; 15:e0335723. [PMID: 38445877 PMCID: PMC11005418 DOI: 10.1128/mbio.03357-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/13/2024] [Indexed: 03/07/2024] Open
Abstract
Bacterial pathogens use protein secretion systems to transport virulence factors and regulate gene expression. Among pathogenic mycobacteria, including Mycobacterium tuberculosis and Mycobacterium marinum, the ESAT-6 system 1 (ESX-1) secretion is crucial for host interaction. Secretion of protein substrates by the ESX-1 secretion system disrupts phagosomes, allowing mycobacteria cytoplasmic access during macrophage infections. Deletion or mutation of the ESX-1 system attenuates mycobacterial pathogens. Pathogenic mycobacteria respond to the presence or absence of the ESX-1 system in the cytoplasmic membrane by altering transcription. Under laboratory conditions, the EspM repressor and WhiB6 activator control transcription of specific ESX-1-responsive genes, including the ESX-1 substrate genes. However, deleting the espM or whiB6 gene does not phenocopy the deletion of the ESX-1 substrate genes during macrophage infection by M. marinum. In this study, we identified EspN, a critical transcription factor whose activity is masked by the EspM repressor under laboratory conditions. In the absence of EspM, EspN activates transcription of whiB6 and ESX-1 genes during both laboratory growth and macrophage infection. EspN is also independently required for M. marinum growth within and cytolysis of macrophages, similar to the ESX-1 genes, and for disease burden in a zebrafish larval model of infection. These findings suggest that EspN and EspM coordinate to counterbalance the regulation of the ESX-1 system and support mycobacterial pathogenesis.IMPORTANCEPathogenic mycobacteria, which are responsible for tuberculosis and other long-term diseases, use the ESX-1 system to transport proteins that control the host response to infection and promote bacterial survival. In this study, we identify an undescribed transcription factor that controls the expression of ESX-1 genes and is required for both macrophage and animal infection. However, this transcription factor is not the primary regulator of ESX-1 genes under standard laboratory conditions. These findings identify a critical transcription factor that likely controls expression of a major virulence pathway during infection, but whose effect is not detectable with standard laboratory strains and growth conditions.
Collapse
Affiliation(s)
- Kathleen R. Nicholson
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Rachel M. Cronin
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Rebecca J. Prest
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Aruna R. Menon
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Yuwei Yang
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Madeleine K. Jennisch
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Matthew M. Champion
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - David M. Tobin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Patricia A. Champion
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
10
|
Bates TA, Trank-Greene M, Nguyenla X, Anastas A, Gurmessa SK, Merutka IR, Dixon SD, Shumate A, Groncki AR, Parson MAH, Ingram JR, Barklis E, Burke JE, Shinde U, Ploegh HL, Tafesse FG. ESAT-6 undergoes self-association at phagosomal pH and an ESAT-6 specific nanobody restricts M. tuberculosis growth in macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.16.553641. [PMID: 37645775 PMCID: PMC10462100 DOI: 10.1101/2023.08.16.553641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is known to survive within macrophages by compromising the integrity of the phagosomal compartment in which it resides. This activity primarily relies on the ESX-1 secretion system, predominantly involving the protein duo ESAT-6 and CFP-10. CFP-10 likely acts as a chaperone, while ESAT-6 likely disrupts phagosomal membrane stability via a largely unknown mechanism. we employ a series of biochemical analyses, protein modeling techniques, and a novel ESAT-6-specific nanobody to gain insight into the ESAT-6's mode of action. First, we measure the binding kinetics of the tight 1:1 complex formed by ESAT-6 and CFP-10 at neutral pH. Subsequently, we demonstrate a rapid self-association of ESAT-6 into large complexes under acidic conditions, leading to the identification of a stable tetrameric ESAT-6 species. Using molecular dynamics simulations, we pinpoint the most probable interaction interface. Furthermore, we show that cytoplasmic expression of an anti-ESAT-6 nanobody blocks Mtb replication, thereby underlining the pivotal role of ESAT-6 in intracellular survival. Together, these data suggest that ESAT-6 acts by a pH dependent mechanism to establish two-way communication between the cytoplasm and the Mtb-containing phagosome.
Collapse
Affiliation(s)
- Timothy A Bates
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Mila Trank-Greene
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Xammy Nguyenla
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Aidan Anastas
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Sintayehu K Gurmessa
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Ilaria R Merutka
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Shandee D Dixon
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Anthony Shumate
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Abigail R Groncki
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Matthew AH Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Jessica R Ingram
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, Canada
| | - Ujwal Shinde
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Fikadu G Tafesse
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| |
Collapse
|
11
|
Serene LG, Webber K, Champion PA, Schorey JS. Mycobacterium tuberculosis SecA2-dependent activation of host Rig-I/MAVs signaling is not conserved in Mycobacterium marinum. PLoS One 2024; 19:e0281564. [PMID: 38394154 PMCID: PMC10889897 DOI: 10.1371/journal.pone.0281564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 11/02/2023] [Indexed: 02/25/2024] Open
Abstract
Retinoic acid inducible gene I (Rig-I) is a cytosolic pattern recognition receptor canonically described for its important role in sensing viral RNAs. Increasingly, bacterially-derived RNA from intracellular bacteria such as Mycobacterium tuberculosis, have been shown to activate the same host Rig-I/Mitochondrial antiviral sensing protein (MAVS) signaling pathway to drive a type-I interferon response that contributes to bacterial pathogenesis in vivo. In M. tuberculosis, this response is mediated by the protein secretion system SecA2, but little is known about whether this process is conserved in other pathogenic mycobacteria or the mechanism by which these nucleic acids gain access to the host cytoplasm. Because the M. tuberculosis and M. marinum SecA2 protein secretion systems share a high degree of genetic and functional conservation, we hypothesized that Rig-I/MAVS activation and subsequent induction of IFN-β secretion by host macrophages will also be conserved between these two mycobacterial species. To test this, we generated a ΔsecA2 M. marinum strain along with complementation strains expressing either the M. marinum or M. tuberculosis secA2 genes. Our results suggest that the ΔsecA2 strain has a growth defect in vitro but not in host macrophages. These intracellular growth curves also suggested that the calculation applied to estimate the number of bacteria added to macrophage monolayers in infection assays underestimates bacterial inputs for the ΔsecA2 strain. Therefore, to better examine secreted IFN-β levels when bacterial infection levels are equal across strains we plated bacterial CFUs at 2hpi alongside our ELISA based infections. This enabled us to normalize secreted levels of IFN-β to a standard number of bacteria. Applying this approach to both WT and MAVS-/- bone marrow derived macrophages we observed equal or higher levels of secreted IFN-β from macrophages infected with the ΔsecA2 M. marinum strain as compared to WT. Together our findings suggest that activation of host Rig-I/MAVS cytosolic sensors and subsequent induction of IFN-β response in a SecA2-dependent manner is not conserved in M. marinum under the conditions tested.
Collapse
Affiliation(s)
- Lindsay G. Serene
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States of America
| | - Kylie Webber
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States of America
| | - Patricia A. Champion
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States of America
| | - Jeffrey S. Schorey
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States of America
| |
Collapse
|
12
|
Collars OA, Jones BS, Hu DD, Weaver SD, Sherman TA, Champion MM, Champion PA. An N-acetyltransferase required for ESAT-6 N-terminal acetylation and virulence in Mycobacterium marinum. mBio 2023; 14:e0098723. [PMID: 37772840 PMCID: PMC10653941 DOI: 10.1128/mbio.00987-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/09/2023] [Indexed: 09/30/2023] Open
Abstract
IMPORTANCE N-terminal acetylation is a protein modification that broadly impacts basic cellular function and disease in higher organisms. Although bacterial proteins are N-terminally acetylated, little is understood how N-terminal acetylation impacts bacterial physiology and pathogenesis. Mycobacterial pathogens cause acute and chronic disease in humans and in animals. Approximately 15% of mycobacterial proteins are N-terminally acetylated, but the responsible enzymes are largely unknown. We identified a conserved mycobacterial protein required for the N-terminal acetylation of 23 mycobacterial proteins including the EsxA virulence factor. Loss of this enzyme from M. marinum reduced macrophage killing and spread of M. marinum to new host cells. Defining the acetyltransferases responsible for the N-terminal protein acetylation of essential virulence factors could lead to new targets for therapeutics against mycobacteria.
Collapse
Affiliation(s)
- Owen A. Collars
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Note Dame, Notre Dame, Indiana, USA
| | - Bradley S. Jones
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Note Dame, Notre Dame, Indiana, USA
| | - Daniel D. Hu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Simon D. Weaver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Taylor A. Sherman
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Matthew M. Champion
- Eck Institute for Global Health, University of Note Dame, Notre Dame, Indiana, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Patricia A. Champion
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Note Dame, Notre Dame, Indiana, USA
| |
Collapse
|
13
|
The EspN transcription factor is an infection-dependent regulator of the ESX-1 system in M. marinum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528779. [PMID: 36824794 PMCID: PMC9948972 DOI: 10.1101/2023.02.15.528779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Bacterial pathogens use protein secretion systems to translocate virulence factors into the host and to control bacterial gene expression. The ESX-1 (ESAT-6 system 1) secretion system facilitates disruption of the macrophage phagosome during infection, enabling access to the cytoplasm, and regulates widespread gene expression in the mycobacterial cell. The transcription factors contributing to the ESX-1 transcriptional network during mycobacterial infection are not known. We showed that the EspM and WhiB6 transcription factors regulate the ESX-1 transcriptional network in vitro but are dispensable for macrophage infection by Mycobacterium marinum . In this study, we used our understanding of the ESX-1 system to identify EspN, a critical transcription factor that controls expression of the ESX-1 genes during infection, but whose effect is not detectable under standard laboratory growth conditions. Under laboratory conditions, EspN activity is masked by the EspM repressor. In the absence of EspM, we found that EspN is required for ESX-1 function because it activates expression of the whiB6 transcription factor gene, and specific ESX-1 substrate and secretory component genes. Unlike the other transcription factors that regulate ESX-1, EspN is required for M. marinum growth within and cytolysis of macrophages, and for disease burden in a zebrafish larval model of infection. These findings demonstrate that EspN is an infection-dependent regulator of the ESX-1 transcriptional network, which is essential for mycobacterial pathogenesis. Moreover, our findings suggest that ESX-1 expression is controlled by a genetic switch that responds to host specific signals. Importance Pathogenic mycobacteria cause acute and long-term diseases, including human tuberculosis. The ESX-1 system transports proteins that control the host response to infection and promotes bacterial survival. Although ESX-1 transports proteins, it also controls gene expression in the bacteria. In this study, we identify an undescribed transcription factor that controls the expression of ESX-1 genes, and is required for both macrophage and animal infection. However, this transcription factor is not the primary regulator of ESX-1 genes under standard laboratory conditions. These findings identify a critical transcription factor that controls expression of a major virulence pathway during infection, but whose effect is not detectable with standard laboratory strains and growth conditions.
Collapse
|
14
|
Sanchez KG, Prest RJ, Nicholson KR, Korotkov KV, Champion PA. Functional Analysis of EspM, an ESX-1-Associated Transcription Factor in Mycobacterium marinum. J Bacteriol 2022; 204:e0023322. [PMID: 36448785 PMCID: PMC9765225 DOI: 10.1128/jb.00233-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/01/2022] [Indexed: 12/03/2022] Open
Abstract
Pathogenic mycobacteria use the ESX-1 secretion system to escape the macrophage phagosome and survive infection. We demonstrated that the ESX-1 system is regulated by feedback control in Mycobacterium marinum, a nontuberculous pathogen and model for the human pathogen Mycobacterium tuberculosis. In the presence of a functional ESX-1 system, the WhiB6 transcription factor upregulates expression of ESX-1 substrate genes. In the absence of an assembled ESX-1 system, the conserved transcription factor, EspM, represses whiB6 expression by specifically binding the whiB6 promoter. Together, WhiB6 and EspM fine-tune the levels of ESX-1 substrates in response to the secretion system. The mechanisms underlying control of the ESX-1 system by EspM are unknown. Here, we conduct a structure and function analysis to investigate how EspM is regulated. Using biochemical approaches, we measured the formation of higher-order oligomers of EspM in vitro. We demonstrate that multimerization in vitro can be mediated through multiple domains of the EspM protein. Using a bacterial monohybrid system, we showed that EspM self-associates through multiple domains in Escherichia coli. Using this system, we performed a genetic screen to identify EspM variants that failed to self-associate. The screen yielded four EspM variants of interest, which we tested for activity in M. marinum. Our study revealed that the two helix-turn-helix domains are functionally distinct. Moreover, the helix bundle domain is required for wild-type multimerization in vitro. Our data support models where EspM monomers or hexamers contribute to the regulation of whiB6 expression. IMPORTANCE Pathogenic mycobacteria are bacteria that pose a large burden to human health globally. The ESX-1 secretion system is required for pathogenic mycobacteria to survive within and interact with the host. Proper function of the ESX-1 secretion system is achieved by tightly controlling the expression of secreted virulence factors, in part through transcriptional regulation. Here, we characterize the conserved transcription factor EspM, which regulates the expression of ESX-1 virulence factors. We define domains required for EspM to form multimers and bind DNA. These findings provide an initial characterization an ESX-1 transcription factor and provide insights into its mechanism of action.
Collapse
Affiliation(s)
- Kevin G. Sanchez
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Rebecca J. Prest
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Kathleen R. Nicholson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Konstantin V. Korotkov
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Patricia A. Champion
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
15
|
In vitro studies of the protein-interaction network of cell-wall lytic transglycosylase RlpA of Pseudomonas aeruginosa. Commun Biol 2022; 5:1314. [PMID: 36451021 PMCID: PMC9712689 DOI: 10.1038/s42003-022-04230-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
The protein networks of cell-wall-biosynthesis assemblies are largely unknown. A key class of enzymes in these assemblies is the lytic transglycosylases (LTs), of which eleven exist in P. aeruginosa. We have undertaken a pulldown strategy in conjunction with mass-spectrometry-based proteomics to identify the putative binding partners for the eleven LTs of P. aeruginosa. A total of 71 putative binding partners were identified for the eleven LTs. A systematic assessment of the binding partners of the rare lipoprotein A (RlpA), one of the pseudomonal LTs, was made. This 37-kDa lipoprotein is involved in bacterial daughter-cell separation by an unknown process. RlpA participates in both the multi-protein and multi-enzyme divisome and elongasome assemblies. We reveal an extensive protein-interaction network for RlpA involving at least 19 proteins. Their kinetic parameters for interaction with RlpA were assessed by microscale thermophoresis, surface-plasmon resonance, and isothermal-titration calorimetry. Notable RlpA binding partners include PBP1b, PBP4, and SltB1. Elucidation of the protein-interaction networks for each of the LTs, and specifically for RlpA, opens opportunities for the study of their roles in the complex protein assemblies intimately involved with the cell wall as a structural edifice critical for bacterial survival.
Collapse
|
16
|
Nicholson KR, Champion PA. Bacterial secretion systems: Networks of pathogenic regulation and adaptation in mycobacteria and beyond. PLoS Pathog 2022; 18:e1010610. [PMID: 35834482 PMCID: PMC9282442 DOI: 10.1371/journal.ppat.1010610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Kathleen R. Nicholson
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Patricia A. Champion
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
17
|
Cronin RM, Ferrell MJ, Cahir CW, Champion MM, Champion PA. Proteo-genetic analysis reveals clear hierarchy of ESX-1 secretion in Mycobacterium marinum. Proc Natl Acad Sci U S A 2022; 119:e2123100119. [PMID: 35671426 PMCID: PMC9214503 DOI: 10.1073/pnas.2123100119] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/06/2022] [Indexed: 12/14/2022] Open
Abstract
The ESX-1 (ESAT-6-system-1) system and the protein substrates it transports are essential for mycobacterial pathogenesis. The precise ways that ESX-1 substrates contribute to virulence remains unknown. Several known ESX-1 substrates are also required for the secretion of other proteins. We used a proteo-genetic approach to construct high-resolution dependency relationships for the roles of individual ESX-1 substrates in secretion and virulence in Mycobacterium marinum, a pathogen of humans and animals. Characterizing a collection of M. marinum strains with in-frame deletions in each of the known ESX-1 substrate genes and the corresponding complementation strains, we demonstrate that ESX-1 substrates are differentially required for ESX-1 activity and for virulence. Using isobaric-tagged proteomics, we quantified the degree of requirement of each substrate on protein secretion. We conclusively defined distinct contributions of ESX-1 substrates in protein secretion. Our data reveal a hierarchy of ESX-1 substrate secretion, which supports a model for the composition of the extracytoplasmic ESX-1 secretory machinery. Overall, our proteo-genetic analysis demonstrates discrete roles for ESX-1 substrates in ESX-1 function and secretion in M. marinum.
Collapse
Affiliation(s)
- Rachel M. Cronin
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| | - Micah J. Ferrell
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| | - Clare W. Cahir
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| | - Matthew M. Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Patricia A. Champion
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
18
|
Andersen MJ, Fong C, La Bella AA, Molina JJ, Molesan A, Champion MM, Howell C, Flores-Mireles AL. Inhibiting host-protein deposition on urinary catheters reduces associated urinary tract infections. eLife 2022; 11:e75798. [PMID: 35348114 PMCID: PMC8986317 DOI: 10.7554/elife.75798] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Microbial adhesion to medical devices is common for hospital-acquired infections, particularly for urinary catheters. If not properly treated these infections cause complications and exacerbate antimicrobial resistance. Catheter use elicits bladder inflammation, releasing host serum proteins, including fibrinogen (Fg), into the bladder, which deposit on the urinary catheter. Enterococcus faecalis uses Fg as a scaffold to bind and persist in the bladder despite antibiotic treatments. Inhibition of Fg-pathogen interaction significantly reduces infection. Here, we show deposited Fg is advantageous for uropathogens E. faecalis, Escherichia coli, Pseudomonas aeruginosa, K. pneumoniae, A. baumannii, and C. albicans, suggesting that targeting catheter protein deposition may reduce colonization creating an effective intervention for catheter-associated urinary tract infections (CAUTIs). In a mouse model of CAUTI, host-protein deposition was reduced, using liquid-infused silicone catheters, resulting in decreased colonization on catheters, in bladders, and dissemination in vivo. Furthermore, proteomics revealed a significant decrease in deposition of host-secreted proteins on liquid-infused catheter surfaces. Our findings suggest targeting microbial-binding scaffolds may be an effective antibiotic-sparing intervention for use against CAUTIs and other medical device infections.
Collapse
Affiliation(s)
- Marissa Jeme Andersen
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, United States
| | - ChunKi Fong
- Department of Chemical and Biomedical Engineering, College of Engineering, University of Maine, Orono, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States
| | - Alyssa Ann La Bella
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, United States
| | - Jonathan Jesus Molina
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, United States
| | - Alex Molesan
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, United States
| | - Matthew M Champion
- Department of Chemistry and Biochemistry, College of Science, University of Notre Dame, Notre Dame, United States
| | - Caitlin Howell
- Department of Chemical and Biomedical Engineering, College of Engineering, University of Maine, Orono, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States
| | - Ana L Flores-Mireles
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, United States
| |
Collapse
|
19
|
Yang F, Xu L, Liang L, Liang W, Li J, Lin D, Dai M, Zhou D, Li Y, Chen Y, Zhao H, Tian GB, Feng S. The Involvement of Mycobacterium Type III-A CRISPR-Cas System in Oxidative Stress. Front Microbiol 2021; 12:774492. [PMID: 34956138 PMCID: PMC8696179 DOI: 10.3389/fmicb.2021.774492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Type I and type II CRISPR-Cas systems are employed to evade host immunity by targeting interference of bacteria’s own genes. Although Mycobacterium tuberculosis (M. tuberculosis), the causative agent of tuberculosis, possesses integrated type III-A CRISPR-Cas system, its role in mycobacteria remains obscure. Here, we observed that seven cas genes (csm2∼5, cas10, cas6) were upregulated in Mycobacterium bovis BCG under oxidative stress treatment, indicating the role of type III-A CRISPR-Cas system in oxidative stress. To explore the functional role of type III-A CRISPR-Cas system, TCC (Type III-A CRISPR-Cas system, including cas6, cas10, and csm2-6) mutant was generated. Deletion of TCC results in increased sensitivity in response to hydrogen peroxide and reduced cell envelope integrity. Analysis of RNA-seq dataset revealed that TCC impacted on the oxidation-reduction process and the composition of cell wall which is essential for mycobacterial envelop integrity. Moreover, disrupting TCC led to poor intracellular survival in vivo and in vitro. Finally, we showed for the first time that TCC contributed to the regulation of regulatory T cell population, supporting a role of TCC in modulating host immunity. Our finding reveals the important role of TCC in cell envelop homeostasis. Our work also highlights type III-A CRISPR-Cas system as an important factor for intracellular survival and host immunoregulation in mycobacteria, thus may be a potential target for therapy.
Collapse
Affiliation(s)
- Fan Yang
- Department of Microbiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Lingqing Xu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Lujie Liang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Wanfei Liang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jiachen Li
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Daixi Lin
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Min Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Dianrong Zhou
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Yaxin Li
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Yong Chen
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Hui Zhao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Guo-Bao Tian
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Siyuan Feng
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| |
Collapse
|
20
|
Rivera-Calzada A, Famelis N, Llorca O, Geibel S. Type VII secretion systems: structure, functions and transport models. Nat Rev Microbiol 2021; 19:567-584. [PMID: 34040228 DOI: 10.1038/s41579-021-00560-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
Type VII secretion systems (T7SSs) have a key role in the secretion of effector proteins in non-pathogenic mycobacteria and pathogenic mycobacteria such as Mycobacterium tuberculosis, the main causative agent of tuberculosis. Tuberculosis-causing mycobacteria, still accounting for 1.4 million deaths annually, rely on paralogous T7SSs to survive in the host and efficiently evade its immune response. Although it is still unknown how effector proteins of T7SSs cross the outer membrane of the diderm mycobacterial cell envelope, recent advances in the structural characterization of these secretion systems have revealed the intricate network of interactions of conserved components in the plasma membrane. This structural information, added to recent advances in the molecular biology and regulation of mycobacterial T7SSs as well as progress in our understanding of their secreted effector proteins, is shedding light on the inner working of the T7SS machinery. In this Review, we highlight the implications of these studies and the derived transport models, which provide new scenarios for targeting the deathly human pathogen M. tuberculosis.
Collapse
Affiliation(s)
- Angel Rivera-Calzada
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| | - Nikolaos Famelis
- Institute for Molecular Infection Biology, Julius-Maximilian University of Würzburg, Würzburg, Germany.,Rudolf Virchow Center for Integrative and Translational Biomedicine, Julius-Maximilian University of Würzburg, Würzburg, Germany
| | - Oscar Llorca
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sebastian Geibel
- Institute for Molecular Infection Biology, Julius-Maximilian University of Würzburg, Würzburg, Germany. .,Rudolf Virchow Center for Integrative and Translational Biomedicine, Julius-Maximilian University of Würzburg, Würzburg, Germany.
| |
Collapse
|
21
|
Lagune M, Petit C, Sotomayor FV, Johansen MD, Beckham KSH, Ritter C, Girard-Misguich F, Wilmanns M, Kremer L, Maurer FP, Herrmann JL. Conserved and specialized functions of Type VII secretion systems in non-tuberculous mycobacteria. MICROBIOLOGY-SGM 2021; 167. [PMID: 34224347 DOI: 10.1099/mic.0.001054] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Non-tuberculous mycobacteria (NTM) are a large group of micro-organisms comprising more than 200 individual species. Most NTM are saprophytic organisms and are found mainly in terrestrial and aquatic environments. In recent years, NTM have been increasingly associated with infections in both immunocompetent and immunocompromised individuals, prompting significant efforts to understand the diverse pathogenic and signalling traits of these emerging pathogens. Since the discovery of Type VII secretion systems (T7SS), there have been significant developments regarding the role of these complex systems in mycobacteria. These specialised systems, also known as Early Antigenic Secretion (ESX) systems, are employed to secrete proteins across the inner membrane. They also play an essential role in virulence, nutrient uptake and conjugation. Our understanding of T7SS in mycobacteria has significantly benefited over the last few years, from the resolution of ESX-3 structure in Mycobacterium smegmatis, to ESX-5 structures in Mycobacterium xenopi and Mycobacterium tuberculosis. In addition, ESX-4, considered until recently as a non-functional system in both pathogenic and non-pathogenic mycobacteria, has been proposed to play an important role in the virulence of Mycobacterium abscessus; an increasingly recognized opportunistic NTM causing severe lung diseases. These major findings have led to important new insights into the functional mechanisms of these biological systems, their implication in virulence, nutrient acquisitions and cell wall shaping, and will be discussed in this review.
Collapse
Affiliation(s)
- Marion Lagune
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, 78180, Montigny-Le-Bretonneux, France
| | - Cecile Petit
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany
| | - Flor Vásquez Sotomayor
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Matt D Johansen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293, Montpellier, France.,Present address: Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, NSW, Australia
| | - Kathrine S H Beckham
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany
| | - Christina Ritter
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany
| | - Fabienne Girard-Misguich
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, 78180, Montigny-Le-Bretonneux, France
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany.,University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293, Montpellier, France.,INSERM, IRIM, 34293 Montpellier, France
| | - Florian P Maurer
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.,Institute of Medical Microbiology, Virology and Hospital Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, 78180, Montigny-Le-Bretonneux, France.,APHP, GHU Paris-Saclay, Hôpital Raymond Poincaré, Service de Microbiologie, Garches, France
| |
Collapse
|
22
|
Nicholson KR, Mousseau CB, Champion MM, Champion PA. The genetic proteome: Using genetics to inform the proteome of mycobacterial pathogens. PLoS Pathog 2021; 17:e1009124. [PMID: 33411813 PMCID: PMC7790235 DOI: 10.1371/journal.ppat.1009124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mycobacterial pathogens pose a sustained threat to human health. There is a critical need for new diagnostics, therapeutics, and vaccines targeting both tuberculous and nontuberculous mycobacterial species. Understanding the basic mechanisms used by diverse mycobacterial species to cause disease will facilitate efforts to design new approaches toward detection, treatment, and prevention of mycobacterial disease. Molecular, genetic, and biochemical approaches have been widely employed to define fundamental aspects of mycobacterial physiology and virulence. The recent expansion of genetic tools in mycobacteria has further increased the accessibility of forward genetic approaches. Proteomics has also emerged as a powerful approach to further our understanding of diverse mycobacterial species. Detection of large numbers of proteins and their modifications from complex mixtures of mycobacterial proteins is now routine, with efforts of quantification of these datasets becoming more robust. In this review, we discuss the “genetic proteome,” how the power of genetics, molecular biology, and biochemistry informs and amplifies the quality of subsequent analytical approaches and maximizes the potential of hypothesis-driven mycobacterial research. Published proteomics datasets can be used for hypothesis generation and effective post hoc supplementation to experimental data. Overall, we highlight how the integration of proteomics, genetic, molecular, and biochemical approaches can be employed successfully to define fundamental aspects of mycobacterial pathobiology.
Collapse
Affiliation(s)
- Kathleen R. Nicholson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - C. Bruce Mousseau
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Matthew M. Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
- Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame Indiana, United States of America
- * E-mail: (MMC); (PAC)
| | - Patricia A. Champion
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame Indiana, United States of America
- * E-mail: (MMC); (PAC)
| |
Collapse
|
23
|
Modeling Tubercular ESX-1 Secretion Using Mycobacterium marinum. Microbiol Mol Biol Rev 2020; 84:84/4/e00082-19. [DOI: 10.1128/mmbr.00082-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pathogenic mycobacteria cause chronic and acute diseases ranging from human tuberculosis (TB) to nontubercular infections.
Mycobacterium tuberculosis
causes both acute and chronic human tuberculosis. Environmentally acquired nontubercular mycobacteria (NTM) cause chronic disease in humans and animals. Not surprisingly, NTM and
M. tuberculosis
often use shared molecular mechanisms to survive within the host. The ESX-1 system is a specialized secretion system that is essential for virulence and is functionally conserved between
M. tuberculosis
and
Mycobacterium marinum
.
Collapse
|
24
|
Conserved ESX-1 Substrates EspE and EspF Are Virulence Factors That Regulate Gene Expression. Infect Immun 2020; 88:IAI.00289-20. [PMID: 32900815 DOI: 10.1128/iai.00289-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis, the cause of human tuberculosis, and Mycobacterium marinum, a nontubercular pathogen with a broad host range, require the ESX-1 secretion system for virulence. The ESX-1 system secretes proteins which cause phagosomal lysis within the macrophage via an unknown mechanism. As reported elsewhere (R. E. Bosserman et al., Proc Natl Acad Sci U S A 114:E10772-E10781, 2017, https://doi.org/10.1073/pnas.1710167114), we recently discovered that the ESX-1 system regulates gene expression in M. marinum This finding was confirmed in M. tuberculosis in reports by C. Sala et al. (PLoS Pathog 14:e1007491, 2018, https://doi.org/10.1371/journal.ppat.1007491) and A. M. Abdallah et al. (PLoS One 14:e0211003, 2019, https://doi.org/10.1371/journal.pone.0211003). We further demonstrated that a feedback control mechanism connects protein secretion to WhiB6-dependent expression of the esx-1 genes via an unknown mechanism. Here, we connect protein secretion and gene expression by showing for the first time that specific ESX-1 substrates have dual functions inside and outside the mycobacterial cell. We demonstrate that the EspE and EspF substrates negatively control esx-1 gene expression in the M. marinum cytoplasm through the conserved WhiB6 transcription factor. We found that EspE and EspF are required for virulence and promote lytic activity independently of the major EsxA and EsxB substrates. We show that the dual functions of EspE and EspF are conserved in the orthologous proteins from M. tuberculosis Our findings support a role for EspE and EspF in virulence that is independent of the EsxA and EsxB substrates and demonstrate that ESX-1 substrates have a conserved role in regulating gene expression.
Collapse
|
25
|
Roy S, Ghatak D, Das P, BoseDasgupta S. ESX secretion system: The gatekeepers of mycobacterial survivability and pathogenesis. Eur J Microbiol Immunol (Bp) 2020; 10:202-209. [PMID: 33174865 PMCID: PMC7753977 DOI: 10.1556/1886.2020.00028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/25/2020] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium tuberculosis, the causative agent of Tuberculosis has plagued humankind for ages and has surfaced stronger than ever with the advent of drug resistance. Mycobacteria are adept at evading the host immune system and establishing infection by engaging host factors and secreting several virulence factors. Hence these secretion systems play a key role in mycobacterial pathogenesis. The type VII secretion system or ESX (early secretory antigenic target (ESAT6) secretion) system is one such crucial system that comprises five different pathways having distinct roles in mycobacterial proliferation, pathogenesis, cytosolic escape within macrophages, regulation of macrophage apoptosis, metal ion homeostasis, etc. ESX 1–5 systems are implicated in the secretion of a plethora of proteins, of which only a few are functionally characterized. Here we summarize the current knowledge of ESX secretion systems of mycobacteria with a special focus on ESX-1 and ESX-5 systems that subvert macrophage defenses and help mycobacteria to establish their niche within the macrophage.
Collapse
Affiliation(s)
- Sadhana Roy
- Department of Biotechnology, Molecular Immunology and Cellular Microbiology Laboratory, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Debika Ghatak
- Department of Biotechnology, Molecular Immunology and Cellular Microbiology Laboratory, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Payel Das
- Department of Biotechnology, Molecular Immunology and Cellular Microbiology Laboratory, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Somdeb BoseDasgupta
- Department of Biotechnology, Molecular Immunology and Cellular Microbiology Laboratory, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|