1
|
Aseev LV, Koledinskaya LS, Boni IV. Extraribosomal Functions of Bacterial Ribosomal Proteins-An Update, 2023. Int J Mol Sci 2024; 25:2957. [PMID: 38474204 DOI: 10.3390/ijms25052957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Ribosomal proteins (r-proteins) are abundant, highly conserved, and multifaceted cellular proteins in all domains of life. Most r-proteins have RNA-binding properties and can form protein-protein contacts. Bacterial r-proteins govern the co-transcriptional rRNA folding during ribosome assembly and participate in the formation of the ribosome functional sites, such as the mRNA-binding site, tRNA-binding sites, the peptidyl transferase center, and the protein exit tunnel. In addition to their primary role in a cell as integral components of the protein synthesis machinery, many r-proteins can function beyond the ribosome (the phenomenon known as moonlighting), acting either as individual regulatory proteins or in complexes with various cellular components. The extraribosomal activities of r-proteins have been studied over the decades. In the past decade, our understanding of r-protein functions has advanced significantly due to intensive studies on ribosomes and gene expression mechanisms not only in model bacteria like Escherichia coli or Bacillus subtilis but also in little-explored bacterial species from various phyla. The aim of this review is to update information on the multiple functions of r-proteins in bacteria.
Collapse
Affiliation(s)
- Leonid V Aseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | | | - Irina V Boni
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| |
Collapse
|
2
|
Morgan CE, Kang YS, Green AB, Smith KP, Dowgiallo MG, Miller BC, Chiaraviglio L, Truelson KA, Zulauf KE, Rodriguez S, Kang AD, Manetsch R, Yu EW, Kirby JE. Streptothricin F is a bactericidal antibiotic effective against highly drug-resistant gram-negative bacteria that interacts with the 30S subunit of the 70S ribosome. PLoS Biol 2023; 21:e3002091. [PMID: 37192172 DOI: 10.1371/journal.pbio.3002091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 03/22/2023] [Indexed: 05/18/2023] Open
Abstract
The streptothricin natural product mixture (also known as nourseothricin) was discovered in the early 1940s, generating intense initial interest because of excellent gram-negative activity. Here, we establish the activity spectrum of nourseothricin and its main components, streptothricin F (S-F, 1 lysine) and streptothricin D (S-D, 3 lysines), purified to homogeneity, against highly drug-resistant, carbapenem-resistant Enterobacterales (CRE) and Acinetobacter baumannii. For CRE, the MIC50 and MIC90 for S-F and S-D were 2 and 4 μM, and 0.25 and 0.5 μM, respectively. S-F and nourseothricin showed rapid, bactericidal activity. S-F and S-D both showed approximately 40-fold greater selectivity for prokaryotic than eukaryotic ribosomes in in vitro translation assays. In vivo, delayed renal toxicity occurred at >10-fold higher doses of S-F compared with S-D. Substantial treatment effect of S-F in the murine thigh model was observed against the otherwise pandrug-resistant, NDM-1-expressing Klebsiella pneumoniae Nevada strain with minimal or no toxicity. Cryo-EM characterization of S-F bound to the A. baumannii 70S ribosome defines extensive hydrogen bonding of the S-F steptolidine moiety, as a guanine mimetic, to the 16S rRNA C1054 nucleobase (Escherichia coli numbering) in helix 34, and the carbamoylated gulosamine moiety of S-F with A1196, explaining the high-level resistance conferred by corresponding mutations at the residues identified in single rrn operon E. coli. Structural analysis suggests that S-F probes the A-decoding site, which potentially may account for its miscoding activity. Based on unique and promising activity, we suggest that the streptothricin scaffold deserves further preclinical exploration as a potential therapeutic for drug-resistant, gram-negative pathogens.
Collapse
Affiliation(s)
- Christopher E Morgan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Yoon-Suk Kang
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alex B Green
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Kenneth P Smith
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Matthew G Dowgiallo
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Brandon C Miller
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Lucius Chiaraviglio
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Katherine A Truelson
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Katelyn E Zulauf
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shade Rodriguez
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Anthony D Kang
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Roman Manetsch
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States of America
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts, United States of America
| | - Edward W Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - James E Kirby
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
3
|
Hassan A, Byju S, Freitas F, Roc C, Pender N, Nguyen K, Kimbrough E, Mattingly J, Gonzalez Jr. R, de Oliveira R, Dunham C, Whitford P. Ratchet, swivel, tilt and roll: a complete description of subunit rotation in the ribosome. Nucleic Acids Res 2023; 51:919-934. [PMID: 36583339 PMCID: PMC9881166 DOI: 10.1093/nar/gkac1211] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/31/2022] Open
Abstract
Protein synthesis by the ribosome requires large-scale rearrangements of the 'small' subunit (SSU; ∼1 MDa), including inter- and intra-subunit rotational motions. However, with nearly 2000 structures of ribosomes and ribosomal subunits now publicly available, it is exceedingly difficult to design experiments based on analysis of all known rotation states. To overcome this, we developed an approach where the orientation of each SSU head and body is described in terms of three angular coordinates (rotation, tilt and tilt direction) and a single translation. By considering the entire RCSB PDB database, we describe 1208 fully-assembled ribosome complexes and 334 isolated small subunits, which span >50 species. This reveals aspects of subunit rearrangements that are universal, and others that are organism/domain-specific. For example, we show that tilt-like rearrangements of the SSU body (i.e. 'rolling') are pervasive in both prokaryotic and eukaryotic (cytosolic and mitochondrial) ribosomes. As another example, domain orientations associated with frameshifting in bacteria are similar to those found in eukaryotic ribosomes. Together, this study establishes a common foundation with which structural, simulation, single-molecule and biochemical efforts can more precisely interrogate the dynamics of this prototypical molecular machine.
Collapse
Affiliation(s)
- Asem Hassan
- Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Ave, Boston, MA 02115, USA
- Center for Theoretical Biological Physics, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Sandra Byju
- Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Ave, Boston, MA 02115, USA
- Center for Theoretical Biological Physics, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Frederico Campos Freitas
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG 38064-200, Brazil
| | - Claude Roc
- Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Ave, Boston, MA 02115, USA
| | - Nisaa Pender
- Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Ave, Boston, MA 02115, USA
| | - Kien Nguyen
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Evelyn M Kimbrough
- Department of Biochemistry, Emory University, Rollins Research Center 4027, 1510 Clifton Rd NE, Atlanta, GA 30322, USA
- Department of Chemistry, Emory University, 1515 Dickey Dr, Atlanta, GA 30322, USA
| | - Jacob M Mattingly
- Department of Biochemistry, Emory University, Rollins Research Center 4027, 1510 Clifton Rd NE, Atlanta, GA 30322, USA
| | | | - Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG 38064-200, Brazil
| | - Christine M Dunham
- Department of Biochemistry, Emory University, Rollins Research Center 4027, 1510 Clifton Rd NE, Atlanta, GA 30322, USA
| | - Paul C Whitford
- Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Ave, Boston, MA 02115, USA
- Center for Theoretical Biological Physics, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| |
Collapse
|
4
|
Cooper HB, Krause KL, Gardner PP. Finding priority bacterial ribosomes for future structural and antimicrobial research based upon global RNA and protein sequence analysis. PeerJ 2023; 11:e14969. [PMID: 36974140 PMCID: PMC10039652 DOI: 10.7717/peerj.14969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/07/2023] [Indexed: 03/29/2023] Open
Abstract
Ribosome-targeting antibiotics comprise over half of antibiotics used in medicine, but our fundamental knowledge of their binding sites is derived primarily from ribosome structures of non-pathogenic species. These include Thermus thermophilus, Deinococcus radiodurans and the archaean Haloarcula marismortui, as well as the commensal and sometimes pathogenic organism, Escherichia coli. Advancements in electron cryomicroscopy have allowed for the determination of more ribosome structures from pathogenic bacteria, with each study highlighting species-specific differences that had not been observed in the non-pathogenic structures. These observed differences suggest that more novel ribosome structures, particularly from pathogens, are required for a more accurate understanding of the level of diversity of the entire bacterial ribosome, with the potential of leading to innovative advancements in antibiotic research. In this study, high accuracy covariance and hidden Markov models were used to annotate ribosomal RNA and protein sequences respectively from genomic sequence, allowing us to determine the underlying ribosomal sequence diversity using phylogenetic methods. This analysis provided evidence that the current non-pathogenic ribosome structures are not sufficient representatives of some pathogenic bacteria, such as Campylobacter pylori, or of whole phyla such as Bacteroidota (Bacteroidetes).
Collapse
Affiliation(s)
- Helena B. Cooper
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Kurt L. Krause
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Paul P. Gardner
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
5
|
Roy S, Bahar AA, Gu H, Nangia S, Sauer K, Ren D. Persister control by leveraging dormancy associated reduction of antibiotic efflux. PLoS Pathog 2021; 17:e1010144. [PMID: 34890435 PMCID: PMC8716142 DOI: 10.1371/journal.ppat.1010144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/29/2021] [Accepted: 11/24/2021] [Indexed: 11/19/2022] Open
Abstract
Persistent bacterial infections do not respond to current antibiotic treatments and thus present a great medical challenge. These conditions have been linked to the formation of dormant subpopulations of bacteria, known as persister cells, that are growth-arrested and highly tolerant to conventional antibiotics. Here, we report a new strategy of persister control and demonstrate that minocycline, an amphiphilic antibiotic that does not require active transport to penetrate bacterial membranes, is effective in killing Escherichia coli persister cells [by 70.8 ± 5.9% (0.53 log) at 100 μg/mL], while being ineffective in killing normal cells. Further mechanistic studies revealed that persister cells have reduced drug efflux and accumulate more minocycline than normal cells, leading to effective killing of this dormant subpopulation upon wake-up. Consistently, eravacycline, which also targets the ribosome but has a stronger binding affinity than minocycline, kills persister cells by 3 logs when treated at 100 μg/mL. In summary, the findings of this study reveal that while dormancy is a well-known cause of antibiotic tolerance, it also provides an Achilles’ heel for controlling persister cells by leveraging dormancy associated reduction of drug efflux. Bacterial persister cells are dormant phenotypic variants that are highly tolerant to most antibiotics; and thus, present a major challenge to infection control. This motivated us to develop new strategies that can specifically target the persister population. It is known that persister formation is associated with reduced membrane potential and cellular activities. Thus, we hypothesize that persister cells have reduced drug efflux compared to normal cells and accumulate more antimicrobial agents that can penetrate the membranes of persister cells. By testing this hypothesis, we developed a new set of criteria for selecting persister control agents and demonstrated effective control of Escherichia coli persister cells by minocycline, rifamycin SV, and eravacycline. Our results revealed that these agents are more effective against persister cells than normal cells and the killing occurred during persister wake-up. Collectively, these results demonstrate a new strategy for persister control by leveraging dormancy associated changes in bacterial physiology. The findings may contribute to future drug discovery and the treatment of persistent infections.
Collapse
Affiliation(s)
- Sweta Roy
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States of America
| | - Ali Adem Bahar
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States of America
| | - Huan Gu
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States of America
| | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States of America
| | - Karin Sauer
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States of America
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, New York, United States of America
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
- * E-mail:
| |
Collapse
|
6
|
Shatoff EA, Gemler BT, Bundschuh R, Fredrick K. Maturation of 23S rRNA includes removal of helix H1 in many bacteria. RNA Biol 2021; 18:856-865. [PMID: 34812116 PMCID: PMC8782170 DOI: 10.1080/15476286.2021.2000793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In most bacteria, the three ribosomal RNAs (rRNAs) are encoded together in each of several near-identical operons. As soon as the nascent precursor rRNA emerges from RNA polymerase, ribosome assembly begins. This process entails ribosomal protein binding, rRNA folding, rRNA modification, and rRNA processing. In the model organisms Escherichia coli and Bacillus subtilis, rRNA processing results in similar mature rRNAs, despite substantial differences in the cohort of RNAses involved. A recent study of Flavobacterium johnsoniae, a member of the phylum Bacteroidota (formerly Bacteroidetes), revealed that helix H1 of 23S rRNA is absent from ribosomes, apparently a consequence of rRNA maturation. In this work, we mined RNA-seq data from 19 individual organisms and ocean metatranscriptomic samples to compare rRNA processing across diverse bacterial lineages. We found that mature ribosomes from multiple clades lack H1, and typically these ribosomes also lack an encoded H98. For all groups analysed, H1 is predicted to form in precursor rRNA as part of a longer leader-trailer helix. Hence, we infer that evolutionary loss of H98 sets the stage for H1 removal during 50S subunit maturation.
Collapse
Affiliation(s)
- Elan A Shatoff
- Department of Physics, The Ohio State University, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Bryan T Gemler
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Ralf Bundschuh
- Department of Physics, The Ohio State University, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA.,Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH, USA.,Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Kurt Fredrick
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Microbiology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
7
|
Skaar EP. Imaging Infection Across Scales of Size: From Whole Animals to Single Molecules. Annu Rev Microbiol 2021; 75:407-426. [PMID: 34343016 DOI: 10.1146/annurev-micro-041521-121457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Infectious diseases are a leading cause of global morbidity and mortality, and the threat of infectious diseases to human health is steadily increasing as new diseases emerge, existing diseases reemerge, and antimicrobial resistance expands. The application of imaging technology to the study of infection biology has the potential to uncover new factors that are critical to the outcome of host-pathogen interactions and to lead to innovations in diagnosis and treatment of infectious diseases. This article reviews current and future opportunities for the application of imaging to the study of infectious diseases, with a particular focus on the power of imaging objects across a broad range of sizes to expand the utility of these approaches. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Eric P Skaar
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA;
| |
Collapse
|
8
|
Cryo-EM Determination of Eravacycline-Bound Structures of the Ribosome and the Multidrug Efflux Pump AdeJ of Acinetobacter baumannii. mBio 2021; 12:e0103121. [PMID: 34044590 PMCID: PMC8263017 DOI: 10.1128/mbio.01031-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibiotic-resistant strains of the Gram-negative pathogen Acinetobacter baumannii have emerged as a significant global health threat. One successful therapeutic option to treat bacterial infections has been to target the bacterial ribosome. However, in many cases, multidrug efflux pumps within the bacterium recognize and extrude these clinically important antibiotics designed to inhibit the protein synthesis function of the bacterial ribosome. Thus, multidrug efflux within A. baumannii and other highly drug-resistant strains is a major cause of failure of drug-based treatments of infectious diseases. We here report the first structures of the Acinetobacterdrug efflux (Ade)J pump in the presence of the antibiotic eravacycline, using single-particle cryo-electron microscopy (cryo-EM). We also describe cryo-EM structures of the eravacycline-bound forms of the A. baumannii ribosome, including the 70S, 50S, and 30S forms. Our data indicate that the AdeJ pump primarily uses hydrophobic interactions to bind eravacycline, while the 70S ribosome utilizes electrostatic interactions to bind this drug. Our work here highlights how an antibiotic can bind multiple bacterial targets through different mechanisms and potentially enables drug optimization by taking advantage of these different modes of ligand binding.
Collapse
|
9
|
Moseng MA, Lyu M, Pipatpolkai T, Glaza P, Emerson CC, Stewart PL, Stansfeld PJ, Yu EW. Cryo-EM Structures of CusA Reveal a Mechanism of Metal-Ion Export. mBio 2021; 12:e00452-21. [PMID: 33820823 PMCID: PMC8092243 DOI: 10.1128/mbio.00452-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 01/28/2023] Open
Abstract
Gram-negative bacteria utilize the resistance-nodulation-cell division (RND) superfamily of efflux pumps to expel a variety of toxic compounds from the cell. The Escherichia coli CusA membrane protein, which recognizes and extrudes biocidal Cu(I) and Ag(I) ions, belongs to the heavy-metal efflux (HME) subfamily of RND efflux pumps. We here report four structures of the trimeric CusA heavy-metal efflux pump in the presence of Cu(I) using single-particle cryo-electron microscopy (cryo-EM). We discover that different CusA protomers within the trimer are able to bind Cu(I) ions simultaneously. Our structural data combined with molecular dynamics (MD) simulations allow us to propose a mechanism for ion transport where each CusA protomer functions independently within the trimer.IMPORTANCE The bacterial RND superfamily of efflux pumps mediate resistance to a variety of biocides, including Cu(I) and Ag(I) ions. Here we report four cryo-EM structures of the trimeric CusA pump in the presence of Cu(I). Combined with MD simulations, our data indicate that each CusA protomer within the trimer recognizes and extrudes Cu(I) independently.
Collapse
Affiliation(s)
- Mitchell A Moseng
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Meinan Lyu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | | - Przemyslaw Glaza
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Corey C Emerson
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Phoebe L Stewart
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Phillip J Stansfeld
- School of Life Sciences & Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Edward W Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
10
|
Klenotic PA, Morgan CE, Yu EW. Cryo-EM as a tool to study bacterial efflux systems and the membrane proteome. Fac Rev 2021; 10:24. [PMID: 33718941 PMCID: PMC7946387 DOI: 10.12703/r/10-24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Antibiotic resistance is an emerging threat to global health. Current treatment regimens for these types of bacterial infections are becoming increasingly inadequate. Thus, new innovative technologies are needed to help identify and characterize novel drugs and drug targets which are critical in order to combat multidrug-resistant bacterial strains. Bacterial efflux systems have emerged as an attractive target for drug design, as blocking their export function significantly increases the potency of administered antibiotics. However, in order to develop potent and tolerable efflux pump inhibitors with high efficacy, detailed structural information is required for both the apo- and substrate-bound forms of these membrane proteins. The emergence of cryo-electron microscopy (cryo-EM) has greatly advanced the field of membrane protein structural biology. It has significantly enhanced the ability to solve large multi-protein complexes as well as extract meaningful data from a heterogeneous sample, such as identification of several assembly states of the bacterial ribosome, from a single data set. This technique can be expanded to solve the structures of substrate-bound efflux pumps and entire efflux systems from previously unusable membrane protein sample preparations. Subsequently, cryo-EM combined with other biophysical techniques has the potential to markedly advance the field of membrane protein structural biology. The ability to discern complete transport machineries, enzymatic signal transduction pathways, and other membrane-associated complexes will help us fully understand the complexities of the membrane proteome.
Collapse
Affiliation(s)
- Philip A Klenotic
- Department of Pharmacology, Case Western Reserve University School of Medicine, 2109 Adelbert Rd, Cleveland, OH 44106-4965, USA
| | - Christopher E Morgan
- Department of Pharmacology, Case Western Reserve University School of Medicine, 2109 Adelbert Rd, Cleveland, OH 44106-4965, USA
| | - Edward W Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, 2109 Adelbert Rd, Cleveland, OH 44106-4965, USA
| |
Collapse
|
11
|
Morgan CE, Glaza P, Leus IV, Trinh A, Su CC, Cui M, Zgurskaya HI, Yu EW. Cryoelectron Microscopy Structures of AdeB Illuminate Mechanisms of Simultaneous Binding and Exporting of Substrates. mBio 2021; 12:e03690-20. [PMID: 33622726 PMCID: PMC8545137 DOI: 10.1128/mbio.03690-20] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/31/2022] Open
Abstract
Acinetobacter baumannii is a Gram-negative pathogen that has emerged as one of the most highly antibiotic-resistant bacteria worldwide. Multidrug efflux within these highly drug-resistant strains and other opportunistic pathogens is a major cause of failure of drug-based treatments of infectious diseases. The best-characterized multidrug efflux system in A. baumannii is the prevalent Acinetobacterdrug efflux B (AdeB) pump, which is a member of the resistance-nodulation-cell division (RND) superfamily. Here, we report six structures of the trimeric AdeB multidrug efflux pump in the presence of ethidium bromide using single-particle cryoelectron microscopy (cryo-EM). These structures allow us to directly observe various novel conformational states of the AdeB trimer, including the transmembrane region of trimeric AdeB can be associated with form a trimer assembly or dissociated into "dimer plus monomer" and "monomer plus monomer plus monomer" configurations. We also discover that a single AdeB protomer can simultaneously anchor a number of ethidium ligands and that different AdeB protomers can bind ethidium molecules simultaneously. Combined with molecular dynamics (MD) simulations, we reveal a drug transport mechanism that involves multiple multidrug-binding sites and various transient states of the AdeB membrane protein. Our data suggest that each AdeB protomer within the trimer binds and exports drugs independently.IMPORTANCEAcinetobacter baumannii has emerged as one of the most highly antibiotic-resistant Gram-negative pathogens. The prevalent AdeB multidrug efflux pump mediates resistance to a broad spectrum of clinically relevant antimicrobial agents. Here, we report six cryo-EM structures of the trimeric AdeB pump in the presence of ethidium bromide. We discover that a single AdeB protomer can simultaneously anchor a number of ligands, and different AdeB protomers can bind ethidium molecules simultaneously. The results indicate that each AdeB protomer within the trimer recognizes and extrudes drugs independently.
Collapse
Affiliation(s)
- Christopher E Morgan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Przemyslaw Glaza
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Inga V Leus
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Anhthu Trinh
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Chih-Chia Su
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Meng Cui
- Department of Pharmaceutical Sciences, Northeastern University School of Pharmacy, Boston, Massachusetts, USA
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Edward W Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
12
|
An Analysis of the Novel Fluorocycline TP-6076 Bound to Both the Ribosome and Multidrug Efflux Pump AdeJ from Acinetobacter baumannii. mBio 2021; 13:e0373221. [PMID: 35100868 PMCID: PMC8805024 DOI: 10.1128/mbio.03732-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Antibiotic resistance among bacterial pathogens continues to pose a serious global health threat. Multidrug-resistant (MDR) strains of the Gram-negative organism Acinetobacter baumannii utilize a number of resistance determinants to evade current antibiotics. One of the major resistance mechanisms employed by these pathogens is the use of multidrug efflux pumps. These pumps extrude xenobiotics directly out of bacterial cells, resulting in treatment failures when common antibiotics are administered. Here, the structure of the novel tetracycline antibiotic TP-6076, bound to both the Acinetobacter drug efflux pump AdeJ and the ribosome from Acinetobacter baumannii, using single-particle cryo-electron microscopy (cryo-EM), is elucidated. In this work, the structure of the AdeJ-TP-6076 complex is solved, and we show that AdeJ utilizes a network of hydrophobic interactions to recognize this fluorocycline. Concomitant with this, we elucidate three structures of TP-6076 bound to the A. baumannii ribosome and determine that its binding is stabilized largely by electrostatic interactions. We then compare the differences in binding modes between TP-6076 and the related tetracycline antibiotic eravacycline in both targets. These differences suggest that modifications to the tetracycline core may be able to alter AdeJ binding while maintaining interactions with the ribosome. Together, this work highlights how different mechanisms are used to stabilize the binding of tetracycline-based compounds to unique bacterial targets and provides guidance for the future clinical development of tetracycline antibiotics. IMPORTANCE Treatment of antibiotic-resistant organisms such as A. baumannii represents an ongoing issue for modern medicine. The multidrug efflux pump AdeJ serves as a major resistance determinant in A. baumannii through its action of extruding antibiotics from the cell. In this work, we use cryo-EM to show how AdeJ recognizes the experimental tetracycline antibiotic TP-6076 and prevents this drug from interacting with the A. baumannii ribosome. Since AdeJ and the ribosome use different binding modes to stabilize interactions with TP-6076, exploiting these differences may guide future drug development for combating antibiotic-resistant A. baumannii and potentially other strains of MDR bacteria.
Collapse
|
13
|
Punjani A, Fleet DJ. 3D variability analysis: Resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM. J Struct Biol 2021; 213:107702. [PMID: 33582281 DOI: 10.1016/j.jsb.2021.107702] [Citation(s) in RCA: 566] [Impact Index Per Article: 141.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/12/2021] [Accepted: 01/26/2021] [Indexed: 01/06/2023]
Abstract
Single particle cryo-EM excels in determining static structures of protein molecules, but existing 3D reconstruction methods have been ineffective in modelling flexible proteins. We introduce 3D variability analysis (3DVA), an algorithm that fits a linear subspace model of conformational change to cryo-EM data at high resolution. 3DVA enables the resolution and visualization of detailed molecular motions of both large and small proteins, revealing new biological insight from single particle cryo-EM data. Experimental results demonstrate the ability of 3DVA to resolve multiple flexible motions of α-helices in the sub-50 kDa transmembrane domain of a GPCR complex, bending modes of a sodium ion channel, five types of symmetric and symmetry-breaking flexibility in a proteasome, large motions in a spliceosome complex, and discrete conformational states of a ribosome assembly. 3DVA is implemented in the cryoSPARC software package.
Collapse
Affiliation(s)
- Ali Punjani
- Department of Computer Sciences, University of Toronto M5S 3G4, Canada; Vector Institute, 710-661 University Ave., Toronto M5G 1M1, Canada; Structura Biotechnology Inc., 129-100 College Ave., Toronto M5G 1L5, Canada.
| | - David J Fleet
- Department of Computer Sciences, University of Toronto M5S 3G4, Canada; Vector Institute, 710-661 University Ave., Toronto M5G 1M1, Canada.
| |
Collapse
|
14
|
Zhang L, He J, Bai L, Ruan S, Yang T, Luo Y. Ribosome-targeting antibacterial agents: Advances, challenges, and opportunities. Med Res Rev 2021; 41:1855-1889. [PMID: 33501747 DOI: 10.1002/med.21780] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/08/2020] [Accepted: 12/19/2020] [Indexed: 02/05/2023]
Abstract
Ribosomes, which synthesize proteins, are critical organelles for the survival and growth of bacteria. About 60% of approved antibiotics discovered so far combat pathogenic bacteria by targeting ribosomes. However, several issues, such as drug resistance and toxicity, have impeded the clinical use of ribosome-targeting antibiotics. Moreover, the complexity of the bacteria ribosome structure has retarded the discovery of new ribosome-targeting agents that are considered as the key to the drug-resistance and toxicity. To deal with these challenges, efforts such as medicinal chemistry optimization, combination treatment, and new drug delivery system have been developed. But not enough, the development of structural biology and new screening methods bring powerful tools, such as cryo-electron microscopy technology, advanced computer-aided drug design, and cell-free in vitro transcription/translation systems, for the discovery of novel ribosome-targeting antibiotics. Thus, in this paper, we overview the research on different aspects of bacterial ribosomes, especially focus on discussing the challenges in the discovery of ribosome-targeting antibacterial drugs and advances made to address issues such as drug-resistance and selectivity, which, we believe, provide perspectives for the discovery of novel antibiotics.
Collapse
Affiliation(s)
- Laiying Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Jun He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Lang Bai
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Shihua Ruan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Tao Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China.,Laboratory of Human Diseases and Immunotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China.,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
A 'Build and Retrieve' methodology to simultaneously solve cryo-EM structures of membrane proteins. Nat Methods 2021; 18:69-75. [PMID: 33408407 PMCID: PMC7808410 DOI: 10.1038/s41592-020-01021-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/16/2020] [Indexed: 11/26/2022]
Abstract
Single-particle cryo-electron microscopy (cryo-EM) has become a powerful technique in the field of structural biology. However, the inability to reliably produce pure, homogeneous membrane protein samples significantly hampers the progress of their structural determination. Here, we develop a bottom-up iterative method, designated “Build and Retrieve” (BaR), that allows us to identify and solve cryo-EM structures of a variety of inner and outer membrane proteins, including membrane protein complexes of different sizes and dimensions, from a heterogeneous, impure protein sample. We also employ the BaR methodology to elucidate structural information from E. coli K12 crude membrane and raw lysate. Our work demonstrates that it is possible to solve high-resolution structures of a number of relatively small (< 100 kDa) and less abundant (< 10%) unidentified membrane proteins within a single, heterogeneous sample. Importantly, these results highlight the potential of cryo-EM for systems structural proteomics.
Collapse
|
16
|
Wen JD, Kuo ST, Chou HHD. The diversity of Shine-Dalgarno sequences sheds light on the evolution of translation initiation. RNA Biol 2020; 18:1489-1500. [PMID: 33349119 DOI: 10.1080/15476286.2020.1861406] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Shine-Dalgarno (SD) sequences, the core element of prokaryotic ribosome-binding sites, facilitate mRNA translation by base-pair interaction with the anti-SD (aSD) sequence of 16S rRNA. In contrast to this paradigm, an inspection of thousands of prokaryotic species unravels tremendous SD sequence diversity both within and between genomes, whereas aSD sequences remain largely static. The pattern has led many to suggest unidentified mechanisms for translation initiation. Here we review known translation-initiation pathways in prokaryotes. Moreover, we seek to understand the cause and consequence of SD diversity through surveying recent advances in biochemistry, genomics, and high-throughput genetics. These findings collectively show: (1) SD:aSD base pairing is beneficial but nonessential to translation initiation. (2) The 5' untranslated region of mRNA evolves dynamically and correlates with organismal phylogeny and ecological niches. (3) Ribosomes have evolved distinct usage of translation-initiation pathways in different species. We propose a model portraying the SD diversity shaped by optimization of gene expression, adaptation to environments and growth demands, and the species-specific prerequisite of ribosomes to initiate translation. The model highlights the coevolution of ribosomes and mRNA features, leading to functional customization of the translation apparatus in each organism.
Collapse
Affiliation(s)
- Jin-Der Wen
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan.,Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
| | - Syue-Ting Kuo
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hsin-Hung David Chou
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan.,Department of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
17
|
Separovic F, Keizer DW, Sani MA. In-cell Solid-State NMR Studies of Antimicrobial Peptides. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:610203. [PMID: 35047891 PMCID: PMC8757805 DOI: 10.3389/fmedt.2020.610203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/30/2020] [Indexed: 12/23/2022] Open
Abstract
Antimicrobial peptides (AMPs) have attracted attention as alternatives to classic antibiotics due to their expected limited pressure on bacterial resistance mechanisms. Yet, their modes of action, in particular in vivo, remain to be elucidated. In situ atomistic-scale details of complex biomolecular assemblies is a challenging requirement for deciphering the complex modes of action of AMPs. The large diversity of molecules that modulate complex interactions limits the resolution achievable using imaging methodology. Herein, the latest advances in in-cell solid-state NMR (ssNMR) are discussed, which demonstrate the power of this non-invasive technique to provide atomic details of molecular structure and dynamics. Practical requirements for investigations of intact bacteria are discussed. An overview of recent in situ NMR investigations of the architecture and metabolism of bacteria and the effect of AMPs on various bacterial structures is presented. In-cell ssNMR revealed that the studied AMPs have a disruptive action on the molecular packing of bacterial membranes and DNA. Despite the limited number of studies, in-cell ssNMR is emerging as a powerful technique to monitor in situ the interplay between bacteria and AMPs.
Collapse
Affiliation(s)
- Frances Separovic
- School of Chemistry, University of Melbourne, Melbourne, VIC, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia
| | - David W. Keizer
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Marc-Antoine Sani
- School of Chemistry, University of Melbourne, Melbourne, VIC, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia
- *Correspondence: Marc-Antoine Sani
| |
Collapse
|
18
|
Jednačak T, Mikulandra I, Novak P. Advanced Methods for Studying Structure and Interactions of Macrolide Antibiotics. Int J Mol Sci 2020; 21:E7799. [PMID: 33096889 PMCID: PMC7589898 DOI: 10.3390/ijms21207799] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022] Open
Abstract
Macrolide antibiotics are macrocyclic compounds that are clinically used and prescribed for the treatment of upper and lower respiratory tract infections. They inhibit the synthesis of bacterial proteins by reversible binding to the 23S rRNA at or near the peptidyl transferase center. However, their excellent antibacterial profile was largely compromised by the emergence of bacterial resistance. Today, fighting resistance to antibiotics is one of the greatest challenges in medicinal chemistry. Considering various physicochemical properties of macrolides, understanding their structure and interactions with macromolecular targets is crucial for the design of new antibiotics efficient against resistant pathogens. The solid-state structures of some macrolide-ribosome complexes have recently been solved, throwing new light on the macrolide binding mechanisms. On the other hand, a combination of NMR spectroscopy and molecular modeling calculations can be applied to study free and bound conformations in solution. In this article, a description of advanced physicochemical methods for elucidating the structure and interactions of macrolide antibiotics in solid state and solution will be provided, and their principal advantages and drawbacks will be discussed.
Collapse
Affiliation(s)
- Tomislav Jednačak
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia;
| | | | - Predrag Novak
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia;
| |
Collapse
|
19
|
Poitevin F, Kushner A, Li X, Dao Duc K. Structural Heterogeneities of the Ribosome: New Frontiers and Opportunities for Cryo-EM. Molecules 2020; 25:E4262. [PMID: 32957592 PMCID: PMC7570653 DOI: 10.3390/molecules25184262] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
The extent of ribosomal heterogeneity has caught increasing interest over the past few years, as recent studies have highlighted the presence of structural variations of the ribosome. More precisely, the heterogeneity of the ribosome covers multiple scales, including the dynamical aspects of ribosomal motion at the single particle level, specialization at the cellular and subcellular scale, or evolutionary differences across species. Upon solving the ribosome atomic structure at medium to high resolution, cryogenic electron microscopy (cryo-EM) has enabled investigating all these forms of heterogeneity. In this review, we present some recent advances in quantifying ribosome heterogeneity, with a focus on the conformational and evolutionary variations of the ribosome and their functional implications. These efforts highlight the need for new computational methods and comparative tools, to comprehensively model the continuous conformational transition pathways of the ribosome, as well as its evolution. While developing these methods presents some important challenges, it also provides an opportunity to extend our interpretation and usage of cryo-EM data, which would more generally benefit the study of molecular dynamics and evolution of proteins and other complexes.
Collapse
Affiliation(s)
- Frédéric Poitevin
- Department of LCLS Data Analytics, Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA;
| | - Artem Kushner
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (A.K.); (X.L.)
- Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xinpei Li
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (A.K.); (X.L.)
- Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Khanh Dao Duc
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (A.K.); (X.L.)
- Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
20
|
Nicholson D, Edwards TA, O'Neill AJ, Ranson NA. Structure of the 70S Ribosome from the Human Pathogen Acinetobacter baumannii in Complex with Clinically Relevant Antibiotics. Structure 2020; 28:1087-1100.e3. [PMID: 32857965 PMCID: PMC7546915 DOI: 10.1016/j.str.2020.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/06/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022]
Abstract
Acinetobacter baumannii is a Gram-negative bacterium primarily associated with hospital-acquired, often multidrug-resistant (MDR) infections. The ribosome-targeting antibiotics amikacin and tigecycline are among the limited arsenal of drugs available for treatment of such infections. We present high-resolution structures of the 70S ribosome from A. baumannii in complex with these antibiotics, as determined by cryoelectron microscopy. Comparison with the ribosomes of other bacteria reveals several unique structural features at functionally important sites, including around the exit of the polypeptide tunnel and the periphery of the subunit interface. The structures also reveal the mode and site of interaction of these drugs with the ribosome. This work paves the way for the design of new inhibitors of translation to address infections caused by MDR A. baumannii. Cryo-EM structures of the ribosome from the pathogenic bacteria A. baumannii Unique structural features compared with other bacterial ribosomes The site and mode of binding of amikacin and tigecycline to this ribosome A putative alternative tigecycline-binding site at the 50S central protuberance
Collapse
Affiliation(s)
- David Nicholson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Thomas A Edwards
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Alex J O'Neill
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
21
|
Herrero del Valle A, Innis CA. Prospects for antimicrobial development in the cryo-EM era – a focus on the ribosome. FEMS Microbiol Rev 2020; 44:793-803. [DOI: 10.1093/femsre/fuaa032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022] Open
Abstract
ABSTRACT
Resistance to antimicrobial drugs used to treat bacterial, viral, fungal and parasitic infections is a major health concern requiring a coordinated response across the globe. An important aspect in the fight against antimicrobial resistance is the development of novel drugs that are effective against resistant pathogens. Drug development is a complex trans-disciplinary endeavor, in which structural biology plays a major role by providing detailed functional and mechanistic information on an antimicrobial target and its interactions with small molecule inhibitors. Although X-ray crystallography and nuclear magnetic resonance have until now been the methods of choice to characterize microbial targets and drive structure-based drug development, cryo-electron microscopy is rapidly gaining ground in these areas. In this perspective, we will discuss how cryo-electron microscopy is changing our understanding of an established antimicrobial target, the ribosome, and how methodological developments could help this technique become an integral part of the antimicrobial drug discovery pipeline.
Collapse
Affiliation(s)
- Alba Herrero del Valle
- Institut Européen de Chimie et Biologie, Univ. Bordeaux, Institut National de la Santé et de la Recherche Médicale (U1212) and Centre National de la Recherche Scientifique (UMR 5320), 2 rue Robert Escarpit, 33607 Pessac, France
| | - C Axel Innis
- Institut Européen de Chimie et Biologie, Univ. Bordeaux, Institut National de la Santé et de la Recherche Médicale (U1212) and Centre National de la Recherche Scientifique (UMR 5320), 2 rue Robert Escarpit, 33607 Pessac, France
| |
Collapse
|
22
|
Brennan-Krohn T, Manetsch R, O'Doherty GA, Kirby JE. New strategies and structural considerations in development of therapeutics for carbapenem-resistant Enterobacteriaceae. Transl Res 2020; 220:14-32. [PMID: 32201344 PMCID: PMC7293954 DOI: 10.1016/j.trsl.2020.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
Abstract
Antimicrobial resistance poses a significant threat to our ability to treat infections. Especially concerning is the emergence of carbapenem-resistant Enterobacteriaceae (CRE). In the new 2019 United States Centers for Disease Control and Prevention Antibiotic Resistance Report, CRE remain in the most urgent antimicrobial resistance threat category. There is good reason for this concerning designation. In particular, the combination of several resistance elements in CRE can make these pathogens untreatable or effectively untreatable with our current armamentarium of anti-infective agents. This article reviews recently approved agents with activity against CRE and a range of modalities in the pipeline, from early academic investigation to those in clinical trials, with a focus on structural aspects of new antibiotics. Another article in this series addresses the need to incentive pharmaceutical companies to invest in CRE antimicrobial development and to encourage hospitals to make these agents available in their formularies. This article will also consider the need for change in requirements for antimicrobial susceptibility testing implementation in clinical laboratories to address practical roadblocks that impede our efforts to provide even existing CRE antibiotics to our patients.
Collapse
Affiliation(s)
- Thea Brennan-Krohn
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts
| | - Roman Manetsch
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts; Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts
| | | | - James E Kirby
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Beth Israel Deaconess Medical Center, Boston, Massachusetts.
| |
Collapse
|