1
|
Alharthi R, Sueiro-Olivares M, Storer I, Bin Shuraym H, Scott J, Al-Shidhani R, Fortune-Grant R, Bignell E, Tabernero L, Bromley M, Zhao C, Amich J. The sulfur-related metabolic status of Aspergillus fumigatus during infection reveals cytosolic serine hydroxymethyltransferase as a promising antifungal target. Virulence 2025; 16:2449075. [PMID: 39825596 PMCID: PMC11749473 DOI: 10.1080/21505594.2024.2449075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/07/2024] [Accepted: 12/28/2024] [Indexed: 01/20/2025] Open
Abstract
Sulfur metabolism is an essential aspect of fungal physiology and pathogenicity. Fungal sulfur metabolism comprises anabolic and catabolic routes that are not well conserved in mammals, therefore is considered a promising source of prospective novel antifungal targets. To gain insight into Aspergillus fumigatus sulfur-related metabolism during infection, we used a NanoString custom nCounter-TagSet and compared the expression of 68 key metabolic genes in different murine models of invasive pulmonary aspergillosis, at 3 time-points, and under a variety of in vitro conditions. We identified a set of 15 genes that were consistently expressed at higher levels in vivo than in vitro, suggesting that they may be particularly relevant for intrapulmonary growth and thus constitute promising drug targets. Indeed, the role of 5 of the 15 genes has previously been empirically validated, supporting the likelihood that the remaining candidates are relevant. In addition, the analysis of gene expression dynamics at early (16 h), mid (24 h), and late (72 h) time-points uncovered potential disease initiation and progression factors. We further characterized one of the identified genes, encoding the cytosolic serine hydroxymethyltransferase ShmB, and demonstrated that it is an essential gene of A. fumigatus, also required for virulence in a murine model of established pulmonary infection. We further showed that the structure of the ligand-binding pocket of the fungal enzyme differs significantly from its human counterpart, suggesting that specific inhibitors can be designed. Therefore, in vivo transcriptomics is a powerful tool for identifying genes crucial for fungal pathogenicity that may encode promising antifungal target candidates.
Collapse
Affiliation(s)
- Reem Alharthi
- Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Monica Sueiro-Olivares
- Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Isabelle Storer
- Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Hajer Bin Shuraym
- Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jennifer Scott
- Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Reem Al-Shidhani
- Lydia Becker Institute for Immunology and Inflammation, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Rachael Fortune-Grant
- Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Elaine Bignell
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Lydia Tabernero
- Lydia Becker Institute for Immunology and Inflammation, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Michael Bromley
- Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Can Zhao
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Jorge Amich
- Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Mycology Reference Laboratory (Laboratorio deReferencia e Investigación en Micología LRIM), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- CiberInfec ISCIII, CIBER en Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Kordana N, Johnson A, Quinn K, Obar JJ, Cramer RA. Recent developments in Aspergillus fumigatus research: diversity, drugs, and disease. Microbiol Mol Biol Rev 2025; 89:e0001123. [PMID: 39927770 PMCID: PMC11948498 DOI: 10.1128/mmbr.00011-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
SUMMARYAdvances in modern medical therapies for many previously intractable human diseases have improved patient outcomes. However, successful disease treatment outcomes are often prevented due to invasive fungal infections caused by the environmental mold Aspergillus fumigatus. As contemporary antifungal therapies have not experienced the same robust advances as other medical therapies, defining mechanisms of A. fumigatus disease initiation and progression remains a critical research priority. To this end, the World Health Organization recently identified A. fumigatus as a research priority human fungal pathogen and the Centers for Disease Control has highlighted the emergence of triazole-resistant A. fumigatus isolates. The expansion in the diversity of host populations susceptible to aspergillosis and the complex and dynamic A. fumigatus genotypic and phenotypic diversity call for a reinvigorated assessment of aspergillosis pathobiological and drug-susceptibility mechanisms. Here, we summarize recent advancements in the field and discuss challenges in our understanding of A. fumigatus heterogeneity and its pathogenesis in diverse host populations.
Collapse
Affiliation(s)
- Nicole Kordana
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Angus Johnson
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Katherine Quinn
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Joshua J. Obar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Robert A. Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
3
|
An Immunogenic and Slow-Growing Cryptococcal Strain Induces a Chronic Granulomatous Infection in Murine Lungs. Infect Immun 2022; 90:e0058021. [PMID: 35587201 PMCID: PMC9202370 DOI: 10.1128/iai.00580-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many successful pathogens cause latent infections, remaining dormant within the host for years but retaining the ability to reactivate to cause symptomatic disease. The human opportunistic fungal pathogen Cryptococcus neoformans establishes latent pulmonary infections in immunocompetent individuals upon inhalation from the environment. These latent infections are frequently characterized by granulomas, or foci of chronic inflammation, that contain dormant and persistent cryptococcal cells. Immunosuppression can cause these granulomas to break down and release fungal cells that proliferate, disseminate, and eventually cause lethal cryptococcosis. This course of fungal latency and reactivation is understudied due to limited models, as chronic pulmonary granulomas do not typically form in mouse cryptococcal infections. A loss-of-function mutation in the Cryptococcus-specific MAR1 gene was previously described to alter cell surface remodeling in response to host signals. Here, we demonstrate that the mar1Δ mutant strain persists long term in a murine inhalation model of cryptococcosis, inducing a chronic pulmonary granulomatous response. We find that murine infections with the mar1Δ mutant strain are characterized by reduced fungal burden, likely due to the low growth rate of the mar1Δ mutant strain at physiological temperature, and an altered host immune response, likely due to inability of the mar1Δ mutant strain to properly employ virulence factors. We propose that this combination of features in the mar1Δ mutant strain collectively promotes the induction of a more chronic inflammatory response and enables long-term fungal persistence within these granulomatous regions.
Collapse
|
4
|
Rokas A. Evolution of the human pathogenic lifestyle in fungi. Nat Microbiol 2022; 7:607-619. [PMID: 35508719 PMCID: PMC9097544 DOI: 10.1038/s41564-022-01112-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/25/2022] [Indexed: 02/07/2023]
Abstract
Fungal pathogens cause more than a billion human infections every year, resulting in more than 1.6 million deaths annually. Understanding the natural history and evolutionary ecology of fungi is helping us understand how disease-relevant traits have repeatedly evolved. Different types and mechanisms of genetic variation have contributed to the evolution of fungal pathogenicity and specific genetic differences distinguish pathogens from non-pathogens. Insights into the traits, genetic elements, and genetic and ecological mechanisms that contribute to the evolution of fungal pathogenicity are crucial for developing strategies to both predict emergence of fungal pathogens and develop drugs to combat them.
Collapse
Affiliation(s)
- Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
5
|
Host Lung Environment Limits Aspergillus fumigatus Germination through an SskA-Dependent Signaling Response. mSphere 2021; 6:e0092221. [PMID: 34878292 PMCID: PMC8653827 DOI: 10.1128/msphere.00922-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aspergillus fumigatus isolates display significant heterogeneity in growth, virulence, pathology, and inflammatory potential in multiple murine models of invasive aspergillosis. Previous studies have linked the initial germination of a fungal isolate in the airways to the inflammatory and pathological potential, but the mechanism(s) regulating A. fumigatus germination in the airways is unresolved. To explore the genetic basis for divergent germination phenotypes, we utilized a serial passaging strategy in which we cultured a slow germinating strain (AF293) in a murine-lung-based medium for multiple generations. Through this serial passaging approach, a strain emerged with an increased germination rate that induces more inflammation than the parental strain (herein named LH-EVOL for lung homogenate evolved). We identified a potential loss-of-function allele of Afu5g08390 (sskA) in the LH-EVOL strain. The LH-EVOL strain had a decreased ability to induce the SakA-dependent stress pathway, similar to AF293 ΔsskA and CEA10. In support of the whole-genome variant analyses, sskA, sakA, or mpkC loss-of-function strains in the AF293 parental strain increased germination both in vitro and in vivo. Since the airway surface liquid of the lungs contains low glucose levels, the relationship of low glucose concentration on germination of these mutant AF293 strains was examined; interestingly, in low glucose conditions, the sakA pathway mutants exhibited an enhanced germination rate. In conclusion, A. fumigatus germination in the airways is regulated by SskA through the SakA mitogen-activated protein kinase (MAPK) pathway and drives enhanced disease initiation and inflammation in the lungs. IMPORTANCEAspergillus fumigatus is an important human fungal pathogen particularly in immunocompromised individuals. Initiation of growth by A. fumigatus in the lung is important for its pathogenicity in murine models. However, our understanding of what regulates fungal germination in the lung environment is lacking. Through a serial passage experiment using lung-based medium, we identified a new strain of A. fumigatus that has increased germination potential and inflammation in the lungs. Using this serially passaged strain, we found it had a decreased ability to mediate signaling through the osmotic stress response pathway. This finding was confirmed using genetic null mutants demonstrating that the osmotic stress response pathway is critical for regulating growth in the murine lungs. Our results contribute to the understanding of A. fumigatus adaptation and growth in the host lung environment.
Collapse
|