1
|
Jong T, Stack CM, Moffitt MC, Morton CO. An Introduction to the Influence of Nutritional Factors on the Pathogenesis of Opportunist Fungal Pathogens in Humans. Pathogens 2025; 14:335. [PMID: 40333109 PMCID: PMC12030028 DOI: 10.3390/pathogens14040335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 05/09/2025] Open
Abstract
Fungi such as Aspergillus fumigatus, Candida albicans, and Cryptococcus neoformans are opportunistic pathogens in humans. They usually infect individuals whose immune system is compromised due to either a primary infection, e.g., HIV/AIDS, or as part of treatment for another condition, e.g., stem cell or solid organ transplant. In hosts with a weakened immune system, these fungi can cause life-threatening infections. Unlike true pathogens, opportunistic pathogens do not have specific mechanisms to overcome a healthy host, requiring a different approach to understand how they cause infection. The ability of fungi to adapt to various environmental conditions, including the human host, is critical for virulence. In humans, micronutrient metals, such as iron, are sequestered to reduce serum concentrations, which helps to inhibit microbial growth. Other human tissues may increase metal concentrations to toxic levels to prevent infection by pathogens. The ability of fungi to acquire or detoxify nutrients, such as iron or copper, from the host is essential for the establishment of infection. In this review, the role of fungal nutrition will be discussed in relation to opportunistic fungal pathogens. It will focus on the acquisition of micronutrients, e.g., iron, copper, and zinc, and how this enables these fungi to circumvent host nutritional immunity.
Collapse
Affiliation(s)
| | | | | | - Charles Oliver Morton
- Western Sydney University, School of Science, Campbelltown, NSW 2560, Australia (C.M.S.); (M.C.M.)
| |
Collapse
|
2
|
Probst C, Denning-Jannace CA, du Plooy LM, Giamberardino C, Asfaw Y, Franz KJ, Alspaugh JA. A cysteine-rich domain of the Cuf1 transcription factor is required for high copper stress sensing and fungal virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628380. [PMID: 39713408 PMCID: PMC11661212 DOI: 10.1101/2024.12.13.628380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The ability to sense, import but also detoxify copper (Cu) has been shown to be crucial for microbial pathogens to survive within the host. Previous studies conducted with the opportunistic human fungal pathogen Cryptococcus neoformans ( Cn ) have revealed two extreme Cu environments encountered during infection: A high Cu environment within the lung and a low Cu environment within the brain. However, how Cn senses these different host Cu microenvironments, and the consequences of a blunted Cu stress adaption for pathogenesis, are not well understood. In contrast to other fungi, Cn has a single transcription factor, Cuf1, to regulate adaptive responses to both high- and low-Cu stress. Sequence analysis of Cn Cuf1 identified three conserved cysteine (Cys)-rich regions that may play a role in Cu sensing. We mutated the 1 st Cys-rich region within the CUF1 gene to investigate its role for Cn high Cu stress sensing. Subsequent analysis of Cuf1 transcriptional activity and target gene promoter binding demonstrated that the 1 st Cys-rich region is required for Cuf1 transcriptional activity in high Cu stress. We performed an inhalational murine infection to analyze the effects of a blunted high Cu stress response on pathogenesis. No significant differences in lung fungal burden were observed based on variable Cuf1 activity. However, strains with defective high Cu stress regulation induced a markedly altered immune response in mice. Based on these findings, we hypothesize that Cuf1-driven high Cu responses are not required for initial survival but instead modulate immune recognition and inflammation within the mouse lung. Importance Copper is an essential micronutrient required for survival in all kingdoms of life as it is used as a catalytic cofactor for many essential processes in the cell. In turn, this reactivity of copper ions makes elevated levels of free copper toxic for the cell. This dual nature of copper-essential for life but toxic at elevated levels- is used by our innate immune system in a process called nutritional immunity to combat and kill invading pathogens. In this work we explore how the fungal human pathogen Cryptococcus neoformans senses high copper stress, a copper microenvironment encountered within the host lung. We identified a specific cysteine-rich region within the copper responsive transcription factor Cuf1 to be essential for high copper stress sensing. Mutation of this region led to an impaired high copper stress adaptation, which did not affect fitness of the yeast but did impact immune recognition and inflammation inside the host lung.
Collapse
|
3
|
Garg R, David MS, Yang S, Culotta VC. Metals at the Host-Fungal Pathogen Battleground. Annu Rev Microbiol 2024; 78:23-38. [PMID: 38781605 PMCID: PMC12044431 DOI: 10.1146/annurev-micro-041222-023745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Fungal infections continue to represent a major threat to public health, particularly with the emergence of multidrug-resistant fungal pathogens. As part of the innate immune response, the host modulates the availability of metals as armament against pathogenic microbes, including fungi. The transition metals Fe, Cu, Zn, and Mn are essential micronutrients for all life forms, but when present in excess, these same metals are potent toxins. The host exploits the double-edged sword of these metals, and will either withhold metal micronutrients from pathogenic fungi or attack them with toxic doses. In response to these attacks, fungal pathogens cleverly adapt by modulating metal transport, metal storage, and usage of metals as cofactors for enzymes. Here we review the current state of understanding on Fe, Cu, Zn, and Mn at the host-fungal pathogen battleground and provide perspectives for future research, including a hope for new antifungals based on metals.
Collapse
Affiliation(s)
- Ritu Garg
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| | - Marika S David
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| | - Shuyi Yang
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| | - Valeria C Culotta
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| |
Collapse
|
4
|
Palos-Fernández R, Aguilar-Pontes MV, Puebla-Planas G, Berger H, Studt-Reinhold L, Strauss J, Di Pietro A, López-Berges MS. Copper acquisition is essential for plant colonization and virulence in a root-infecting vascular wilt fungus. PLoS Pathog 2024; 20:e1012671. [PMID: 39495784 PMCID: PMC11563359 DOI: 10.1371/journal.ppat.1012671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/14/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
Plant pathogenic fungi provoke devastating agricultural losses and are difficult to control. How these organisms acquire micronutrients during growth in the host environment remains poorly understood. Here we show that efficient regulation of copper acquisition mechanisms is crucial for plant colonization and virulence in the soilborne ascomycete Fusarium oxysporum, the causal agent of vascular wilt disease in more than 150 different crops. Using a combination of RNA-seq and ChIP-seq, we establish a direct role of the transcriptional regulator Mac1 in activation of copper deficiency response genes, many of which are induced during plant infection. Loss of Mac1 impaired growth of F. oxysporum under low copper conditions and abolishes pathogenicity on tomato plants and on the invertebrate animal host Galleria mellonella. Importantly, overexpression of two Mac1 target genes encoding a copper reductase and a copper transporter was sufficient to restore virulence in the mac1 mutant background. Our results establish a previously unrecognized role of copper reduction and uptake in fungal infection of plants and reveal new ways to protect crops from phytopathogens.
Collapse
Affiliation(s)
- Rafael Palos-Fernández
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain
| | - María Victoria Aguilar-Pontes
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain
| | - Gema Puebla-Planas
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain
| | - Harald Berger
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, BOKU University, Vienna, Austria
| | - Lena Studt-Reinhold
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, BOKU University, Vienna, Austria
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, BOKU University, Vienna, Austria
| | - Antonio Di Pietro
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain
| | - Manuel Sánchez López-Berges
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
5
|
Moraes D, Silva-Bailão MG, Bailão AM. Molecular aspects of copper homeostasis in fungi. ADVANCES IN APPLIED MICROBIOLOGY 2024; 129:189-229. [PMID: 39389706 DOI: 10.1016/bs.aambs.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Copper homeostasis in fungi is a tightly regulated process crucial for cellular functions. Fungi acquire copper from their environment, with transporters facilitating its uptake into the cell. Once inside, copper is utilized in various metabolic pathways, including respiration and antioxidant defense. However, excessive copper can be toxic by promoting cell damage mainly due to oxidative stress and metal displacements. Fungi employ intricate regulatory mechanisms to maintain optimal copper levels. These involve transcription factors that control the expression of genes involved in copper transport, storage, and detoxification. Additionally, chaperone proteins assist in copper trafficking within the cell, ensuring its delivery to specific targets. Furthermore, efflux pumps help remove excess copper from the cell. Altogether, these mechanisms enable fungi to balance copper levels, ensuring proper cellular function while preventing toxicity. Understanding copper homeostasis in fungi is not only essential for fungal biology but also holds implications for various applications, including biotechnology and antifungal drug development.
Collapse
Affiliation(s)
- Dayane Moraes
- Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | | | | |
Collapse
|
6
|
Jia LJ, González K, Orasch T, Schmidt F, Brakhage AA. Manipulation of host phagocytosis by fungal pathogens and therapeutic opportunities. Nat Microbiol 2024; 9:2216-2231. [PMID: 39187614 DOI: 10.1038/s41564-024-01780-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
An important host defence mechanism against pathogens is intracellular killing, which is achieved through phagocytosis, a cellular process for engulfing and neutralizing extracellular particles. Phagocytosis results in the formation of matured phagolysosomes, which are specialized compartments that provide a hostile environment and are considered the end point of the degradative pathway. However, all fungal pathogens studied to date have developed strategies to manipulate phagosomal function directly and also indirectly by redirecting phagosomes from the degradative pathway to a non-degradative pathway with the expulsion and even transfer of pathogens between cells. Here, using the major human fungal pathogens Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans and Histoplasma capsulatum as examples, we discuss the processes involved in host phagosome-fungal pathogen interactions, with a focus on fungal evasion strategies. We also discuss recent approaches to targeting intraphagosomal pathogens, including the redirection of phagosomes towards degradative pathways for fungal pathogen eradication.
Collapse
Affiliation(s)
- Lei-Jie Jia
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany.
- Junior Research Group Phagosome Biology and Engineering, Leibniz-HKI, Jena, Germany.
| | - Katherine González
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Thomas Orasch
- Transfer Group Anti-infectives, Leibniz-HKI, Jena, Germany
| | - Franziska Schmidt
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany.
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
7
|
Porollo A, Sayson SG, Ashbaugh A, Rebholz S, Landero Figueroa JA, Cushion MT. Insights into copper sensing and tolerance in Pneumocystis species. Front Microbiol 2024; 15:1383737. [PMID: 38812685 PMCID: PMC11133566 DOI: 10.3389/fmicb.2024.1383737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction Pneumocystis species are pathogenic fungi known to cause pneumonia in immunocompromised mammals. They are obligate to their host, replicate extracellularly in lung alveoli and thrive in the copper-enriched environment of mammalian lungs. In this study, we investigated the proteome of Pneumocystis murina, a model organism that infects mice, in the context of its copper sensing and tolerance. Methods and results The query for copper-associated annotations in FungiDB followed by a manual curation identified only 21 genes in P. murina, significantly fewer compared to other clinically relevant fungal pathogens or phylogenetically similar free-living fungi. We then employed instrumental analyses, including Size-Exclusion Chromatography Inductively Coupled Plasma Mass Spectrometry (SEC-ICP-MS), Immobilized Metal Affinity Chromatography (IMAC), and Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS), to isolate and identify copper-binding proteins from freshly extracted organisms, revealing 29 distinct cuproproteins. The RNA sequencing (RNA-seq) analysis of P. murina exposed to various CuSO4 concentrations at three temporal intervals (0.5, 2, and 5 h) indicated that significant gene expression changes occurred only under the highest CuSO4 concentration probed (100 μM) and the longest exposure duration (5 h). This stimulus led to the upregulation of 43 genes and downregulation of 27 genes compared to untreated controls. Quantitative PCR (qPCR) confirmed the expression of four out of eight selected upregulated genes, including three assumed transcription factors (PNEG_01236, PNEG_01675, and PNEG_01730) and a putative copper transporter (PNEG_02609). Notably, the three applied methodologies - homology-based annotation, SEC-ICP-MS/IMAC/LC-MS/MS, and RNA-seq - yielded largely distinct findings, with only four genes (PNEG_02587, PNEG_03319, PNEG_02584, and PNEG_02989) identified by both instrumental methods. Discussion The insights contribute to the broader knowledge of Pneumocystis copper homeostasis and provide novel facets of host-pathogen interactions for extracellular pathogens. We suggest that future studies of Pneumocystis pathogenicity and copper stress survival should consider the entire spectrum of identified genes.
Collapse
Affiliation(s)
- Aleksey Porollo
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Steven G. Sayson
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, United States
- Cincinnati Veterans Affairs Medical Center, Cincinnati, OH, United States
| | - Alan Ashbaugh
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, United States
- Cincinnati Veterans Affairs Medical Center, Cincinnati, OH, United States
| | - Sandra Rebholz
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, United States
- Cincinnati Veterans Affairs Medical Center, Cincinnati, OH, United States
| | | | - Melanie T. Cushion
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, United States
- Cincinnati Veterans Affairs Medical Center, Cincinnati, OH, United States
| |
Collapse
|
8
|
Moraes D, Tristão GB, Rappleye CA, Ray SC, Ribeiro-Dias F, Gomes RS, Assunção LDP, Paccez JD, Zancopé-Oliveira RM, Silva-Bailão MG, Soares CMDA, Bailão AM. The influence of a copper efflux pump in Histoplasma capsulatum virulence. FEBS J 2024; 291:744-760. [PMID: 37950580 DOI: 10.1111/febs.16999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 11/12/2023]
Abstract
During the infectious process, pathogenic microorganisms must obtain nutrients from the host in order to survive and proliferate. These nutritional sources include the metallic nutrient copper. Despite its essentiality, copper in large amounts is toxic. Host defense mechanisms use high copper poisoning as a fungicidal strategy to control infection. Transcriptional analyses showed that yeast cultured in the presence of copper or inside macrophages (24 h) had elevated expression of CRP1, a copper efflux pump, suggesting that Histoplasma capsulatum could be exposed to a high copper environment in macrophages during the innate immune stage of infection. Accordingly, macrophages cultured in high copper are more efficient in controlling H. capsulatum growth. Also, silencing of ATP7a, a copper pump that promotes the copper influx in phagosomes, increases fungal survival in macrophages. The rich copper environment faced by the fungus is not dependent on IFN-γ, since fungal CRP1 expression is induced in untreated macrophages. Appropriately, CRP1 knockdown fungal strains are more susceptible to macrophage control than wild-type yeasts. Additionally, CRP1 silencing decreases fungal burden in mice during the phase of innate immune response (4-day postinfection) and CRP1 is required for full virulence in a macrophage cell lines (J774 A.1 and RAW 264.7), as well as primary cells (BMDM). Thus, induction of fungal copper detoxifying genes during innate immunity and the attenuated virulence of CRP1-knockdown yeasts suggest that H. capsulatum is exposed to a copper-rich environment at early infection, but circumvents this condition to establish infection.
Collapse
Affiliation(s)
- Dayane Moraes
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Gabriel Brum Tristão
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Chad A Rappleye
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | - Stephanie C Ray
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | - Fátima Ribeiro-Dias
- Laboratório de Imunidade Natural (LIN), Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Rodrigo Saar Gomes
- Laboratório de Imunidade Natural (LIN), Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Leandro do Prado Assunção
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Juliano Domiraci Paccez
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Rosely Maria Zancopé-Oliveira
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Mirelle Garcia Silva-Bailão
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
9
|
Rappleye CA. Targeted gene deletions in the dimorphic fungal pathogen Histoplasma using an optimized episomal CRISPR/Cas9 system. mSphere 2023; 8:e0017823. [PMID: 37389430 PMCID: PMC10449496 DOI: 10.1128/msphere.00178-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/22/2023] [Indexed: 07/01/2023] Open
Abstract
The rapid development of CRISPR/CRISPR-associated (Cas) systems has revolutionized the ability to produce genetic mutations in a desired locus, particularly in organisms with low rates of homologous recombination. Histoplasma is an important respiratory and systemic fungal pathogen that has few reverse genetic options. We describe an optimized CRISPR/Cas system for the efficient generation of mutations in desired genes. The limited requirements for CRISPR/Cas, namely a gene-targeting guide RNA (gRNA) and expression of a Cas endonuclease, enabled both the gRNA and the Streptococcus pyogenes Cas9 gene to be expressed from a single episomal vector. The gRNAs are expressed from a strong Pol(II) promoter, a critical parameter for increasing the recovery of mutated genes, and processed into the mature gRNA by ribozymes in the mRNA. Expression of dual-tandem gRNAs facilitates the generation of gene deletions at a good frequency which can be detected by PCR-based screening of pooled isolates resulting in the isolation of marker-less deletion mutants. The CRISPR/Cas system is encoded on an episomal telomeric vector facilitating curing strains of the CRISPR/Cas vector upon generation of the mutant. We demonstrate the successful application of this CRISPR/Cas system in diverse Histoplasma species and applicable for multiple genes. The optimized system shows promise for accelerating reverse genetic studies in Histoplasma spp. IMPORTANCE The ability to eliminate gene product functions is central to understanding molecular mechanisms. In the fungal pathogen Histoplasma, methods to inactivate or deplete gene products are inefficient, which hampers progress in defining Histoplasma's virulence mechanisms. We describe an efficient CRISPR/Cas-based system for generating gene deletions in Histoplasma and show its validation on multiple genes with selectable and non-selectable phenotypes.
Collapse
Affiliation(s)
- Chad A. Rappleye
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
10
|
Moraes D, Rodrigues JGC, Silva MG, Soares LW, Soares CMDA, Bailão AM, Silva-Bailão MG. Copper acquisition and detoxification machineries are conserved in dimorphic fungi. FUNGAL BIOL REV 2023. [DOI: 10.1016/j.fbr.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Li J, Wang X, Zou J, Yang K, Wang X, Wang Y, Zhang H, Huang H, Su X, Yao B, Luo H, Qin X. Identification and Characterization of the Determinants of Copper Resistance in the Acidophilic Fungus Acidomyces richmondensis MEY-1 Using the CRISPR/Cas9 System. Appl Environ Microbiol 2023; 89:e0210722. [PMID: 36912653 PMCID: PMC10056952 DOI: 10.1128/aem.02107-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
Copper (Cu) homeostasis has not been well documented in filamentous fungi, especially extremophiles. One of the main obstacles impeding their characterization is the lack of a powerful genome-editing tool. In this study, we applied a CRISPR/Cas9 system for efficient targeted gene disruption in the acidophilic fungus Acidomyces richmondensis MEY-1, formerly known as Bispora sp. strain MEY-1. Using this system, we investigated the basis of Cu tolerance in strain MEY-1. This strain has extremely high Cu tolerance among filamentous fungi, and the transcription factor ArAceA (A. richmondensis AceA) has been shown to be involved in this process. The ArAceA deletion mutant (ΔArAceA) exhibits specific growth defects at Cu concentrations of ≥10 mM and is transcriptionally more sensitive to Cu than the wild-type strain. In addition, the putative metallothionein ArCrdA was involved in Cu tolerance only under high Cu concentrations. MEY-1 has no Aspergillus nidulans CrpA homologs, which are targets of AceA-like transcription factors and play a role in Cu tolerance. Instead, we identified the Cu-transporting P-type ATPase ArYgA, homologous to A. nidulans YgA, which was involved in pigmentation rather than Cu tolerance. When the ΔArYgA mutant was grown on medium supplemented with Cu ions, the black color was completely restored. The lack of CrpA homologs in A. richmondensis MEY-1 and its high tolerance to Cu suggest that a novel Cu detoxification mechanism differing from the AceA-CrpA axis exists. IMPORTANCE Filamentous fungi are widely distributed worldwide and play an important ecological role as decomposers. However, the mechanisms of their adaptability to various environments are not fully understood. Various extremely acidophilic filamentous fungi have been isolated from acidic mine drainage (AMD) with extremely low pH and high heavy metal and sulfate concentrations, including A. richmondensis. The lack of genetic engineering tools, particularly genome-editing tools, hinders the study of these acidophilic and heavy metal-resistant fungi at the molecular level. Here, we first applied a CRISPR/Cas9-mediated gene-editing system to A. richmondensis MEY-1. Using this system, we identified and characterized the determinants of Cu resistance in A. richmondensis MEY-1. The conserved roles of the Cu-binding transcription factor ArAceA in Cu tolerance and the Cu-transporting P-type ATPase ArYgA in the Cu-dependent production of pigment were confirmed. Our findings provide insights into the molecular basis of Cu tolerance in the acidophilic fungus A. richmondensis MEY-1. Furthermore, the CRISPR/Cas9 system used here would be a powerful tool for studies of the mechanisms of adaptability of acidophilic fungi to extreme environments.
Collapse
Affiliation(s)
- Jinyang Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiao Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiahuan Zou
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kun Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaolu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Honglian Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyun Su
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xing Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
Chu B, Hong Z, Zheng X. The core genes of cuproptosis assists in discerning prognostic and immunological traits of clear cell renal cell carcinoma. Front Oncol 2022; 12:925411. [PMID: 36212447 PMCID: PMC9533068 DOI: 10.3389/fonc.2022.925411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Cuproptosis, a nascent and unique pattern of cell death, is poised to spark a new rush of biological research. Yet, the subsumed mechanism of cuproptosis in carcinoma is not wholly clarified. The exclusive aim of this work is to define a novel classification algorithm and risk-prognosis scoring framework based on the expression modalities of cuproptosis genes to monitor clear cell renal cell carcinoma (ccRCC) patients’ prognosis and immunotherapeutic response. Methods We pooled ccRCC data from three large-scale databases as the training subset and gathered a panel of clinical queues, termed the Taizhou cohort, which served as the validation setup. Wilcox test was conducted for comparison of expression variation, while the cox analysis and KM curves were utilized to visualize prognosis. Unsupervised clustering analysis was used to identify cuproptosis phenotypes in ccRCC. Concurrently, LASSO regression-based computational scoring model. A step further, gene set enrichment analysis (GSEA) was performed to check potential biological processes and the “CIBERSORT” R package was used to estimate the proportion of immune cells. To last, immunohistochemistry and qRT-PCR were carried out for the assay of critical genes for cuproptosis. Results Here, we glimpse the prognostic power of cuproptosis genes in pan-cancer by investigating 33 cancers with multi-omics data to map their genetic heterogeneity landscape. In parallel, we devoted extra attention to their strategic potential role in ccRCC, identifying two phenotypes of cuproptosis with different immune microenvironmental characteristics by pooling ccRCC data from three large-scale databases. Additionally, we compiled a cuproptosis scoring system for clinicians to determine the prognosis, immunotherapy response, and chemosensitivity of ccRCC patients. Notably, we assembled a clinical cohort sample to validate the pivotal gene for cuproptosis, FDX1, to supply more clues to translate the biological significance of cuproptosis in ccRCC. Conclusion In all, our investigations highlight that cuproptosis is involved in various components of ccRCC and assists in the formation of the tumor immune microenvironment. These results provide partial insights to further comprehend the molecular mechanisms of cuproptosis in ccRCC and could be helpful for the development of personalized therapeutic strategies targeting copper or cuproptosis.
Collapse
Affiliation(s)
- Binxiang Chu
- Departmentof Orthopedic, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhenghua Hong
- Departmentof Orthopedic, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- *Correspondence: Xiaohe Zheng, ; Zhenghua Hong,
| | - Xiaohe Zheng
- Department of Pathology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- *Correspondence: Xiaohe Zheng, ; Zhenghua Hong,
| |
Collapse
|