1
|
Hou S, Gao C, Liu J, Chen X, Wei W, Song W, Hu G, Li X, Wu J, Liu L. Med3-mediated NADPH generation to help Saccharomyces cerevisiae tolerate hyperosmotic stress. Appl Environ Microbiol 2024; 90:e0096824. [PMID: 39082808 PMCID: PMC11337799 DOI: 10.1128/aem.00968-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024] Open
Abstract
Hyperosmotic stress tolerance is crucial for Saccharomyces cerevisiae in producing value-added products from renewable feedstock. The limited understanding of its tolerance mechanism has impeded the application of these microbial cell factories. Previous studies have shown that Med3 plays a role in hyperosmotic stress in S. cerevisiae. However, the specific function of Med3 in hyperosmotic stress tolerance remains unclear. In this study, we showed that the deletion of the mediator Med3 impairs S. cerevisiae growth under hyperosmotic stress. Phenotypic analyses and yeast two-hybrid assays revealed that Med3 interacts with the transcription factor Stb5 to regulate the expression of the genes gnd1 and ald6, which are involved in NADPH production under hyperosmotic stress conditions. The deletion of med3 resulted in a decrease in intracellular NADPH content, leading to increased oxidative stress and elevated levels of intracellular reactive oxygen species under hyperosmotic stress, thereby impacting bud formation. These findings highlight the significant role of Med3 as a regulator in maintaining NADPH generation and redox homeostasis in S. cerevisiae during hyperosmotic stress.IMPORTANCEHyperosmotic stress tolerance in the host strain is a significant challenge for fermentation performance in industrial production. In this study, we showed that the S. cerevisiae mediator Med3 is essential for yeast growth under hyperosmotic conditions. Med3 interacts with the transcription factor Stb5 to regulate the expression of genes involved in the NADPH-generation system during hyperosmotic stress. Adequate NADPH ensures the timely removal of excess reactive oxygen species and supports bud formation under these conditions. This work highlights the crucial role of Med3 as a regulator in maintaining NADPH generation and redox homeostasis in S. cerevisiae during hyperosmotic stress.
Collapse
Affiliation(s)
- Shuo Hou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Jia Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Xiulai Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Xiaomin Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Sanz AB, García R, Pavón-Vergés M, Rodríguez-Peña JM, Arroyo J. Control of Gene Expression via the Yeast CWI Pathway. Int J Mol Sci 2022; 23:ijms23031791. [PMID: 35163713 PMCID: PMC8836261 DOI: 10.3390/ijms23031791] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 12/18/2022] Open
Abstract
Living cells exposed to stressful environmental situations can elicit cellular responses that guarantee maximal cell survival. Most of these responses are mediated by mitogen-activated protein kinase (MAPK) cascades, which are highly conserved from yeast to humans. Cell wall damage conditions in the yeast Saccharomyces cerevisiae elicit rescue mechanisms mainly associated with reprogramming specific transcriptional responses via the cell wall integrity (CWI) pathway. Regulation of gene expression by this pathway is coordinated by the MAPK Slt2/Mpk1, mainly via Rlm1 and, to a lesser extent, through SBF (Swi4/Swi6) transcription factors. In this review, we summarize the molecular mechanisms controlling gene expression upon cell wall stress and the role of chromatin structure in these processes. Some of these mechanisms are also discussed in the context of other stresses governed by different yeast MAPK pathways. Slt2 regulates both transcriptional initiation and elongation by interacting with chromatin at the promoter and coding regions of CWI-responsive genes but using different mechanisms for Rlm1- and SBF-dependent genes. Since MAPK pathways are very well conserved in eukaryotic cells and are essential for controlling cellular physiology, improving our knowledge regarding how they regulate gene expression could impact the future identification of novel targets for therapeutic intervention.
Collapse
|
3
|
de Nadal E, Posas F. OUP accepted manuscript. FEMS Yeast Res 2022; 22:6543702. [PMID: 35254447 PMCID: PMC8953452 DOI: 10.1093/femsyr/foac013] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Eulàlia de Nadal
- Corresponding author: Institute for Research in Biomedicine (IRB Barcelona) Parc Científic de Barcelona c/ Baldiri Reixac, 10. 08028 Barcelona - Spain. E-mail:
| | - Francesc Posas
- Corresponding author: Institute for Research in Biomedicine (IRB Barcelona) Parc Científic de Barcelona c/ Baldiri Reixac, 10. 08028 Barcelona - Spain. E-mail:
| |
Collapse
|
4
|
Ma H, Li L, Gai Y, Zhang X, Chen Y, Zhuo X, Cao Y, Jiao C, Gmitter FG, Li H. Histone Acetyltransferases and Deacetylases Are Required for Virulence, Conidiation, DNA Damage Repair, and Multiple Stresses Resistance of Alternaria alternata. Front Microbiol 2021; 12:783633. [PMID: 34880849 PMCID: PMC8645686 DOI: 10.3389/fmicb.2021.783633] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/02/2021] [Indexed: 01/16/2023] Open
Abstract
Histone acetylation, which is critical for transcriptional regulation and various biological processes in eukaryotes, is a reversible dynamic process regulated by HATs and HDACs. This study determined the function of 6 histone acetyltransferases (HATs) (Gcn5, RTT109, Elp3, Sas3, Sas2, Nat3) and 6 histone deacetylases (HDACs) (Hos2, Rpd3, Hda1, Hos3, Hst2, Sir2) in the phytopathogenic fungus Alternaria alternata by analyzing targeted gene deletion mutants. Our data provide evidence that HATs and HDACs are both required for mycelium growth, cell development and pathogenicity as many gene deletion mutants (ΔGcn5, ΔRTT109, ΔElp3, ΔSas3, ΔNat3, ΔHos2, and ΔRpd3) displayed reduced growth, conidiation or virulence at varying degrees. In addition, HATs and HDACs are involved in the resistance to multiple stresses such as oxidative stress (Sas3, Gcn5, Elp3, RTT109, Hos2), osmotic stress (Sas3, Gcn5, RTT109, Hos2), cell wall-targeting agents (Sas3, Gcn5, Hos2), and fungicide (Gcn5, Hos2). ΔGcn5, ΔSas3, and ΔHos2 displayed severe growth defects on sole carbon source medium suggesting a vital role of HATs and HDACs in carbon source utilization. More SNPs were generated in ΔGcn5 in comparison to wild-type when they were exposed to ultraviolet ray. Moreover, ΔRTT109, ΔGcn5, and ΔHos2 showed severe defects in resistance to DNA-damaging agents, indicating the critical role of HATs and HDACs in DNA damage repair. These phenotypes correlated well with the differentially expressed genes in ΔGcn5 and ΔHos2 that are essential for carbon sources metabolism, DNA damage repair, ROS detoxification, and asexual development. Furthermore, Gcn5 is required for the acetylation of H3K4. Overall, our study provides genetic evidence to define the central role of HATs and HDACs in the pathological and biological functions of A. alternata.
Collapse
Affiliation(s)
- Haijie Ma
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China.,Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou, China.,Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Lei Li
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yunpeng Gai
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaoyan Zhang
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yanan Chen
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaokang Zhuo
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Yingzi Cao
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Chen Jiao
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Fred G Gmitter
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Hongye Li
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Cooper DG, Jiang Y, Skuodas S, Wang L, Fassler JS. Possible Role for Allelic Variation in Yeast MED15 in Ecological Adaptation. Front Microbiol 2021; 12:741572. [PMID: 34733258 PMCID: PMC8558680 DOI: 10.3389/fmicb.2021.741572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
The propensity for Saccharomyces cerevisiae yeast to ferment sugars into ethanol and CO2 has long been useful in the production of a wide range of food and drink. In the production of alcoholic beverages, the yeast strain selected for fermentation is crucial because not all strains are equally proficient in tolerating fermentation stresses. One potential mechanism by which domesticated yeast may have adapted to fermentation stresses is through changes in the expression of stress response genes. MED15 is a general transcriptional regulator and RNA Pol II Mediator complex subunit which modulates the expression of many metabolic and stress response genes. In this study, we explore the role of MED15 in alcoholic fermentation. In addition, we ask whether MED15 alleles from wine, sake or palm wine yeast improve fermentation activity and grape juice fermentation stress responses. And last, we investigate to what extent any differences in activity are due to allelic differences in the lengths of three polyglutamine tracts in MED15. We find that strains lacking MED15 are deficient in fermentation and fermentation stress responses and that MED15 alleles from alcoholic beverage yeast strains can improve both the fermentation capacity and the response to ethanol stresses when transplanted into a standard laboratory strain. Finally, we find that polyglutamine tract length in the Med15 protein is one determinant in the efficiency of the alcoholic fermentation process. These data lead to a working model in which polyglutamine tract length and other types of variability within transcriptional hubs like the Mediator subunit, Med15, may contribute to a reservoir of transcriptional profiles that may provide a fitness benefit in the face of environmental fluctuations.
Collapse
Affiliation(s)
- David G Cooper
- Biology Department, University of Iowa, Iowa City, IA, United States
| | - Yishuo Jiang
- Biology Department, University of Iowa, Iowa City, IA, United States
| | - Sydney Skuodas
- Biology Department, University of Iowa, Iowa City, IA, United States
| | - Luying Wang
- Biology Department, University of Iowa, Iowa City, IA, United States
| | - Jan S Fassler
- Biology Department, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
6
|
Carrasco-Navarro U, Aguirre J. H 2O 2 Induces Major Phosphorylation Changes in Critical Regulators of Signal Transduction, Gene Expression, Metabolism and Developmental Networks in Aspergillus nidulans. J Fungi (Basel) 2021; 7:624. [PMID: 34436163 PMCID: PMC8399174 DOI: 10.3390/jof7080624] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) regulate several aspects of cell physiology in filamentous fungi including the antioxidant response and development. However, little is known about the signaling pathways involved in these processes. Here, we report Aspergillus nidulans global phosphoproteome during mycelial growth and show that under these conditions, H2O2 induces major changes in protein phosphorylation. Among the 1964 phosphoproteins we identified, H2O2 induced the phosphorylation of 131 proteins at one or more sites as well as the dephosphorylation of a larger set of proteins. A detailed analysis of these phosphoproteins shows that H2O2 affected the phosphorylation of critical regulatory nodes of phosphoinositide, MAPK, and TOR signaling as well as the phosphorylation of multiple proteins involved in the regulation of gene expression, primary and secondary metabolism, and development. Our results provide a novel and extensive protein phosphorylation landscape in A. nidulans, indicating that H2O2 induces a shift in general metabolism from anabolic to catabolic, and the activation of multiple stress survival pathways. Our results expand the significance of H2O2 in eukaryotic cell signaling.
Collapse
Affiliation(s)
| | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, Ciudad de México 04510, Mexico;
| |
Collapse
|
7
|
Wosika V, Pelet S. Single-particle imaging of stress-promoters induction reveals the interplay between MAPK signaling, chromatin and transcription factors. Nat Commun 2020; 11:3171. [PMID: 32576833 PMCID: PMC7311541 DOI: 10.1038/s41467-020-16943-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 06/02/2020] [Indexed: 01/25/2023] Open
Abstract
Precise regulation of gene expression in response to environmental changes is crucial for cell survival, adaptation and proliferation. In eukaryotic cells, extracellular signal integration is often carried out by Mitogen-Activated Protein Kinases (MAPK). Despite a robust MAPK signaling activity, downstream gene expression can display a great variability between single cells. Using a live mRNA reporter, here we monitor the dynamics of transcription in Saccharomyces cerevisiae upon hyper-osmotic shock. We find that the transient activity of the MAPK Hog1 opens a temporal window where stress-response genes can be activated. We show that the first minutes of Hog1 activity are essential to control the activation of a promoter. Chromatin repression on a locus slows down this transition and contributes to the variability in gene expression, while binding of transcription factors increases the level of transcription. However, soon after Hog1 activity peaks, negative regulators promote chromatin closure of the locus and transcription progressively stops.
Collapse
Affiliation(s)
- Victoria Wosika
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Serge Pelet
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
8
|
Viéitez C, Martínez-Cebrián G, Solé C, Böttcher R, Potel CM, Savitski MM, Onnebo S, Fabregat M, Shilatifard A, Posas F, de Nadal E. A genetic analysis reveals novel histone residues required for transcriptional reprogramming upon stress. Nucleic Acids Res 2020; 48:3455-3475. [PMID: 32064518 PMCID: PMC7144942 DOI: 10.1093/nar/gkaa081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Abstract
Cells have the ability to sense, respond and adapt to environmental fluctuations. Stress causes a massive reorganization of the transcriptional program. Many examples of histone post-translational modifications (PTMs) have been associated with transcriptional activation or repression under steady-state growth conditions. Comparatively less is known about the role of histone PTMs in the cellular adaptive response to stress. Here, we performed high-throughput genetic screenings that provide a novel global map of the histone residues required for transcriptional reprogramming in response to heat and osmotic stress. Of note, we observed that the histone residues needed depend on the type of gene and/or stress, thereby suggesting a 'personalized', rather than general, subset of histone requirements for each chromatin context. In addition, we identified a number of new residues that unexpectedly serve to regulate transcription. As a proof of concept, we characterized the function of the histone residues H4-S47 and H4-T30 in response to osmotic and heat stress, respectively. Our results uncover novel roles for the kinases Cla4 and Ste20, yeast homologs of the mammalian PAK2 family, and the Ste11 MAPK as regulators of H4-S47 and H4-T30, respectively. This study provides new insights into the role of histone residues in transcriptional regulation under stress conditions.
Collapse
Affiliation(s)
- Cristina Viéitez
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| | - Gerard Martínez-Cebrián
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Carme Solé
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - René Böttcher
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Clement M Potel
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| | - Mikhail M Savitski
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| | - Sara Onnebo
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
| | - Marc Fabregat
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, IL 60611, USA
| | - Francesc Posas
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Eulàlia de Nadal
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| |
Collapse
|
9
|
Wang L, Chen R, Weng Q, Lin S, Wang H, Li L, Fuchs BB, Tan X, Mylonakis E. SPT20 Regulates the Hog1-MAPK Pathway and Is Involved in Candida albicans Response to Hyperosmotic Stress. Front Microbiol 2020; 11:213. [PMID: 32153525 PMCID: PMC7047840 DOI: 10.3389/fmicb.2020.00213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/30/2020] [Indexed: 11/22/2022] Open
Abstract
Candida albicans is the most common fungal pathogen and relies on the Hog1-MAPK pathway to resist osmotic stress posed by the environment or during host invasions. Here, we investigated the role of SPT20 in response to osmotic stress. Testing a C. albicans spt20Δ/Δ mutant, we found it was sensitive to osmotic stress. Using sequence alignment, we identified the conserved functional domains between CaSpt20 and ScSpt20. Reconstitution of the Spt20 function in a spt20Δ/CaSPT20 complemented strain found CaSPT20 can suppress the high sensitivity to hyperosmotic stressors, a cell wall stress agent, and antifungal drugs in the Saccharomyces cerevisiae spt20Δ/Δ mutant background. We measured the cellular glycerol accumulation and found it was significantly lower in the C. albicans spt20Δ/Δ mutant strain, compared to the wild type strain SC5314 (P < 0.001). This result was also supported by quantitative reverse transcription-PCR, which showed the expression levels of gene contributing to glycerol accumulation were reduced in Caspt20Δ/Δ compared to wild type (GPD2 and TGL1, P < 0.001), while ADH7 and AGP2, whose expression can lead to glycerol decrease, were induced when cells were exposed to high osmolarity (ADH7, P < 0.001; AGP2, P = 0.002). In addition, we tested the transcription levels of Hog1-dependent osmotic stress response genes, and found that they were significantly upregulated in wild type cells encountering hyperosmolarity, while the expression of HGT10, SKO1, CAT1, and SLP3 were not induced when SPT20 was deleted. Although the transcript of ORF19.3661 and ORF19.4370 in Caspt20Δ/Δ was induced in the presence of 1 M NaCl, the levels were less than what was observed in the wild type (ORF19.3661, P = 0.007; ORF19.4370, P = 0.011). Moreover, the deletion of CaSPT20 in C. albicans reduced phosphorylation levels of Hog1. These findings suggested that SPT20 is conserved between yeast and C. albicans and plays an important role in adapting to osmotic stress through regulating Hog1-MAPK pathway.
Collapse
Affiliation(s)
- Lianfang Wang
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruilan Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Intensive Care Unit, Fangcun Branch of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Qiuting Weng
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoming Lin
- Department of Respiratory, Longhua District People’s Hospital, Shenzhen, China
| | - Huijun Wang
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Li
- Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Beth Burgwyn Fuchs
- Department of Medicine, Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Xiaojiang Tan
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Eleftherios Mylonakis
- Department of Medicine, Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
10
|
Deletion of the SKO1 Gene in a hog1 Mutant Reverts Virulence in Candida albicans. J Fungi (Basel) 2019; 5:jof5040107. [PMID: 31731583 PMCID: PMC6958353 DOI: 10.3390/jof5040107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 11/18/2022] Open
Abstract
Candida albicans displays the ability to adapt to a wide variety of environmental conditions, triggering signaling pathways and transcriptional regulation. Sko1 is a transcription factor that was previously involved in early hypoxic response, cell wall remodeling, and stress response. In the present work, the role of sko1 mutant in in vivo and ex vivo studies was explored. The sko1 mutant behaved as its parental wild type strain regarding the ability to colonize murine intestinal tract, ex vivo adhesion to murine gut epithelium, or systemic virulence. These observations suggest that Sko1 is expendable during commensalism or pathogenesis. Nevertheless, the study of the hog1 sko1 double mutant showed unexpected phenotypes. Previous researches reported that the deletion of the HOG1 gene led to avirulent C. albicans mutant cell, which was, therefore, unable to establish as a commensal in a gastrointestinal murine model. Here, we show that the deletion of sko1 in a hog1 background reverted the virulence of the hog1 mutant in a systemic infection model in Galleria mellonella larvae and slightly improved the ability to colonize the murine gut in a commensalism animal model compared to the hog1 mutant. These results indicate that Sko1 acts as a repressor of virulence related genes, concluding that Sko1 plays a relevant role during commensalism and systemic infection.
Collapse
|
11
|
Pérez-Martínez ME, Benet M, Alepuz P, Tordera V. Nut1/Hos1 and Sas2/Rpd3 control the H3 acetylation of two different sets of osmotic stress-induced genes. Epigenetics 2019; 15:251-271. [PMID: 31512982 DOI: 10.1080/15592294.2019.1664229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Epigenetic information is able to interact with the cellular environment and could be especially useful for reprograming gene expression in response to a physiological perturbation. In fact the genes induced or repressed by osmotic stress undergo significant changes in terms of the levels of various histone modifications, especially in the acetylation levels of histone H3. Exposing yeast to high osmolarity results in the activation of stress-activated protein kinase Hog1, which plays a central role in gene expression control. We evaluated the connection between the presence of Hog1 and changes in histone H3 acetylation in stress-regulated genes. We found a parallel increase in the acetylation of lysines 9 and 14 of H3 in induced genes during stress, which was largely dependent on Hog1 at the genome-wide level. Conversely, we observed that acetylation decreased in repressed genes and was not dependent on Hog1. However, lack of Hog1 sometimes produced different, and even opposite, effects on the induction and acetylation of H3 of each gene. We also found that the acetylation state of lysine 9 of H3 was altered in the strains deficient in Nut1 HAT and Hos1 HDAC in the genes up-regulated during osmotic stress in an Msn2/Msn4-independent manner, while lysine 9 acetylation of H3 varied in the strains deficient in Sas2 HAT and Rpd3 HDAC for the Msn2/Msn4-dependent induced genes. The results presented here show new, unexpected participants in gene regulation processes in response to environmental perturbations.
Collapse
Affiliation(s)
- María E Pérez-Martínez
- Departament de Bioquímica i Biologia Molecular and ERI Biotecmed, Universitat de València, Burjassot, Spain
| | - Marta Benet
- Departament de Bioquímica i Biologia Molecular and ERI Biotecmed, Universitat de València, Burjassot, Spain
| | - Paula Alepuz
- Departament de Bioquímica i Biologia Molecular and ERI Biotecmed, Universitat de València, Burjassot, Spain
| | - Vicente Tordera
- Departament de Bioquímica i Biologia Molecular and ERI Biotecmed, Universitat de València, Burjassot, Spain
| |
Collapse
|
12
|
Cooper DG, Fassler JS. Med15: Glutamine-Rich Mediator Subunit with Potential for Plasticity. Trends Biochem Sci 2019; 44:737-751. [PMID: 31036407 DOI: 10.1016/j.tibs.2019.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/16/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023]
Abstract
The Mediator complex is required for basal activity of the RNA polymerase (Pol) II transcriptional apparatus and for responsiveness to some activator proteins. Med15, situated in the Mediator tail, plays a role in transmitting regulatory information from distant DNA-bound transcription factors to the transcriptional apparatus poised at promoters. Yeast Med15 and its orthologs share an unusual, glutamine-rich amino acid composition. Here, we discuss this sequence feature and the tendency of polyglutamine tracts to vary in length among strains of Saccharomyces cerevisiae, and we propose that different polyglutamine tract lengths may be adaptive within certain domestication habitats.
Collapse
Affiliation(s)
- David G Cooper
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Jan S Fassler
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
13
|
Dose dependent gene expression is dynamically modulated by the history, physiology and age of yeast cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:457-471. [DOI: 10.1016/j.bbagrm.2019.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 12/14/2022]
|
14
|
Sellam A, Chaillot J, Mallick J, Tebbji F, Richard Albert J, Cook MA, Tyers M. The p38/HOG stress-activated protein kinase network couples growth to division in Candida albicans. PLoS Genet 2019; 15:e1008052. [PMID: 30921326 PMCID: PMC6456229 DOI: 10.1371/journal.pgen.1008052] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/09/2019] [Accepted: 02/28/2019] [Indexed: 12/26/2022] Open
Abstract
Cell size is a complex trait that responds to developmental and environmental cues. Quantitative size analysis of mutant strain collections disrupted for protein kinases and transcriptional regulators in the pathogenic yeast Candida albicans uncovered 66 genes that altered cell size, few of which overlapped with known size genes in the budding yeast Saccharomyces cerevisiae. A potent size regulator specific to C. albicans was the conserved p38/HOG MAPK module that mediates the osmostress response. Basal HOG activity inhibited the SBF G1/S transcription factor complex in a stress-independent fashion to delay the G1/S transition. The HOG network also governed ribosome biogenesis through the master transcriptional regulator Sfp1. Hog1 bound to the promoters and cognate transcription factors for ribosome biogenesis regulons and interacted genetically with the SBF G1/S machinery, and thereby directly linked cell growth and division. These results illuminate the evolutionary plasticity of size control and identify the HOG module as a nexus of cell cycle and growth regulation.
Collapse
Affiliation(s)
- Adnane Sellam
- Infectious Diseases Research Centre (CRI), CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Julien Chaillot
- Infectious Diseases Research Centre (CRI), CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada
| | - Jaideep Mallick
- Institute for Research in Immunology and Cancer (IRIC), Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Faiza Tebbji
- Infectious Diseases Research Centre (CRI), CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada
| | - Julien Richard Albert
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael A. Cook
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer (IRIC), Department of Medicine, Université de Montréal, Montréal, Québec, Canada
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| |
Collapse
|
15
|
Acid Stress Triggers Resistance to Acetic Acid-Induced Regulated Cell Death through Hog1 Activation Which Requires RTG2 in Yeast. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4651062. [PMID: 30931079 PMCID: PMC6410445 DOI: 10.1155/2019/4651062] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/13/2018] [Indexed: 11/29/2022]
Abstract
Acid stress causes resistance to acetic acid-induced regulated cell death (AA-RCD) in budding yeast, resulting in catalase activation. In order to explore the molecular determinants of evasion of AA-RCD triggered by acid stress adaptation, we studied the involvement and the possible interplay of the master regulator of transcription high-osmolarity glycerol 1 (HOG1) and RTG2, a positive regulator of the RTG-dependent mitochondrial retrograde signaling. Viability, DNA fragmentation, and ROS accumulation have been analyzed in wild-type and mutant cells lacking HOG1 and/or RTG2. Catalase activity and transcription of CTT1 and CTA1, coding the cytosolic and peroxisomal/mitochondrial catalase, respectively, as well as Hog1 phosphorylation, were also analyzed. Our results show that HOG1 is essential for resistance to AA-RCD and its activation results in the upregulation of CTT1, but not CTA1, transcription during acid stress adaptation. RTG2 is required for Hog1-dependent CTT1 upregulation upon acid stress, despite failure of RTG pathway activation. We give evidence that Rtg2 has a cytoprotective role and can act as a general cell stress sensor independent of Rtg1/3-dependent transcription.
Collapse
|
16
|
Sanz AB, García R, Rodríguez-Peña JM, Nombela C, Arroyo J. Slt2 MAPK association with chromatin is required for transcriptional activation of Rlm1 dependent genes upon cell wall stress. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:1029-1039. [DOI: 10.1016/j.bbagrm.2018.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/25/2018] [Accepted: 09/12/2018] [Indexed: 11/26/2022]
|
17
|
Candida glabrata Med3 Plays a Role in Altering Cell Size and Budding Index To Coordinate Cell Growth. Appl Environ Microbiol 2018; 84:AEM.00781-18. [PMID: 29776932 DOI: 10.1128/aem.00781-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
Candida glabrata is a promising microorganism for the production of organic acids. Here, we report deletion and quantitative-expression approaches to elucidate the role of C. glabrata Med3AB (CgMed3AB), a subunit of the mediator transcriptional coactivator, in regulating cell growth. Deletion of CgMed3AB caused an 8.6% decrease in final biomass based on growth curve plots and 10.5% lower cell viability. Based on transcriptomics data, the reason for this growth defect was attributable to changes in expression of genes involved in pyruvate and acetyl-coenzyme A (CoA)-related metabolism in a Cgmed3abΔ strain. Furthermore, the mRNA level of acetyl-CoA synthetase was downregulated after deleting Cgmed3ab, resulting in 22.8% and 21% lower activity of acetyl-CoA synthetase and cellular acetyl-CoA, respectively. Additionally, the mRNA level of CgCln3, whose expression depends on acetyl-CoA, was 34% lower in this strain. As a consequence, the cell size and budding index in the Cgmed3abΔ strain were both reduced. Conversely, overexpression of Cgmed3ab led to 16.8% more acetyl-CoA and 120% higher CgCln3 mRNA levels, as well as 19.1% larger cell size and a 13.3% higher budding index than in wild-type cells. Taken together, these results suggest that CgMed3AB regulates cell growth in C. glabrata by coordinating homeostasis between cellular acetyl-CoA and CgCln3.IMPORTANCE This study demonstrates that CgMed3AB can regulate cell growth in C. glabrata by coordinating the homeostasis of cellular acetyl-CoA metabolism and the cell cycle cyclin CgCln3. Specifically, we report that CgMed3AB regulates the cellular acetyl-CoA level, which induces the transcription of Cgcln3, finally resulting in alterations to the cell size and budding index. In conclusion, we report that CgMed3AB functions as a wheel responsible for driving cellular acetyl-CoA metabolism, indirectly inducing the transcription of Cgcln3 and coordinating cell growth. We propose that Mediator subunits may represent a vital regulatory target modulating cell growth in C. glabrata.
Collapse
|
18
|
García-Molinero V, García-Martínez J, Reja R, Furió-Tarí P, Antúnez O, Vinayachandran V, Conesa A, Pugh BF, Pérez-Ortín JE, Rodríguez-Navarro S. The SAGA/TREX-2 subunit Sus1 binds widely to transcribed genes and affects mRNA turnover globally. Epigenetics Chromatin 2018; 11:13. [PMID: 29598828 PMCID: PMC5875001 DOI: 10.1186/s13072-018-0184-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/23/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Eukaryotic transcription is regulated through two complexes, the general transcription factor IID (TFIID) and the coactivator Spt-Ada-Gcn5 acetyltransferase (SAGA). Recent findings confirm that both TFIID and SAGA contribute to the synthesis of nearly all transcripts and are recruited genome-wide in yeast. However, how this broad recruitment confers selectivity under specific conditions remains an open question. RESULTS Here we find that the SAGA/TREX-2 subunit Sus1 associates with upstream regulatory regions of many yeast genes and that heat shock drastically changes Sus1 binding. While Sus1 binding to TFIID-dominated genes is not affected by temperature, its recruitment to SAGA-dominated genes and RP genes is significantly disturbed under heat shock, with Sus1 relocated to environmental stress-responsive genes in these conditions. Moreover, in contrast to recent results showing that SAGA deubiquitinating enzyme Ubp8 is dispensable for RNA synthesis, genomic run-on experiments demonstrate that Sus1 contributes to synthesis and stability of a wide range of transcripts. CONCLUSIONS Our study provides support for a model in which SAGA/TREX-2 factor Sus1 acts as a global transcriptional regulator in yeast but has differential activity at yeast genes as a function of their transcription rate or during stress conditions.
Collapse
Affiliation(s)
- Varinia García-Molinero
- Gene Expression and RNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Eduardo Primo Yúfera 3, 46012, Valencia, Spain.,Inserm Avenir: 'Biology of Repetitive Sequences'-Institute of Human Genetics, CNRS UPR1142, Montpellier, France
| | - José García-Martínez
- Departamento de Genética and E.R.I. Biotecmed, Facultad de Biología, Universitat de València, C/Dr. Moliner 50, 46100, Burjassot, Spain
| | - Rohit Reja
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, Pennsylvania, PA, 16802, USA.,Genentech Inc., South San Francisco, CA, USA
| | - Pedro Furió-Tarí
- Genomics of Gene Expression Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Oreto Antúnez
- Departamento de Bioquímica y Biología Molecular and E.R.I. Biotecmed, Facultad de Biología, Universitat de València, C/Dr. Moliner 50, 46100, Burjassot, Spain
| | - Vinesh Vinayachandran
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, Pennsylvania, PA, 16802, USA
| | - Ana Conesa
- Genomics of Gene Expression Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Eduardo Primo Yúfera 3, 46012, Valencia, Spain.,Microbiology and Cell Science Department, Institute for Food and Agricultural Sciences, University of Florida, P.O. Box 110700, Gainesville, FL, 32611-0700, USA.,Genetics Institute, University of Florida, 2033 Mowry Road, Gainesville, FL, 32610, USA
| | - B Franklin Pugh
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, Pennsylvania, PA, 16802, USA
| | - José E Pérez-Ortín
- Departamento de Bioquímica y Biología Molecular and E.R.I. Biotecmed, Facultad de Biología, Universitat de València, C/Dr. Moliner 50, 46100, Burjassot, Spain
| | - Susana Rodríguez-Navarro
- Gene Expression and RNA Metabolism Laboratory, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Jaime Roig 11, 46010, Valencia, Spain. .,Gene Expression and RNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Eduardo Primo Yúfera 3, 46012, Valencia, Spain.
| |
Collapse
|
19
|
Silva A, Cavero S, Begley V, Solé C, Böttcher R, Chávez S, Posas F, de Nadal E. Regulation of transcription elongation in response to osmostress. PLoS Genet 2017; 13:e1007090. [PMID: 29155810 PMCID: PMC5720810 DOI: 10.1371/journal.pgen.1007090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 12/07/2017] [Accepted: 10/30/2017] [Indexed: 12/31/2022] Open
Abstract
Cells trigger massive changes in gene expression upon environmental fluctuations. The Hog1 stress-activated protein kinase (SAPK) is an important regulator of the transcriptional activation program that maximizes cell fitness when yeast cells are exposed to osmostress. Besides being associated with transcription factors bound at target promoters to stimulate transcriptional initiation, activated Hog1 behaves as a transcriptional elongation factor that is selective for stress-responsive genes. Here, we provide insights into how this signaling kinase functions in transcription elongation. Hog1 phosphorylates the Spt4 elongation factor at Thr42 and Ser43 and such phosphorylations are essential for the overall transcriptional response upon osmostress. The phosphorylation of Spt4 by Hog1 regulates RNA polymerase II processivity at stress-responsive genes, which is critical for cell survival under high osmostress conditions. Thus, the direct regulation of Spt4 upon environmental insults serves to stimulate RNA Pol II elongation efficiency.
Collapse
Affiliation(s)
- Andrea Silva
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
| | - Santiago Cavero
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
| | - Victoria Begley
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | - Carme Solé
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
| | - René Böttcher
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | - Francesc Posas
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
| | - Eulàlia de Nadal
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
| |
Collapse
|
20
|
Med15B Regulates Acid Stress Response and Tolerance in Candida glabrata by Altering Membrane Lipid Composition. Appl Environ Microbiol 2017; 83:AEM.01128-17. [PMID: 28710262 DOI: 10.1128/aem.01128-17] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/04/2017] [Indexed: 12/16/2022] Open
Abstract
Candida glabrata is a promising producer of organic acids. To elucidate the physiological function of the Mediator tail subunit Med15B in the response to low-pH stress, we constructed a deletion strain, C. glabratamed15BΔ, and an overexpression strain, C. glabrata HTUΔ/CgMED15B Deletion of MED15B caused biomass production, glucose consumption rate, and cell viability to decrease by 28.3%, 31.7%, and 26.5%, respectively, compared with those of the parent (HTUΔ) strain at pH 2.0. Expression of lipid metabolism-related genes was significantly downregulated in the med15BΔ strain, whereas key genes of ergosterol biosynthesis showed abnormal upregulation. This caused the proportion of C18:1 fatty acids, the ratio of unsaturated to saturated fatty acids (UFA/SFA), and the total phospholipid content to decrease by 11.6%, 27.4%, and 37.6%, respectively. Cells failed to synthesize fecosterol and ergosterol, leading to the accumulation and a 60.3-fold increase in the concentration of zymosterol. Additionally, cells showed reductions of 69.2%, 11.6%, and 21.8% in membrane integrity, fluidity, and H+-ATPase activity, respectively. In contrast, overexpression of Med15B increased the C18:1 levels, total phospholipids, ergosterol content, and UFA/SFA by 18.6%, 143.5%, 94.5%, and 18.7%, respectively. Membrane integrity, fluidity, and H+-ATPase activity also increased by 30.2%, 6.9%, and 51.8%, respectively. Furthermore, in the absence of pH buffering, dry weight of cells and pyruvate concentrations were 29.3% and 61.2% higher, respectively, than those of the parent strain. These results indicated that in C. glabrata, Med15B regulates tolerance toward low pH via transcriptional regulation of acid stress response genes and alteration in lipid composition.IMPORTANCE This study explored the role of the Mediator tail subunit Med15B in the metabolism of Candida glabrata under acidic conditions. Overexpression of MED15B enhanced yeast tolerance to low pH and improved biomass production, cell viability, and pyruvate yield. Membrane lipid composition data indicated that Med15B might play a critical role in membrane integrity, fluidity, and H+-ATPase activity homeostasis at low pH. Thus, controlling membrane composition may serve to increase C. glabrata productivity at low pH.
Collapse
|
21
|
CgMED3 Changes Membrane Sterol Composition To Help Candida glabrata Tolerate Low-pH Stress. Appl Environ Microbiol 2017; 83:AEM.00972-17. [PMID: 28667115 DOI: 10.1128/aem.00972-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/23/2017] [Indexed: 12/11/2022] Open
Abstract
Candida glabrata is a promising microorganism for organic acid production. The present study aimed to investigate the role of C. glabrata Mediator complex subunit 3 (CgMed3p) in protecting C. glabrata under low-pH conditions. To this end, genes CgMED3A and CgMED3B were deleted, resulting in the double-deletion Cgmed3ABΔ strain. The final biomass and cell viability levels of Cgmed3ABΔ decreased by 64.5% and 35.8%, respectively, compared to the wild-type strain results at pH 2.0. In addition, lack of CgMed3ABp resulted in selective repression of a subset of genes in the lipid biosynthesis and metabolism pathways. Furthermore, C18:1, lanosterol, zymosterol, fecosterol, and ergosterol were 13.2%, 80.4%, 40.4%, 78.1%, and 70.4% less abundant, respectively, in the Cgmed3ABΔ strain. In contrast, the concentration of squalene increased by about 44.6-fold. As a result, membrane integrity, rigidity, and H+-ATPase activity in the Cgmed3ABΔ strain were reduced by 62.7%, 13.0%, and 50.3%, respectively. In contrast, overexpression of CgMED3AB increased the levels of C18:0, C18:1, and ergosterol by 113.2%, 5.9%, and 26.4%, respectively. Moreover, compared to the wild-type results, dry cell weight and pyruvate production increased, irrespective of pH buffering. These results suggest that CgMED3AB regulates membrane composition, which in turn enables cells to tolerate low-pH stress. We propose that regulation of CgMed3ABp may provide a novel strategy for enhancing low-pH tolerance and increasing organic acid production by C. glabrataIMPORTANCE The objective of this study was to investigate the role of Candida glabrata Mediator complex subunit 3 (CgMed3ABp) and its regulation of gene expression at low pH in C. glabrata We found that CgMed3ABp was critical for cellular survival and pyruvate production during low-pH stress. Measures of the levels of plasma membrane fatty acids and sterol composition indicated that CgMed3ABp could play an important role in regulating homeostasis in C. glabrata We propose that controlling membrane lipid composition may enhance the robustness of C. glabrata for the production of organic acids.
Collapse
|
22
|
Sanz AB, García R, Rodríguez-Peña JM, Nombela C, Arroyo J. Cooperation between SAGA and SWI/SNF complexes is required for efficient transcriptional responses regulated by the yeast MAPK Slt2. Nucleic Acids Res 2016; 44:7159-72. [PMID: 27112564 PMCID: PMC5009723 DOI: 10.1093/nar/gkw324] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 12/21/2022] Open
Abstract
The transcriptional response of Saccharomyces cerevisiae to cell wall stress is mainly mediated by the cell wall integrity (CWI) pathway through the MAPK Slt2 and the transcription factor Rlm1. Once activated, Rlm1 interacts with the chromatin remodeling SWI/SNF complex which locally alters nucleosome positioning at the target promoters. Here we show that the SAGA complex plays along with the SWI/SNF complex an important role for eliciting both early induction and sustained gene expression upon stress. Gcn5 co-regulates together with Swi3 the majority of the CWI transcriptional program, except for a group of genes which are only dependent on the SWI/SNF complex. SAGA subunits are recruited to the promoter of CWI-responsive genes in a Slt2, Rlm1 and SWI/SNF-dependent manner. However, Gcn5 mediates acetylation and nucleosome eviction only at the promoters of the SAGA-dependent genes. This process is not essential for pre-initiation transcriptional complex assembly but rather increase the extent of the remodeling mediated by SWI/SNF. As a consequence, H3 eviction and Rlm1 recruitment is completely blocked in a swi3Δ gcn5Δ double mutant. Therefore, SAGA complex, through its histone acetylase activity, cooperates with the SWI/SNF complex for the mandatory nucleosome displacement required for full gene expression through the CWI pathway.
Collapse
Affiliation(s)
- Ana Belén Sanz
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040 Madrid, Spain
| | - Raúl García
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040 Madrid, Spain
| | - José Manuel Rodríguez-Peña
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040 Madrid, Spain
| | - César Nombela
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040 Madrid, Spain
| | - Javier Arroyo
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040 Madrid, Spain
| |
Collapse
|
23
|
Yan M, Dai W, Cai E, Deng YZ, Chang C, Jiang Z, Zhang LH. Transcriptome analysis of Sporisorium scitamineum reveals critical environmental signals for fungal sexual mating and filamentous growth. BMC Genomics 2016; 17:354. [PMID: 27185248 PMCID: PMC4867532 DOI: 10.1186/s12864-016-2691-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/05/2016] [Indexed: 11/10/2022] Open
Abstract
Background Sporisorium scitamineum causes the sugarcane smut disease, one of the most serious constraints to global sugarcane production. S. scitamineum possesses a sexual mating system composed of two mating-type loci, a and b locus. We previously identified and deleted the b locus in S. scitamineum, and found that the resultant SsΔMAT-1b mutant was defective in mating and pathogenicity. Results To further understand the function of b-mating locus, we carried out transcriptome analysis by comparing the transcripts of the mutant strain SsΔMAT-1b, from which the SsbE1 and SsbW1 homeodomain transcription factors have previously been deleted, with those from the wild-type MAT-1 strain. Also the transcripts from SsΔMAT-1b X MAT-2 were compared with those from wild-type MAT-1 X MAT-2 mating. A total of 209 genes were up-regulated (p < 0.05) in the SsΔMAT-1b mutant, compared to the wild-type MAT-1 strain, while 148 genes down-regulated (p < 0.05). In the mixture, 120 genes were up-regulated (p < 0.05) in SsΔMAT-1b X MAT-2, which failed to mate, compared to the wild-type MAT-1 X MAT-2 mating, and 271 genes down-regulated (p < 0.05). By comparing the up- and down-regulated genes in these two sets, it was found that 15 up-regulated and 37 down-regulated genes were common in non-mating haploid and mating mixture, which indeed could be genes regulated by b-locus. Furthermore, GO and KEGG enrichment analysis suggested that carbon metabolism pathway and stress response mediated by Hog1 MAPK signaling pathway were altered in the non-mating sets. Conclusions Experimental validation results indicate that the bE/bW heterodimeric transcriptional factor, encoded by the b-locus, could regulate S. scitamineum sexual mating and/or filamentous growth via modulating glucose metabolism and Hog1-mediating oxidative response. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2691-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meixin Yan
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Peoples' Republic of China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Peoples' Republic of China
| | - Weijun Dai
- Guangdong Innovative and Entepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, South China Agricultural University, Guangzhou, Peoples' Republic of China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Peoples' Republic of China
| | - Enping Cai
- Guangdong Innovative and Entepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, South China Agricultural University, Guangzhou, Peoples' Republic of China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Peoples' Republic of China
| | - Yi Zhen Deng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Peoples' Republic of China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Peoples' Republic of China
| | - Changqing Chang
- Guangdong Innovative and Entepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, South China Agricultural University, Guangzhou, Peoples' Republic of China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Peoples' Republic of China
| | - Zide Jiang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Peoples' Republic of China.
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Peoples' Republic of China. .,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Peoples' Republic of China.
| |
Collapse
|
24
|
Aymoz D, Wosika V, Durandau E, Pelet S. Real-time quantification of protein expression at the single-cell level via dynamic protein synthesis translocation reporters. Nat Commun 2016; 7:11304. [PMID: 27098003 PMCID: PMC4844680 DOI: 10.1038/ncomms11304] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 03/13/2016] [Indexed: 01/30/2023] Open
Abstract
Protein expression is a dynamic process, which can be rapidly induced by extracellular signals. It is widely appreciated that single cells can display large variations in the level of gene induction. However, the variability in the dynamics of this process in individual cells is difficult to quantify using standard fluorescent protein (FP) expression assays, due to the slow maturation of their fluorophore. Here we have developed expression reporters that accurately measure both the levels and dynamics of protein synthesis in live single cells with a temporal resolution under a minute. Our system relies on the quantification of the translocation of a constitutively expressed FP into the nucleus. As a proof of concept, we used these reporters to measure the transient protein synthesis arising from two promoters responding to the yeast hyper osmolarity glycerol mitogen-activated protein kinase pathway (pSTL1 and pGPD1). They display distinct expression dynamics giving rise to strikingly different instantaneous expression noise.
Collapse
Affiliation(s)
- Delphine Aymoz
- Department of Fundamental Microbiology, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Victoria Wosika
- Department of Fundamental Microbiology, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Eric Durandau
- Department of Fundamental Microbiology, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Serge Pelet
- Department of Fundamental Microbiology, University of Lausanne, Lausanne CH-1015, Switzerland
| |
Collapse
|
25
|
Spt-Ada-Gcn5-Acetyltransferase (SAGA) Complex in Plants: Genome Wide Identification, Evolutionary Conservation and Functional Determination. PLoS One 2015; 10:e0134709. [PMID: 26263547 PMCID: PMC4532415 DOI: 10.1371/journal.pone.0134709] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 07/13/2015] [Indexed: 01/17/2023] Open
Abstract
The recruitment of RNA polymerase II on a promoter is assisted by the assembly of basal transcriptional machinery in eukaryotes. The Spt-Ada-Gcn5-Acetyltransferase (SAGA) complex plays an important role in transcription regulation in eukaryotes. However, even in the advent of genome sequencing of various plants, SAGA complex has been poorly defined for their components and roles in plant development and physiological functions. Computational analysis of Arabidopsis thaliana and Oryza sativa genomes for SAGA complex resulted in the identification of 17 to 18 potential candidates for SAGA subunits. We have further classified the SAGA complex based on the conserved domains. Phylogenetic analysis revealed that the SAGA complex proteins are evolutionary conserved between plants, yeast and mammals. Functional annotation showed that they participate not only in chromatin remodeling and gene regulation, but also in different biological processes, which could be indirect and possibly mediated via the regulation of gene expression. The in silico expression analysis of the SAGA components in Arabidopsis and O. sativa clearly indicates that its components have a distinct expression profile at different developmental stages. The co-expression analysis of the SAGA components suggests that many of these subunits co-express at different developmental stages, during hormonal interaction and in response to stress conditions. Quantitative real-time PCR analysis of SAGA component genes further confirmed their expression in different plant tissues and stresses. The expression of representative salt, heat and light inducible genes were affected in mutant lines of SAGA subunits in Arabidopsis. Altogether, the present study reveals expedient evidences of involvement of the SAGA complex in plant gene regulation and stress responses.
Collapse
|
26
|
Zhu X, Chen L, Carlsten JOP, Liu Q, Yang J, Liu B, Gustafsson CM. Mediator tail subunits can form amyloid-like aggregates in vivo and affect stress response in yeast. Nucleic Acids Res 2015; 43:7306-14. [PMID: 26138482 PMCID: PMC4551914 DOI: 10.1093/nar/gkv629] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 06/07/2015] [Indexed: 12/15/2022] Open
Abstract
The Med2, Med3 and Med15 proteins form a heterotrimeric subdomain in the budding yeast Mediator complex. This Med15 module is an important target for many gene specific transcription activators. A previous proteome wide screen in yeast identified Med3 as a protein with priogenic potential. In the present work, we have extended this observation and demonstrate that both Med3 and Med15 form amyloid-like protein aggregates under H2O2 stress conditions. Amyloid formation can also be stimulated by overexpression of Med3 or of a glutamine-rich domain present in Med15, which in turn leads to loss of the entire Med15 module from Mediator and a change in stress response. In combination with genome wide transcription analysis, our data demonstrate that amyloid formation can change the subunit composition of Mediator and thereby influence transcriptional output in budding yeast.
Collapse
Affiliation(s)
- Xuefeng Zhu
- Institute of Biomedicine, University of Gothenburg, P.O. Box 440, SE-405 30 Göteborg, Sweden
| | - Lihua Chen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, SE-413 90 Göteborg, Sweden
| | - Jonas O P Carlsten
- Institute of Biomedicine, University of Gothenburg, P.O. Box 440, SE-405 30 Göteborg, Sweden
| | - Qian Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, SE-413 90 Göteborg, Sweden
| | - Junsheng Yang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, SE-413 90 Göteborg, Sweden
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, SE-413 90 Göteborg, Sweden
| | - Claes M Gustafsson
- Institute of Biomedicine, University of Gothenburg, P.O. Box 440, SE-405 30 Göteborg, Sweden
| |
Collapse
|
27
|
Nuclear versus cytosolic activity of the yeast Hog1 MAP kinase in response to osmotic and tunicamycin-induced ER stress. FEBS Lett 2015; 589:2163-8. [PMID: 26140985 DOI: 10.1016/j.febslet.2015.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 06/20/2015] [Indexed: 11/23/2022]
Abstract
We examined the physiological significance of the nuclear versus cytosolic localization of the MAPK Hog1p in the ability of yeast cells to cope with osmotic and ER (endoplasmic reticulum) stress. Our results indicate that nuclear import of Hog1p is not critical for osmoadaptation. Plasma membrane-anchored Hog1p is still able to induce increased expression of GPD1 and glycerol accumulation. This is a key osmoregulatory event, although a small production of the osmolyte coupled with the nuclear import of Hog1p is sufficient to provide osmoresistance. On the contrary, the nuclear activity of Hog1p is dispensable for ER stress adaptation.
Collapse
|
28
|
de Nadal E, Posas F. Osmostress-induced gene expression--a model to understand how stress-activated protein kinases (SAPKs) regulate transcription. FEBS J 2015; 282:3275-85. [PMID: 25996081 PMCID: PMC4744689 DOI: 10.1111/febs.13323] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/27/2015] [Accepted: 05/18/2015] [Indexed: 01/18/2023]
Abstract
Adaptation is essential for maximizing cell survival and for cell fitness in response to sudden changes in the environment. Several aspects of cell physiology change during adaptation. Major changes in gene expression are associated with cell exposure to environmental changes, and several aspects of mRNA biogenesis appear to be targeted by signaling pathways upon stress. Exhaustive reviews have been written regarding adaptation to stress and regulation of gene expression. In this review, using osmostress in yeast as a prototypical case study, we highlight those aspects of regulation of gene induction that are general to various environmental stresses as well as mechanistic aspects that are potentially conserved from yeast to mammals.
Collapse
Affiliation(s)
- Eulàlia de Nadal
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Francesc Posas
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
29
|
Nadal-Ribelles M, Mas G, Millán-Zambrano G, Solé C, Ammerer G, Chávez S, Posas F, de Nadal E. H3K4 monomethylation dictates nucleosome dynamics and chromatin remodeling at stress-responsive genes. Nucleic Acids Res 2015; 43:4937-49. [PMID: 25813039 PMCID: PMC4446418 DOI: 10.1093/nar/gkv220] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/04/2015] [Indexed: 11/13/2022] Open
Abstract
Chromatin remodeling is essential for proper adaptation to extracellular stimuli. The p38-related Hog1 SAPK is an important regulator of transcription that mediates chromatin remodeling upon stress. Hog1 targets the RSC chromatin remodeling complex to stress-responsive genes and rsc deficient cells display reduced induction of gene expression. Here we show that the absence of H3K4 methylation, either achieved by deletion of the SET1 methyltransferase or by amino acid substitution of H3K4, bypasses the requirement of RSC for stress-responsive gene expression. Monomethylation of H3K4 is specifically inhibiting RSC-independent chromatin remodeling and thus, it prevents osmostress-induced gene expression. The absence of H3K4 monomethylation permits that the association of alternative remodelers with stress-responsive genes and the Swr1 complex (SWR-C) is instrumental in the induction of gene expression upon stress. Accordingly, the absence of SWR-C or histone H2A.Z results in compromised chromatin remodeling and impaired gene expression in the absence of RSC and H3K4 methylation. These results indicate that expression of stress-responsive genes is controlled by two remodeling mechanisms: RSC in the presence of monomethylated H3K4, and SWR-C in the absence of H3K4 monomethylation. Our findings point to a novel role for H3K4 monomethylation in dictating the specificity of chromatin remodeling, adding an extra layer of regulation to the transcriptional stress response.
Collapse
Affiliation(s)
- Mariona Nadal-Ribelles
- Cell signaling unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Glòria Mas
- Cell signaling unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Gonzalo Millán-Zambrano
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | - Carme Solé
- Cell signaling unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Gustav Ammerer
- Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | - Francesc Posas
- Cell signaling unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Eulàlia de Nadal
- Cell signaling unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| |
Collapse
|
30
|
Hog1 targets Whi5 and Msa1 transcription factors to downregulate cyclin expression upon stress. Mol Cell Biol 2015; 35:1606-18. [PMID: 25733686 DOI: 10.1128/mcb.01279-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/20/2015] [Indexed: 12/17/2022] Open
Abstract
Yeast cells have developed complex mechanisms to cope with extracellular insults. An increase in external osmolarity leads to activation of the stress-activated protein kinase Hog1, which is the main regulator of adaptive responses, such as gene expression and cell cycle progression, that are essential for cellular survival. Upon osmostress, the G1-to-S transition is regulated by Hog1 through stabilization of the cyclin-dependent kinase inhibitor Sic1 and the downregulation of G1 cyclin expression by an unclear mechanism. Here, we show that Hog1 interacts with and phosphorylates components of the core cell cycle transcriptional machinery such as Whi5 and the coregulator Msa1. Phosphorylation of these two transcriptional regulators by Hog1 is essential for inhibition of G1 cyclin expression, for control of cell morphogenesis, and for maximal cell survival upon stress. The control of both Whi5 and Msa1 by Hog1 also revealed the necessity for proper coordination of budding and DNA replication. Thus, Hog1 regulates G1 cyclin transcription upon osmostress to ensure coherent passage through Start.
Collapse
|
31
|
Vicente-Muñoz S, Romero P, Magraner-Pardo L, Martinez-Jimenez CP, Tordera V, Pamblanco M. Comprehensive analysis of interacting proteins and genome-wide location studies of the Sas3-dependent NuA3 histone acetyltransferase complex. FEBS Open Bio 2014; 4:996-1006. [PMID: 25473596 PMCID: PMC4248121 DOI: 10.1016/j.fob.2014.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/05/2014] [Accepted: 11/05/2014] [Indexed: 12/22/2022] Open
Abstract
We characterise Sas3p and Gcn5p active HAT complexes in WT and deleted TAP-strains. We confirm that Pdp3p interacts with NuA3, histones and chromatin regulators. Pdp3p MS-analysis reveals its phosphorylation, ubiquitination and methylation. Sas3p can substitute Gcn5p in acetylation of histone H3K14 but not of H3K9. Genome-wide profiling of Sas3p supports its involvement in transcriptional elongation.
Histone acetylation affects several aspects of gene regulation, from chromatin remodelling to gene expression, by modulating the interplay between chromatin and key transcriptional regulators. The exact molecular mechanism underlying acetylation patterns and crosstalk with other epigenetic modifications requires further investigation. In budding yeast, these epigenetic markers are produced partly by histone acetyltransferase enzymes, which act as multi-protein complexes. The Sas3-dependent NuA3 complex has received less attention than other histone acetyltransferases (HAT), such as Gcn5-dependent complexes. Here, we report our analysis of Sas3p-interacting proteins using tandem affinity purification (TAP), coupled with mass spectrometry. This analysis revealed Pdp3p, a recently described component of NuA3, to be one of the most abundant Sas3p-interacting proteins. The PDP3 gene, was TAP-tagged and protein complex purification confirmed that Pdp3p co-purified with the NuA3 protein complex, histones, and several transcription-related and chromatin remodelling proteins. Our results also revealed that the protein complexes associated with Sas3p presented HAT activity even in the absence of Gcn5p and vice versa. We also provide evidence that Sas3p cannot substitute Gcn5p in acetylation of lysine 9 in histone H3 in vivo. Genome-wide occupancy of Sas3p using ChIP-on-chip tiled microarrays showed that Sas3p was located preferentially within the 5′-half of the coding regions of target genes, indicating its probable involvement in the transcriptional elongation process. Hence, this work further characterises the function and regulation of the NuA3 complex by identifying novel post-translational modifications in Pdp3p, additional Pdp3p-co-purifying chromatin regulatory proteins involved in chromatin-modifying complex dynamics and gene regulation, and a subset of genes whose transcriptional elongation is controlled by this complex.
Collapse
Key Words
- ChIP-on-chip
- ChIP-on-chip, chromatin immunoprecipitation with genome-wide location arrays
- Chromatin
- HAT, histone acetyltransferase
- Histones
- NuA3, nucleosomal acetyltransferase of histone H3
- PTM, post-translational modification
- Pdp3
- RNAPII, RNA polymerase II
- SAGA, Spt-Ada-Gcn acetyltransferase
- TAP, tandem affinity purification
- TAP–MS strategy
- TSS, transcription start site
- WCE, whole cell extract
- WT, wild-type
- Yeast
- nt, nucleotide
Collapse
Affiliation(s)
- Sara Vicente-Muñoz
- Structural Biochemistry Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Eduardo Primo Yúfera, 3, 46012 València, Spain
| | - Paco Romero
- Departament de Bioquímica i Biologia Molecular, Universitat de València, C/Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - Lorena Magraner-Pardo
- Departament de Bioquímica i Biologia Molecular, Universitat de València, C/Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - Celia P Martinez-Jimenez
- Departament de Bioquímica i Biologia Molecular, Universitat de València, C/Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - Vicente Tordera
- Departament de Bioquímica i Biologia Molecular, Universitat de València, C/Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - Mercè Pamblanco
- Departament de Bioquímica i Biologia Molecular, Universitat de València, C/Dr. Moliner 50, 46100 Burjassot, València, Spain
| |
Collapse
|
32
|
Adhikari H, Cullen PJ. Metabolic respiration induces AMPK- and Ire1p-dependent activation of the p38-Type HOG MAPK pathway. PLoS Genet 2014; 10:e1004734. [PMID: 25356552 PMCID: PMC4214603 DOI: 10.1371/journal.pgen.1004734] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/04/2014] [Indexed: 11/26/2022] Open
Abstract
Evolutionarily conserved mitogen activated protein kinase (MAPK) pathways regulate the response to stress as well as cell differentiation. In Saccharomyces cerevisiae, growth in non-preferred carbon sources (like galactose) induces differentiation to the filamentous cell type through an extracellular-signal regulated kinase (ERK)-type MAPK pathway. The filamentous growth MAPK pathway shares components with a p38-type High Osmolarity Glycerol response (HOG) pathway, which regulates the response to changes in osmolarity. To determine the extent of functional overlap between the MAPK pathways, comparative RNA sequencing was performed, which uncovered an unexpected role for the HOG pathway in regulating the response to growth in galactose. The HOG pathway was induced during growth in galactose, which required the nutrient regulatory AMP-dependent protein kinase (AMPK) Snf1p, an intact respiratory chain, and a functional tricarboxylic acid (TCA) cycle. The unfolded protein response (UPR) kinase Ire1p was also required for HOG pathway activation in this context. Thus, the filamentous growth and HOG pathways are both active during growth in galactose. The two pathways redundantly promoted growth in galactose, but paradoxically, they also inhibited each other's activities. Such cross-modulation was critical to optimize the differentiation response. The human fungal pathogen Candida albicans showed a similar regulatory circuit. Thus, an evolutionarily conserved regulatory axis links metabolic respiration and AMPK to Ire1p, which regulates a differentiation response involving the modulated activity of ERK and p38 MAPK pathways. In fungal species, differentiation to the filamentous/hyphal cell type is critical for entry into host cells and virulence. Comparative RNA sequencing was used to explore the pathways that regulate differentiation to the filamentous cell type in yeast. This approach uncovered a role for the stress-response MAPK pathway, HOG, during the increased metabolic respiration that induces filamentous growth. In this context, the AMPK Snf1p and ER stress kinase Ire1p regulated the HOG pathway. Cross-modulation between the HOG and filamentous growth (ERK-type) MAPK pathways optimized the differentiation response. The regulatory circuit described here may extend to behaviors in metazoans.
Collapse
Affiliation(s)
- Hema Adhikari
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Paul J. Cullen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
33
|
Solé C, Nadal-Ribelles M, de Nadal E, Posas F. A novel role for lncRNAs in cell cycle control during stress adaptation. Curr Genet 2014; 61:299-308. [PMID: 25262381 PMCID: PMC4500851 DOI: 10.1007/s00294-014-0453-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/09/2014] [Accepted: 09/12/2014] [Indexed: 11/30/2022]
Abstract
Eukaryotic cells have developed sophisticated systems to constantly monitor changes in the extracellular environment and to orchestrate a proper cellular response. To maximize survival, cells delay cell-cycle progression in response to environmental changes. In response to extracellular insults, stress-activated protein kinases (SAPKs) modulate cell-cycle progression and gene expression. In yeast, osmostress induces activation of the p38-related SAPK Hog1, which plays a key role in reprogramming gene expression upon osmostress. Genomic analysis has revealed the existence of a large number of long non-coding RNAs (lncRNAs) with different functions in a variety of organisms, including yeast. Upon osmostress, hundreds of lncRNAs are induced by the SAPK p38/Hog1. One gene that expresses Hog1-dependent lncRNA in an antisense orientation is the CDC28 gene, which encodes CDK1 kinase that controls the cell cycle in yeast. Cdc28 lncRNA mediates the induction of CDC28 expression and this increase in the level of Cdc28 results in more efficient re-entry of the cells into the cell cycle after stress. Thus, the control of lncRNA expression as a new mechanism for the regulation of cell-cycle progression opens new avenues to understand how stress adaptation can be accomplished in response to changing environments.
Collapse
Affiliation(s)
- Carme Solé
- Cell Signaling unit, Departament de Ciències Experimentals i de la Salut, Cell Signaling Research Group, Universitat Pompeu Fabra (UPF), Dr Aiguader 88, E-08003 Barcelona, Spain
| | - Mariona Nadal-Ribelles
- Cell Signaling unit, Departament de Ciències Experimentals i de la Salut, Cell Signaling Research Group, Universitat Pompeu Fabra (UPF), Dr Aiguader 88, E-08003 Barcelona, Spain
| | - Eulàlia de Nadal
- Cell Signaling unit, Departament de Ciències Experimentals i de la Salut, Cell Signaling Research Group, Universitat Pompeu Fabra (UPF), Dr Aiguader 88, E-08003 Barcelona, Spain
| | - Francesc Posas
- Cell Signaling unit, Departament de Ciències Experimentals i de la Salut, Cell Signaling Research Group, Universitat Pompeu Fabra (UPF), Dr Aiguader 88, E-08003 Barcelona, Spain
| |
Collapse
|
34
|
Burns LT, Wente SR. Casein kinase II regulation of the Hot1 transcription factor promotes stochastic gene expression. J Biol Chem 2014; 289:17668-79. [PMID: 24817120 DOI: 10.1074/jbc.m114.561217] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Saccharomyces cerevisiae, Hog1 MAPK is activated and induces a transcriptional program in response to hyperosmotic stress. Several Hog1-responsive genes exhibit stochastic transcription, resulting in cell-to-cell variability in mRNA and protein levels. However, the mechanisms governing stochastic gene activity are not fully defined. Here we uncover a novel role for casein kinase II (CK2) in the cellular response to hyperosmotic stress. CK2 interacts with and phosphorylates the Hot1 transcription factor; however, Hot1 phosphorylation is not sufficient for controlling the stochastic response. The CK2 protein itself is required to negatively regulate mRNA expression of Hot1-responsive genes and Hot1 enrichment at target promoters. Single-cell gene expression analysis reveals altered activation of Hot1-targeted STL1 in ck2 mutants, resulting in a bimodal to unimodal shift in expression. Together, this work reveals a novel CK2 function during the hyperosmotic stress response that promotes cell-to-cell variability in gene expression.
Collapse
Affiliation(s)
- Laura T Burns
- From the Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Susan R Wente
- From the Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
35
|
Magraner-Pardo L, Pelechano V, Coloma MD, Tordera V. Dynamic remodeling of histone modifications in response to osmotic stress in Saccharomyces cerevisiae. BMC Genomics 2014; 15:247. [PMID: 24678875 PMCID: PMC3986647 DOI: 10.1186/1471-2164-15-247] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 03/24/2014] [Indexed: 12/17/2022] Open
Abstract
Background Specific histone modifications play important roles in chromatin functions; i.e., activation or repression of gene transcription. This participation must occur as a dynamic process. Nevertheless, most of the histone modification maps reported to date provide only static pictures that link certain modifications with active or silenced states. This study, however, focuses on the global histone modification variation that occurs in response to the transcriptional reprogramming produced by a physiological perturbation in yeast. Results We did a genome-wide chromatin immunoprecipitation analysis for eight specific histone modifications before and after saline stress. The most striking change was rapid acetylation loss in lysines 9 and 14 of H3 and in lysine 8 of H4, associated with gene repression. The genes activated by saline stress increased the acetylation levels at these same sites, but this acetylation process was quantitatively minor if compared to that of the deacetylation of repressed genes. The changes in the tri-methylation of lysines 4, 36 and 79 of H3 and the di-methylation of lysine 79 of H3 were slighter than those of acetylation. Furthermore, we produced new genome-wide maps for seven histone modifications, and we analyzed, for the first time in S. cerevisiae, the genome-wide profile of acetylation of lysine 8 of H4. Conclusions This research reveals that the short-term changes observed in the post-stress methylation of histones are much more moderate than those of acetylation, and that the dynamics of the acetylation state of histones during activation or repression of transcription is a much quicker process than methylation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-247) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Vicente Tordera
- Departament de Bioquímica i Biologia Molecular, Universitat de València, C/Dr, Moliner 50, 46100 Burjassot, València, Spain.
| |
Collapse
|
36
|
Nadal-Ribelles M, Solé C, Xu Z, Steinmetz LM, de Nadal E, Posas F. Control of Cdc28 CDK1 by a stress-induced lncRNA. Mol Cell 2014; 53:549-61. [PMID: 24508389 DOI: 10.1016/j.molcel.2014.01.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/31/2013] [Accepted: 12/31/2013] [Indexed: 01/14/2023]
Abstract
Genomic analysis has revealed the existence of a large number of long noncoding RNAs (lncRNAs) with different functions in a variety of organisms, including yeast. Cells display dramatic changes of gene expression upon environmental changes. Upon osmostress, hundreds of stress-responsive genes are induced by the stress-activated protein kinase (SAPK) p38/Hog1. Using whole-genome tiling arrays, we found that Hog1 induces a set of lncRNAs upon stress. One of the genes expressing a Hog1-dependent lncRNA in antisense orientation is CDC28, the cyclin-dependent kinase 1 (CDK1) that controls the cell cycle in yeast. Cdc28 lncRNA mediates the establishment of gene looping and the relocalization of Hog1 and RSC from the 3' UTR to the +1 nucleosome to induce CDC28 expression. The increase in the levels of Cdc28 results in cells able to reenter the cell cycle more efficiently after stress. This may represent a general mechanism to prime expression of genes needed after stresses are alleviated.
Collapse
Affiliation(s)
- Mariona Nadal-Ribelles
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Carme Solé
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Zhenyu Xu
- EMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | - Eulàlia de Nadal
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.
| | - Francesc Posas
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.
| |
Collapse
|
37
|
Duch A, de Nadal E, Posas F. Dealing with transcriptional outbursts during S phase to protect genomic integrity. J Mol Biol 2013; 425:4745-55. [PMID: 24021813 DOI: 10.1016/j.jmb.2013.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/16/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
Abstract
Transcription during S phase needs to be spatially and temporally regulated to prevent collisions between the transcription and replication machineries. Cells have evolved a number of mechanisms to make both processes compatible under normal growth conditions. When conflict management fails, the head-on encounter between RNA and DNA polymerases results in genomic instability unless conflict resolution mechanisms are activated. Nevertheless, there are specific situations in which cells need to dramatically change their transcriptional landscape to adapt to environmental challenges. Signal transduction pathways, such as stress-activated protein kinases (SAPKs), serve to regulate gene expression in response to environmental insults. Prototypical members of SAPKs are the yeast Hog1 and mammalian p38. In response to stress, p38/Hog1 SAPKs control transcription and also regulate cell cycle progression. When yeast cells are stressed during S phase, Hog1 promotes gene induction and, remarkably, also delays replication by directly affecting early origin firing and fork progression. Therefore, by delaying replication, Hog1 plays a key role in preventing conflicts between RNA and DNA polymerases. In this review, we focus on the genomic determinants and mechanisms that make compatible transcription with replication during S phase to prevent genomic instability, especially in response to environmental changes.
Collapse
Affiliation(s)
- Alba Duch
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, E-08003 Barcelona, Spain
| | | | | |
Collapse
|
38
|
Larsson M, Uvell H, Sandström J, Rydén P, Selth LA, Björklund S. Functional studies of the yeast med5, med15 and med16 mediator tail subunits. PLoS One 2013; 8:e73137. [PMID: 23991176 PMCID: PMC3750046 DOI: 10.1371/journal.pone.0073137] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 07/23/2013] [Indexed: 11/19/2022] Open
Abstract
The yeast Mediator complex can be divided into three modules, designated Head, Middle and Tail. Tail comprises the Med2, Med3, Med5, Med15 and Med16 protein subunits, which are all encoded by genes that are individually non-essential for viability. In cells lacking Med16, Tail is displaced from Head and Middle. However, inactivation of MED5/MED15 and MED15/MED16 are synthetically lethal, indicating that Tail performs essential functions as a separate complex even when it is not bound to Middle and Head. We have used the N-Degron method to create temperature-sensitive (ts) mutants in the Mediator tail subunits Med5, Med15 and Med16 to study the immediate effects on global gene expression when each subunit is individually inactivated, and when Med5/15 or Med15/16 are inactivated together. We identify 25 genes in each double mutant that show a significant change in expression when compared to the corresponding single mutants and to the wild type strain. Importantly, 13 of the 25 identified genes are common for both double mutants. We also find that all strains in which MED15 is inactivated show down-regulation of genes that have been identified as targets for the Ace2 transcriptional activator protein, which is important for progression through the G1 phase of the cell cycle. Supporting this observation, we demonstrate that loss of Med15 leads to a G1 arrest phenotype. Collectively, these findings provide insight into the function of the Mediator Tail module.
Collapse
Affiliation(s)
- Miriam Larsson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Hanna Uvell
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Jenny Sandström
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Patrik Rydén
- Department of Statistics, Umeå University, Umeå, Sweden
| | - Luke A. Selth
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms, United Kingdom
| | - Stefan Björklund
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
39
|
Geijer C, Medrala-Klein D, Petelenz-Kurdziel E, Ericsson A, Smedh M, Andersson M, Goksör M, Nadal-Ribelles M, Posas F, Krantz M, Nordlander B, Hohmann S. Initiation of the transcriptional response to hyperosmotic shock correlates with the potential for volume recovery. FEBS J 2013; 280:3854-67. [PMID: 23758973 DOI: 10.1111/febs.12382] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 05/27/2013] [Accepted: 05/31/2013] [Indexed: 12/17/2022]
Abstract
The control of activity and localization of transcription factors is critical for appropriate transcriptional responses. In eukaryotes, signal transduction components such as mitogen-activated protein kinase (MAPK) shuttle into the nucleus to activate transcription. It is not known in detail how different amounts of nuclear MAPK over time affect the transcriptional response. In the present study, we aimed to address this issue by studying the high osmolarity glycerol (HOG) system in Saccharomyces cerevisiae. We employed a conditional osmotic system, which changes the period of the MAPK Hog1 signal independent of the initial stress level. We determined the dynamics of the Hog1 nuclear localization and cell volume by single-cell analysis in well-controlled microfluidics systems and compared the responses with the global transcriptional output of cell populations. We discovered that the onset of the initial transcriptional response correlates with the potential of cells for rapid adaptation; cells that are capable of recovering quickly initiate the transcriptional responses immediately, whereas cells that require longer time to adapt also respond later. This is reflected by Hog1 nuclear localization, Hog1 promoter association and the transcriptional response, but not Hog1 phosphorylation, suggesting that a presently uncharacterized rapid adaptive mechanism precedes the Hog1 nuclear response. Furthermore, we found that the period of Hog1 nuclear residence affects the amplitude of the transcriptional response rather than the spectrum of responsive genes.
Collapse
Affiliation(s)
- Cecilia Geijer
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Marotta DH, Nantel A, Sukala L, Teubl JR, Rauceo JM. Genome-wide transcriptional profiling and enrichment mapping reveal divergent and conserved roles of Sko1 in the Candida albicans osmotic stress response. Genomics 2013; 102:363-71. [PMID: 23773966 DOI: 10.1016/j.ygeno.2013.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/08/2013] [Accepted: 06/10/2013] [Indexed: 12/11/2022]
Abstract
Candida albicans maintains both commensal and pathogenic states in humans. Here, we have defined the genomic response to osmotic stress mediated by transcription factor Sko1. We performed microarray analysis of a sko1Δ/Δ mutant strain subjected to osmotic stress, and we utilized gene sequence enrichment analysis and enrichment mapping to identify Sko1-dependent osmotic stress-response genes. We found that Sko1 regulates distinct gene classes with functions in ribosomal synthesis, mitochondrial function, and vacuolar transport. Our in silico analysis suggests that Sko1 may recognize two unique DNA binding motifs. Our C. albicans genomic analyses and complementation studies in Saccharomyces cerevisiae showed that Sko1 is conserved as a regulator of carbohydrate metabolism, redox metabolism, and glycerol synthesis. Further, our real time-qPCR results showed that osmotic stress-response genes that are dependent on the kinase Hog1 also require Sko1 for full expression. Our findings reveal divergent and conserved aspects of Sko1-dependent osmotic stress signaling.
Collapse
Affiliation(s)
- Dawn H Marotta
- Department of Science, John Jay College of the City University of New York (CUNY), New York, NY 10019, USA
| | | | | | | | | |
Collapse
|
41
|
Regot S, de Nadal E, Rodríguez-Navarro S, González-Novo A, Pérez-Fernandez J, Gadal O, Seisenbacher G, Ammerer G, Posas F. The Hog1 stress-activated protein kinase targets nucleoporins to control mRNA export upon stress. J Biol Chem 2013; 288:17384-98. [PMID: 23645671 PMCID: PMC3682539 DOI: 10.1074/jbc.m112.444042] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The control of mRNA biogenesis is exerted at several steps. In response to extracellular stimuli, stress-activated protein kinases (SAPK) modulate gene expression to maximize cell survival. In yeast, the Hog1 SAPK plays a key role in reprogramming the gene expression pattern required for cell survival upon osmostress by acting during transcriptional initiation and elongation. Here, we genetically show that an intact nuclear pore complex is important for cell survival and maximal expression of stress-responsive genes. The Hog1 SAPK associates with nuclear pore complex components and directly phosphorylates the Nup1, Nup2, and Nup60 components of the inner nuclear basket. Mutation of those factors resulted in a deficient export of stress-responsive genes upon stress. Association of Nup1, Nup2, and Nup60 to stress-responsive promoters occurs upon stress depending on Hog1 activity. Accordingly, STL1 gene territory is maintained at the nuclear periphery upon osmostress in a Hog1-dependent manner. Cells containing non-phosphorylatable mutants in Nup1 or Nup2 display reduced expression of stress-responsive genes. Together, proper mRNA biogenesis of stress-responsive genes requires of the coordinate action of synthesis and export machineries by the Hog1 SAPK.
Collapse
Affiliation(s)
- Sergi Regot
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, E-08003 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Deciphering dynamic dose responses of natural promoters and single cis elements upon osmotic and oxidative stress in yeast. Mol Cell Biol 2013; 33:2228-40. [PMID: 23530054 DOI: 10.1128/mcb.00240-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fine-tuned activation of gene expression in response to stress is the result of dynamic interactions of transcription factors with specific promoter binding sites. In the study described here we used a time-resolved luciferase reporter assay in living Saccharomyces cerevisiae yeast cells to gain insights into how osmotic and oxidative stress signals modulate gene expression in a dose-sensitive manner. Specifically, the dose-response behavior of four different natural promoters (GRE2, CTT1, SOD2, and CCP1) reveals differences in their sensitivity and dynamics in response to different salt and oxidative stimuli. Characteristic dose-response profiles were also obtained for artificial promoters driven by only one type of stress-regulated consensus element, such as the cyclic AMP-responsive element, stress response element, or AP-1 site. Oxidative and osmotic stress signals activate these elements separately and with different sensitivities through different signaling molecules. Combination of stress-activated cis elements does not, in general, enhance the absolute expression levels; however, specific combinations can increase the inducibility of the promoter in response to different stress doses. Finally, we show that the stress tolerance of the cell critically modulates the dynamics of its transcriptional response in the case of oxidative stress.
Collapse
|
43
|
Genetic networks inducing invasive growth in Saccharomyces cerevisiae identified through systematic genome-wide overexpression. Genetics 2013; 193:1297-310. [PMID: 23410832 DOI: 10.1534/genetics.112.147876] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae can respond to nutritional and environmental stress by implementing a morphogenetic program wherein cells elongate and interconnect, forming pseudohyphal filaments. This growth transition has been studied extensively as a model signaling system with similarity to processes of hyphal development that are linked with virulence in related fungal pathogens. Classic studies have identified core pseudohyphal growth signaling modules in yeast; however, the scope of regulatory networks that control yeast filamentation is broad and incompletely defined. Here, we address the genetic basis of yeast pseudohyphal growth by implementing a systematic analysis of 4909 genes for overexpression phenotypes in a filamentous strain of S. cerevisiae. Our results identify 551 genes conferring exaggerated invasive growth upon overexpression under normal vegetative growth conditions. This cohort includes 79 genes lacking previous phenotypic characterization. Pathway enrichment analysis of the gene set identifies networks mediating mitogen-activated protein kinase (MAPK) signaling and cell cycle progression. In particular, overexpression screening suggests that nuclear export of the osmoresponsive MAPK Hog1p may enhance pseudohyphal growth. The function of nuclear Hog1p is unclear from previous studies, but our analysis using a nuclear-depleted form of Hog1p is consistent with a role for nuclear Hog1p in repressing pseudohyphal growth. Through epistasis and deletion studies, we also identified genetic relationships with the G2 cyclin Clb2p and phenotypes in filamentation induced by S-phase arrest. In sum, this work presents a unique and informative resource toward understanding the breadth of genes and pathways that collectively constitute the molecular basis of filamentation.
Collapse
|
44
|
Nadal-Ribelles M, Conde N, Flores O, González-Vallinas J, Eyras E, Orozco M, de Nadal E, Posas F. Hog1 bypasses stress-mediated down-regulation of transcription by RNA polymerase II redistribution and chromatin remodeling. Genome Biol 2012; 13:R106. [PMID: 23158682 PMCID: PMC3580498 DOI: 10.1186/gb-2012-13-11-r106] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 11/18/2012] [Indexed: 12/14/2022] Open
Abstract
Background Cells are subjected to dramatic changes of gene expression upon environmental changes. Stress causes a general down-regulation of gene expression together with the induction of a set of stress-responsive genes. The p38-related stress-activated protein kinase Hog1 is an important regulator of transcription upon osmostress in yeast. Results Genome-wide localization studies of RNA polymerase II (RNA Pol II) and Hog1 showed that stress induced major changes in RNA Pol II localization, with a shift toward stress-responsive genes relative to housekeeping genes. RNA Pol II relocalization required Hog1, which was also localized to stress-responsive loci. In addition to RNA Pol II-bound genes, Hog1 also localized to RNA polymerase III-bound genes, pointing to a wider role for Hog1 in transcriptional control than initially expected. Interestingly, an increasing association of Hog1 with stress-responsive genes was strongly correlated with chromatin remodeling and increased gene expression. Remarkably, MNase-Seq analysis showed that although chromatin structure was not significantly altered at a genome-wide level in response to stress, there was pronounced chromatin remodeling for those genes that displayed Hog1 association. Conclusion Hog1 serves to bypass the general down-regulation of gene expression that occurs in response to osmostress, and does so both by targeting RNA Pol II machinery and by inducing chromatin remodeling at stress-responsive loci.
Collapse
|
45
|
Ansari SA, Morse RH. Selective role of Mediator tail module in the transcription of highly regulated genes in yeast. Transcription 2012; 3:110-4. [PMID: 22771944 DOI: 10.4161/trns.19840] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The tail module subunits of Mediator complex are targets of activators both in yeast and metazoans. Here we discuss recent evidence from studies in yeast for tail module specificity for SAGA-dependent, TATA-containing genes including highly regulated stress response genes, and for independent recruitment and function of the tail module.
Collapse
Affiliation(s)
- Suraiya A Ansari
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| | | |
Collapse
|
46
|
Abstract
The human fungal pathogen Cryptococcus neoformans is characterized by its ability to induce a distinct polysaccharide capsule in response to a number of host-specific environmental stimuli. The induction of capsule is a complex biological process encompassing regulation at multiple steps, including the biosynthesis, transport, and maintenance of the polysaccharide at the cell surface. By precisely regulating the composition of its cell surface and secreted polysaccharides, C. neoformans has developed intricate ways to establish chronic infection and dormancy in the human host. The plasticity of the capsule structure in response to various host conditions also underscores the complex relationship between host and parasite. Much of this precise regulation of capsule is achieved through the transcriptional responses of multiple conserved signaling pathways that have been coopted to regulate this C. neoformans-specific virulence-associated phenotype. This review focuses on specific host stimuli that trigger the activation of the signal transduction cascades and on the downstream transcriptional responses that are required for robust encapsulation around the cell.
Collapse
|
47
|
Abstract
An appropriate response and adaptation to hyperosmolarity, i.e., an external osmolarity that is higher than the physiological range, can be a matter of life or death for all cells. It is especially important for free-living organisms such as the yeast Saccharomyces cerevisiae. When exposed to hyperosmotic stress, the yeast initiates a complex adaptive program that includes temporary arrest of cell-cycle progression, adjustment of transcription and translation patterns, and the synthesis and retention of the compatible osmolyte glycerol. These adaptive responses are mostly governed by the high osmolarity glycerol (HOG) pathway, which is composed of membrane-associated osmosensors, an intracellular signaling pathway whose core is the Hog1 MAP kinase (MAPK) cascade, and cytoplasmic and nuclear effector functions. The entire pathway is conserved in diverse fungal species, while the Hog1 MAPK cascade is conserved even in higher eukaryotes including humans. This conservation is illustrated by the fact that the mammalian stress-responsive p38 MAPK can rescue the osmosensitivity of hog1Δ mutations in response to hyperosmotic challenge. As the HOG pathway is one of the best-understood eukaryotic signal transduction pathways, it is useful not only as a model for analysis of osmostress responses, but also as a model for mathematical analysis of signal transduction pathways. In this review, we have summarized the current understanding of both the upstream signaling mechanism and the downstream adaptive responses to hyperosmotic stress in yeast.
Collapse
Affiliation(s)
- Haruo Saito
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8638, Japan, and
| | - Francesc Posas
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, E-08003 Barcelona, Spain
| |
Collapse
|
48
|
Ruiz-Roig C, Noriega N, Duch A, Posas F, de Nadal E. The Hog1 SAPK controls the Rtg1/Rtg3 transcriptional complex activity by multiple regulatory mechanisms. Mol Biol Cell 2012; 23:4286-96. [PMID: 22956768 PMCID: PMC3484105 DOI: 10.1091/mbc.e12-04-0289] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The retrograde (RTG) pathway transcription factors Rtg1 and Rtg3 are shown to be targets of the Hog1 stress-activated protein kinase (SAPK). Hog1 acts on the RTG complex at multiple levels to mediate gene expression upon stress. The SAPK is required for the nuclear accumulation of the complex, the recruitment of the complex at RTG-responsive promoters, and the regulation of Rtg3 transcriptional activity. Cells modulate expression of nuclear genes in response to alterations in mitochondrial function, a response termed retrograde (RTG) regulation. In budding yeast, the RTG pathway relies on Rtg1 and Rtg3 basic helix-loop-helix leucine Zipper transcription factors. Exposure of yeast to external hyperosmolarity activates the Hog1 stress-activated protein kinase (SAPK), which is a key player in the regulation of gene expression upon stress. Several transcription factors, including Sko1, Hot1, the redundant Msn2 and Msn4, and Smp1, have been shown to be directly controlled by the Hog1 SAPK. The mechanisms by which Hog1 regulates their activity differ from one to another. In this paper, we show that Rtg1 and Rtg3 transcription factors are new targets of the Hog1 SAPK. In response to osmostress, RTG-dependent genes are induced in a Hog1-dependent manner, and Hog1 is required for Rtg1/3 complex nuclear accumulation. In addition, Hog1 activity regulates Rtg1/3 binding to chromatin and transcriptional activity. Therefore Hog1 modulates Rtg1/3 complex activity by multiple mechanisms in response to stress. Overall our data suggest that Hog1, through activation of the RTG pathway, contributes to ensure mitochondrial function as part of the Hog1-mediated osmoadaptive response.
Collapse
Affiliation(s)
- Clàudia Ruiz-Roig
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, E-08003 Barcelona, Spain
| | | | | | | | | |
Collapse
|
49
|
Spedale G, Timmers HTM, Pijnappel WWMP. ATAC-king the complexity of SAGA during evolution. Genes Dev 2012; 26:527-41. [PMID: 22426530 DOI: 10.1101/gad.184705.111] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The yeast SAGA (Spt-Ada-Gcn5-acetyltransferase) coactivator complex exerts functions in gene expression, including activator interaction, histone acetylation, histone deubiquitination, mRNA export, chromatin recognition, and regulation of the basal transcription machinery. These diverse functions involve distinct modules within this multiprotein complex. It has now become clear that yeast SAGA has diverged during metazoan evolution into two related complexes, SAGA and ATAC, which exist in two flavors in vertebrates. The compositions of metazoan ATAC and SAGA complexes have been characterized, and functional analyses indicate that these complexes have important but distinct roles in transcription, histone modification, signaling pathways, and cell cycle regulation.
Collapse
Affiliation(s)
- Gianpiero Spedale
- Molecular Cancer Research, Netherlands Proteomics Center, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | | | | |
Collapse
|
50
|
de Nadal E, Ammerer G, Posas F. Controlling gene expression in response to stress. Nat Rev Genet 2011; 12:833-45. [PMID: 22048664 DOI: 10.1038/nrg3055] [Citation(s) in RCA: 487] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acute stress puts cells at risk, and rapid adaptation is crucial for maximizing cell survival. Cellular adaptation mechanisms include modification of certain aspects of cell physiology, such as the induction of efficient changes in the gene expression programmes by intracellular signalling networks. Recent studies using genome-wide approaches as well as single-cell transcription measurements, in combination with classical genetics, have shown that rapid and specific activation of gene expression can be accomplished by several different strategies. This article discusses how organisms can achieve generic and specific responses to different stresses by regulating gene expression at multiple stages of mRNA biogenesis from chromatin structure to transcription, mRNA stability and translation.
Collapse
Affiliation(s)
- Eulàlia de Nadal
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | |
Collapse
|