1
|
Mirabelli M, Chiefari E, Arcidiacono B, Salatino A, Pascarella A, Morelli M, Credendino SC, Brunetti FS, Di Vito A, Greco A, Huin V, Nicoletti F, Pierantoni GM, Fedele M, Aguglia U, Foti DP, Brunetti A. HMGA1 deficiency: a pathogenic link between tau pathology and insulin resistance. EBioMedicine 2025; 115:105700. [PMID: 40233659 DOI: 10.1016/j.ebiom.2025.105700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Growing evidence links tau-related neurodegeneration with insulin resistance and type 2 diabetes (T2D), though the underlying mechanisms remain unclear. Our previous research identified HMGA1 as crucial for insulin receptor (INSR) expression, with defects in the HMGA1 gene associated with insulin resistance and T2D. Here, we explore HMGA1 deficiency as a potential contributor to tauopathies, such as Alzheimer's disease (AD), and its connection to insulin resistance. METHODS Immunoblot analyses, protein-DNA interaction studies, ChIP-qPCR, and reporter gene assays were conducted in human and mouse neuronal cell models. Tau immunohistochemistry, behavioural studies, and brain glucose metabolism were analysed in Hmga1-knockout mice. Additionally, a case-control study investigated the relationship between HMGA1 and tau pathology in patients with tauopathy, carrying or not the HMGA1 rs146052672 variant, known to reduce HMGA1 protein levels and increase the risk of insulin resistance and T2D. FINDINGS We show that HMGA1 regulates tau protein expression primarily through the specific repression of MAPT gene transcription. In both human neuronal cells and primary mouse neurons, tau mRNA and protein levels were inversely correlated with HMGA1 expression. This inverse relationship was further confirmed in the brain of Hmga1-knockout mice, where tau was overexpressed, INSR was downregulated, and brain glucose uptake was impaired. Additionally, the rs146052672 variant was more common in patients with tauopathy (12/69, 17.4%) than in controls (10/200, 5.0%) (p = 0.001), and carriers of this variant exhibited more severe disease progression and poorer therapeutic outcomes. INTERPRETATION These findings suggest that HMGA1 deficiency may drive tau pathology, linking tauopathies to insulin resistance and providing new insights into the relationship between metabolic and neurodegenerative disorders. Furthermore, our observation that over 17% of individuals with tauopathy exhibit a deficit in HMGA1 protein production could have significant clinical implications, potentially guiding the development of therapeutic strategies targeting this specific defect. FUNDING See acknowledgements section.
Collapse
Affiliation(s)
- Maria Mirabelli
- Department of Health Sciences, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Eusebio Chiefari
- Department of Health Sciences, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Biagio Arcidiacono
- Department of Health Sciences, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Alessandro Salatino
- Department of Health Sciences, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Angelo Pascarella
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Maurizio Morelli
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Sara C Credendino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Francesco S Brunetti
- Department of Health Sciences, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Anna Di Vito
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Adelaide Greco
- Interdepartmental Centre of Veterinary Radiology, University of Naples "Federico II", Naples, Italy
| | - Vincent Huin
- University of Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, UMR-S1172, Team Alzheimer & Tauopathies, F-59000, Lille, France
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, University of Rome "Sapienza", Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Giovanna M Pierantoni
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology, CNR, Naples, Italy
| | - Umberto Aguglia
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Daniela P Foti
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Græcia", Catanzaro, Italy.
| | - Antonio Brunetti
- Department of Health Sciences, University of Catanzaro "Magna Græcia", Catanzaro, Italy.
| |
Collapse
|
2
|
Florentinus-Mefailoski A, Bowden P, Scheltens P, Killestein J, Teunissen C, Marshall JG. The plasma peptides of Alzheimer's disease. Clin Proteomics 2021; 18:17. [PMID: 34182925 PMCID: PMC8240224 DOI: 10.1186/s12014-021-09320-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Background A practical strategy to discover proteins specific to Alzheimer’s dementia (AD) may be to compare the plasma peptides and proteins from patients with dementia to normal controls and patients with neurological conditions like multiple sclerosis or other diseases. The aim was a proof of principle for a method to discover proteins and/or peptides of plasma that show greater observation frequency and/or precursor intensity in AD. The endogenous tryptic peptides of Alzheimer’s were compared to normals, multiple sclerosis, ovarian cancer, breast cancer, female normal, sepsis, ICU Control, heart attack, along with their institution-matched controls, and normal samples collected directly onto ice. Methods Endogenous tryptic peptides were extracted from blinded, individual AD and control EDTA plasma samples in a step gradient of acetonitrile for random and independent sampling by LC–ESI–MS/MS with a set of robust and sensitive linear quadrupole ion traps. The MS/MS spectra were fit to fully tryptic peptides within proteins identified using the X!TANDEM algorithm. Observation frequency of the identified proteins was counted using SEQUEST algorithm. The proteins with apparently increased observation frequency in AD versus AD Control were revealed graphically and subsequently tested by Chi Square analysis. The proteins specific to AD plasma by Chi Square with FDR correction were analyzed by the STRING algorithm. The average protein or peptide log10 precursor intensity was compared across disease and control treatments by ANOVA in the R statistical system. Results Peptides and/or phosphopeptides of common plasma proteins such as complement C2, C7, and C1QBP among others showed increased observation frequency by Chi Square and/or precursor intensity in AD. Cellular gene symbols with large Chi Square values (χ2 ≥ 25, p ≤ 0.001) from tryptic peptides included KIF12, DISC1, OR8B12, ZC3H12A, TNF, TBC1D8B, GALNT3, EME2, CD1B, BAG1, CPSF2, MMP15, DNAJC2, PHACTR4, OR8B3, GCK, EXOSC7, HMGA1 and NT5C3A among others. Similarly, increased frequency of tryptic phosphopeptides were observed from MOK, SMIM19, NXNL1, SLC24A2, Nbla10317, AHRR, C10orf90, MAEA, SRSF8, TBATA, TNIK, UBE2G1, PDE4C, PCGF2, KIR3DP1, TJP2, CPNE8, and NGF amongst others. STRING analysis showed an increase in cytoplasmic proteins and proteins associated with alternate splicing, exocytosis of luminal proteins, and proteins involved in the regulation of the cell cycle, mitochondrial functions or metabolism and apoptosis. Increases in mean precursor intensity of peptides from common plasma proteins such as DISC1, EXOSC5, UBE2G1, SMIM19, NXNL1, PANO, EIF4G1, KIR3DP1, MED25, MGRN1, OR8B3, MGC24039, POLR1A, SYTL4, RNF111, IREB2, ANKMY2, SGKL, SLC25A5, CHMP3 among others were associated with AD. Tryptic peptides from the highly conserved C-terminus of DISC1 within the sequence MPGGGPQGAPAAAGGGGVSHRAGSRDCLPPAACFR and ARQCGLDSR showed a higher frequency and highest intensity in AD compared to all other disease and controls. Conclusion Proteins apparently expressed in the brain that were directly related to Alzheimer’s including Nerve Growth Factor (NFG), Sphingomyelin Phosphodiesterase, Disrupted in Schizophrenia 1 (DISC1), the cell death regulator retinitis pigmentosa (NXNl1) that governs the loss of nerve cells in the retina and the cell death regulator ZC3H12A showed much higher observation frequency in AD plasma vs the matched control. There was a striking agreement between the proteins known to be mutated or dis-regulated in the brains of AD patients with the proteins observed in the plasma of AD patients from endogenous peptides including NBN, BAG1, NOX1, PDCD5, SGK3, UBE2G1, SMPD3 neuronal proteins associated with synapse function such as KSYTL4, VTI1B and brain specific proteins such as TBATA. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-021-09320-2.
Collapse
Affiliation(s)
- Angelique Florentinus-Mefailoski
- Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON, Canada
| | - Peter Bowden
- Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON, Canada
| | - Philip Scheltens
- Alzheimer Center, Dept of Neurology, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Joep Killestein
- MS Center, Dept of Neurology, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Charlotte Teunissen
- Neurochemistry Lab and Biobank, Dept of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - John G Marshall
- Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON, Canada. .,International Biobank of Luxembourg (IBBL), Luxembourg Institute of Health (Formerly CRP Sante Luxembourg), Strassen, Luxembourg.
| |
Collapse
|
3
|
Fan T, Zhao YZ, Yang JF, Liu QL, Tian Y, Debatosh D, Liu YG, Zhang J, Chen C, Chen MX, Zhou SM. Phylogenetic comparison and splice site conservation of eukaryotic U1 snRNP-specific U1-70K gene family. Sci Rep 2021; 11:12760. [PMID: 34140531 PMCID: PMC8211703 DOI: 10.1038/s41598-021-91693-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 05/05/2021] [Indexed: 02/05/2023] Open
Abstract
Eukaryotic cells can expand their coding ability by using their splicing machinery, spliceosome, to process precursor mRNA (pre-mRNA) into mature messenger RNA. The mega-macromolecular spliceosome contains multiple subcomplexes, referred to as small nuclear ribonucleoproteins (snRNPs). Among these, U1 snRNP and its central component, U1-70K, are crucial for splice site recognition during early spliceosome assembly. The human U1-70K has been linked to several types of human autoimmune and neurodegenerative diseases. However, its phylogenetic relationship has been seldom reported. To this end, we carried out a systemic analysis of 95 animal U1-70K genes and compare these proteins to their yeast and plant counterparts. Analysis of their gene and protein structures, expression patterns and splicing conservation suggest that animal U1-70Ks are conserved in their molecular function, and may play essential role in cancers and juvenile development. In particular, animal U1-70Ks display unique characteristics of single copy number and a splicing isoform with truncated C-terminal, suggesting the specific role of these U1-70Ks in animal kingdom. In summary, our results provide phylogenetic overview of U1-70K gene family in vertebrates. In silico analyses conducted in this work will act as a reference for future functional studies of this crucial U1 splicing factor in animal kingdom.
Collapse
Affiliation(s)
- Tao Fan
- grid.452787.b0000 0004 1806 5224Division of Gastroenterology, Shenzhen Children’s Hospital, Shenzhen, 518038 People’s Republic of China ,grid.440622.60000 0000 9482 4676State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong People’s Republic of China ,grid.10784.3a0000 0004 1937 0482Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People’s Republic of China
| | - Yu-Zhen Zhao
- grid.452787.b0000 0004 1806 5224Division of Gastroenterology, Shenzhen Children’s Hospital, Shenzhen, 518038 People’s Republic of China
| | - Jing-Fang Yang
- grid.411407.70000 0004 1760 2614Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079 People’s Republic of China
| | - Qin-Lai Liu
- School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, People’s Republic of China
| | - Yuan Tian
- grid.440622.60000 0000 9482 4676State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong People’s Republic of China ,grid.10784.3a0000 0004 1937 0482Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People’s Republic of China
| | - Das Debatosh
- grid.10784.3a0000 0004 1937 0482Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People’s Republic of China
| | - Ying-Gao Liu
- grid.440622.60000 0000 9482 4676State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong People’s Republic of China
| | - Jianhua Zhang
- grid.10784.3a0000 0004 1937 0482Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chen Chen
- grid.410745.30000 0004 1765 1045Department of Infectious Disease, Nanjing Infectious Disease Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003 People’s Republic of China
| | - Mo-Xian Chen
- grid.452787.b0000 0004 1806 5224Division of Gastroenterology, Shenzhen Children’s Hospital, Shenzhen, 518038 People’s Republic of China
| | - Shao-Ming Zhou
- grid.452787.b0000 0004 1806 5224Division of Gastroenterology, Shenzhen Children’s Hospital, Shenzhen, 518038 People’s Republic of China
| |
Collapse
|
4
|
Chen MX, Zhang KL, Gao B, Yang JF, Tian Y, Das D, Fan T, Dai L, Hao GF, Yang GF, Zhang J, Zhu FY, Fang YM. Phylogenetic comparison of 5' splice site determination in central spliceosomal proteins of the U1-70K gene family, in response to developmental cues and stress conditions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:357-378. [PMID: 32133712 DOI: 10.1111/tpj.14735] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 05/07/2023]
Abstract
Intron-containing genes have the ability to generate multiple transcript isoforms by splicing, thereby greatly expanding the eukaryotic transcriptome and proteome. In eukaryotic cells, precursor mRNA (pre-mRNA) splicing is performed by a mega-macromolecular complex defined as a spliceosome. Among its splicing components, U1 small nuclear ribonucleoprotein (U1 snRNP) is the smallest subcomplex involved in early spliceosome assembly and 5'-splice site recognition. Its central component, named U1-70K, has been extensively characterized in animals and yeast. Very few investigations on U1-70K genes have been conducted in plants, however. To this end, we performed a comprehensive study to systematically identify 115 U1-70K genes from 67 plant species, ranging from algae to angiosperms. Phylogenetic analysis suggested that the expansion of the plant U1-70K gene family was likely to have been driven by whole-genome duplications. Subsequent comparisons of gene structures, protein domains, promoter regions and conserved splicing patterns indicated that plant U1-70Ks are likely to preserve their conserved molecular function across plant lineages and play an important functional role in response to environmental stresses. Furthermore, genetic analysis using T-DNA insertion mutants suggested that Arabidopsis U1-70K may be involved in response to osmotic stress. Our results provide a general overview of this gene family in Viridiplantae and will act as a reference source for future mechanistic studies on this U1 snRNP-specific splicing factor.
Collapse
Affiliation(s)
- Mo-Xian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518063, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Kai-Lu Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Bei Gao
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yuan Tian
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Debatosh Das
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Tao Fan
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Lei Dai
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518063, China
| | - Ge-Fei Hao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Jianhua Zhang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- Department of Biology, Hong Kong Baptist University, Shatin, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Fu-Yuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan-Ming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
5
|
Innate Immunity: A Common Denominator between Neurodegenerative and Neuropsychiatric Diseases. Int J Mol Sci 2020; 21:ijms21031115. [PMID: 32046139 PMCID: PMC7036760 DOI: 10.3390/ijms21031115] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
The intricate relationships between innate immunity and brain diseases raise increased interest across the wide spectrum of neurodegenerative and neuropsychiatric disorders. Barriers, such as the blood–brain barrier, and innate immunity cells such as microglia, astrocytes, macrophages, and mast cells are involved in triggering disease events in these groups, through the action of many different cytokines. Chronic inflammation can lead to dysfunctions in large-scale brain networks. Neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and frontotemporal dementia, are associated with a substrate of dysregulated immune responses that impair the central nervous system balance. Recent evidence suggests that similar phenomena are involved in psychiatric diseases, such as depression, schizophrenia, autism spectrum disorders, and post-traumatic stress disorder. The present review summarizes and discusses the main evidence linking the innate immunological response in neurodegenerative and psychiatric diseases, thus providing insights into how the responses of innate immunity represent a common denominator between diseases belonging to the neurological and psychiatric sphere. Improved knowledge of such immunological aspects could provide the framework for the future development of new diagnostic and therapeutic approaches.
Collapse
|
6
|
Meta-Analysis of Gene Expression Changes in the Blood of Patients with Mild Cognitive Impairment and Alzheimer's Disease Dementia. Int J Mol Sci 2019; 20:ijms20215403. [PMID: 31671574 PMCID: PMC6862214 DOI: 10.3390/ijms20215403] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Dementia is a major public health concern affecting approximately 47 million people worldwide. Mild cognitive impairment (MCI) is one form of dementia that affects an individual’s memory with or without affecting their daily life. Alzheimer’s disease dementia (ADD) is a more severe form of dementia that usually affects elderly individuals. It remains unclear whether MCI is a distinct disorder from or an early stage of ADD. Methods: Gene expression data from blood were analyzed to identify potential biomarkers that may be useful for distinguishing between these two forms of dementia. Results: A meta-analysis revealed 91 genes dysregulated in individuals with MCI and 387 genes dysregulated in ADD. Pathway analysis identified seven pathways shared between MCI and ADD and nine ADD-specific pathways. Fifteen transcription factors were associated with MCI and ADD, whereas seven transcription factors were specific for ADD. Mir-335-5p was specific for ADD, suggesting that it may be useful as a biomarker. Diseases that are associated with MCI and ADD included developmental delays, cognition impairment, and movement disorders. Conclusion: These results provide a better molecular understanding of peripheral changes that occur in MCI and ADD patients and may be useful in the identification of diagnostic and prognostic biomarkers.
Collapse
|
7
|
Hamid FM, Makeyev EV. A mechanism underlying position-specific regulation of alternative splicing. Nucleic Acids Res 2019; 45:12455-12468. [PMID: 30053257 PMCID: PMC5716086 DOI: 10.1093/nar/gkx901] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/26/2017] [Indexed: 01/01/2023] Open
Abstract
Many RNA-binding proteins including a master regulator of splicing in developing brain and muscle, polypyrimidine tract-binding protein 1 (PTBP1), can either activate or repress alternative exons depending on the pre-mRNA recruitment position. When bound upstream or within regulated exons PTBP1 tends to promote their skipping, whereas binding to downstream sites often stimulates inclusion. How this switch is orchestrated at the molecular level is poorly understood. Using bioinformatics and biochemical approaches we show that interaction of PTBP1 with downstream intronic sequences can activate natural cassette exons by promoting productive docking of the spliceosomal U1 snRNP to a suboptimal 5' splice site. Strikingly, introducing upstream PTBP1 sites to this circuitry leads to a potent splicing repression accompanied by the assembly of an exonic ribonucleoprotein complex with a tightly bound U1 but not U2 snRNP. Our data suggest a molecular mechanism underlying the transition between a better-known repressive function of PTBP1 and its role as a bona fide splicing activator. More generally, we argue that the functional outcome of individual RNA contacts made by an RNA-binding protein is subject to extensive context-specific modulation.
Collapse
Affiliation(s)
- Fursham M Hamid
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK.,School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Eugene V Makeyev
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| |
Collapse
|
8
|
Tan SH, Karri V, Tay NWR, Chang KH, Ah HY, Ng PQ, Ho HS, Keh HW, Candasamy M. Emerging pathways to neurodegeneration: Dissecting the critical molecular mechanisms in Alzheimer's disease, Parkinson's disease. Biomed Pharmacother 2019; 111:765-777. [PMID: 30612001 DOI: 10.1016/j.biopha.2018.12.101] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/18/2018] [Accepted: 12/23/2018] [Indexed: 01/02/2023] Open
Abstract
Neurodegenerative diseases are usually sporadic in nature and commonly influenced by a wide range of genetic, life style and environmental factors. A unifying feature of Alzheimer's disease (AD) and Parkinson's disease (PD) is the abnormal accumulation and processing of mutant or damaged intra and extracellular proteins; this leads to neuronal vulnerability and dysfunction in the brain. Through a detailed review of ubiquitin proteasome, mRNA splicing, mitochondrial dysfunction, and oxidative stress pathway interrelation on neurodegeneration can improve the understanding of the disease mechanism. The identified pathways common to AD and PD nominate promising new targets for further studies, and as well as biomarkers. These insights suggested would likely provide major stimuli for developing unified treatment approaches to combat neurodegeneration. More broadly, pathways can serve as vehicles for integrating findings from diverse studies of neurodegeneration. The evidence examined in this review provides a brief overview of the current literature on significant pathways in promoting in AD, PD. Additionally, these insights suggest that biomarkers and treatment strategies may require simultaneous targeting of multiple components.
Collapse
Affiliation(s)
- Sean Hong Tan
- School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Venkatanaidu Karri
- Department of Toxicogenomics, Faculty of Health, Medicines, Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Nicole Wuen Rong Tay
- School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Kuan Hui Chang
- School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Hui Yen Ah
- School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Phui Qi Ng
- School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Hui San Ho
- School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Hsiao Wai Keh
- School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Ohe K, Miyajima S, Abe I, Tanaka T, Hamaguchi Y, Harada Y, Horita Y, Beppu Y, Ito F, Yamasaki T, Terai H, Mori M, Murata Y, Tanabe M, Ashida K, Kobayashi K, Enjoji M, Yanase T, Harada N, Utsumi T, Mayeda A. HMGA1a induces alternative splicing of estrogen receptor alpha in MCF-7 human breast cancer cells. J Steroid Biochem Mol Biol 2018; 182:21-26. [PMID: 29678492 DOI: 10.1016/j.jsbmb.2018.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/23/2017] [Accepted: 04/13/2018] [Indexed: 12/11/2022]
Abstract
The high-mobility group A protein 1a (HMGA1a) protein is known as an oncogene whose expression level in cancer tissue correlates with the malignant potential, and known as a component of senescence-related structures connecting it to tumor suppressor networks in fibroblasts. HMGA1 protein binds to DNA, but recent studies have shown it exerts novel functions through RNA-binding. Our previous studies have shown that sequence-specific RNA-binding of HMGA1a induces exon-skipping of Presenilin-2 exon 5 in sporadic Alzheimer disease. Here we show that HMGA1a induced exon-skipping of the estrogen receptor alpha (ERα) gene and increased ERα46 mRNA expression in MCF-7 breast cancer cells. An RNA-decoy of HMGA1a efficiently blocked this event and reduced ERα46 protein expression. Blockage of HMGA1a RNA-binding property consequently induced cell growth through reduced ERα46 expression in MCF-7 cells and increased sensitivity to tamoxifen in the tamoxifen-resistant cell line, MCF-7/TAMR1. Stable expression of an HMGA1a RNA-decoy in MCF-7 cells exhibited decreased ERα46 protein expression and increased estrogen-dependent tumor growth when these cells were implanted in nude mice. These results show HMGA1a is involved in alternative splicing of the ERα gene and related to estrogen-related growth as well as tamoxifen sensitivity in MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Kenji Ohe
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan.
| | - Shinsuke Miyajima
- Department of Breast Surgery, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Ichiro Abe
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino city, 818-8502, Japan
| | - Tomoko Tanaka
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Yuriko Hamaguchi
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Yoshihiro Harada
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Yuta Horita
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Yuki Beppu
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Fumiaki Ito
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Takafumi Yamasaki
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Hiroki Terai
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Masayoshi Mori
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Yusuke Murata
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Makito Tanabe
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Kenji Ashida
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kunihisa Kobayashi
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino city, 818-8502, Japan
| | - Munechika Enjoji
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Toshihiko Yanase
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Nobuhiro Harada
- Department of Biochemistry, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Toshiaki Utsumi
- Department of Breast Surgery, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Akila Mayeda
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Aichi, Toyoake, 470-1192, Japan
| |
Collapse
|
10
|
Ohe K, Miyajima S, Tanaka T, Hamaguchi Y, Harada Y, Horita Y, Beppu Y, Ito F, Yamasaki T, Terai H, Mori M, Murata Y, Tanabe M, Abe I, Ashida K, Kobayashi K, Enjoji M, Nomiyama T, Yanase T, Harada N, Utsumi T, Mayeda A. HMGA1a Induces Alternative Splicing of the Estrogen Receptor-α lpha Gene by Trapping U1 snRNP to an Upstream Pseudo-5' Splice Site. Front Mol Biosci 2018; 5:52. [PMID: 29938207 PMCID: PMC6002489 DOI: 10.3389/fmolb.2018.00052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/22/2018] [Indexed: 12/31/2022] Open
Abstract
Objectives: The high-mobility group A protein 1a (HMGA1a) protein is known as a transcription factor that binds to DNA, but recent studies have shown it exerts novel functions through RNA-binding. We were prompted to decipher the mechanism of HMGA1a-induced alternative splicing of the estrogen receptor alpha (ERα) that we recently reported would alter tamoxifen sensitivity in MCF-7 TAMR1 cells. Methods: Endogenous expression of full length ERα66 and its isoform ERα46 were evaluated in MCF-7 breast cancer cells by transient expression of HMGA1a and an RNA decoy (2′-O-methylated RNA of the HMGA1a RNA-binding site) that binds to HMGA1a. RNA-binding of HMGA1a was checked by RNA-EMSA. In vitro splicing assay was performed to check the direct involvement of HMGA1a in splicing regulation. RNA-EMSA assay in the presence of purified U1 snRNP was performed with psoralen UV crosslinking to check complex formation of HMGA1a-U1 snRNP at the upstream pseudo-5′ splice site of exon 1. Results: HMGA1a induced exon skipping of a shortened exon 1 of ERα in in vitro splicing assays that was blocked by the HMGA1a RNA decoy and sequence-specific RNA-binding was confirmed by RNA-EMSA. RNA-EMSA combined with psoralen UV crosslinking showed that HMGA1a trapped purified U1 snRNP at the upstream pseudo-5′ splice site. Conclusions: Regulation of ERα alternative splicing by an HMGA1a-trapped U1 snRNP complex at the upstream 5′ splice site of exon 1 offers novel insight on 5′ splice site regulation by U1 snRNP as well as a promising target in breast cancer therapy where alternative splicing of ERα is involved.
Collapse
Affiliation(s)
- Kenji Ohe
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shinsuke Miyajima
- Department of Breast Surgery, Fujita Health University, Toyoake, Japan
| | - Tomoko Tanaka
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Yuriko Hamaguchi
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Yoshihiro Harada
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Yuta Horita
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Yuki Beppu
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Fumiaki Ito
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Takafumi Yamasaki
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Hiroki Terai
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Masayoshi Mori
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Yusuke Murata
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Makito Tanabe
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Ichiro Abe
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Kenji Ashida
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kunihisa Kobayashi
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Munechika Enjoji
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Takashi Nomiyama
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Toshihiko Yanase
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Nobuhiro Harada
- Department of Biochemistry, Fujita Health University, Toyoake, Japan
| | - Toshiaki Utsumi
- Department of Breast Surgery, Fujita Health University, Toyoake, Japan
| | - Akila Mayeda
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| |
Collapse
|
11
|
Bai B. U1 snRNP Alteration and Neuronal Cell Cycle Reentry in Alzheimer Disease. Front Aging Neurosci 2018; 10:75. [PMID: 29628886 PMCID: PMC5876301 DOI: 10.3389/fnagi.2018.00075 10.12075/j.issn.1004-4051.2018.08.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/06/2018] [Indexed: 06/29/2024] Open
Abstract
The aberrancy of U1 small nuclear ribonucleoprotein (snRNP) complex and RNA splicing has been demonstrated in Alzheimer's disease (AD). Importantly, the U1 proteopathy is AD-specific, widespread and early-occurring, thus providing a very unique clue to the AD pathogenesis. The prominent feature of U1 histopathology is its nuclear depletion and redistribution in the neuronal cytoplasm. According to the preliminary data, the initial U1 cytoplasmic distribution pattern is similar to the subcellular translocation of the spliceosome in cells undergoing mitosis. This implies that the U1 mislocalization might reflect the neuronal cell cycle-reentry (CCR) which has been extensively evidenced in AD brains. The CCR phenomenon explains the major molecular and cellular events in AD brains, such as Tau and amyloid precursor protein (APP) phosphorylation, and the possible neuronal death through mitotic catastrophe (MC). Furthermore, the CCR might be mechanistically linked to inflammation, a critical factor in the AD etiology according to the genetic evidence. Therefore, the discovery of U1 aberrancy might strengthen the involvement of CCR in the AD neuronal degeneration.
Collapse
Affiliation(s)
- Bing Bai
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
12
|
Bai B. U1 snRNP Alteration and Neuronal Cell Cycle Reentry in Alzheimer Disease. Front Aging Neurosci 2018; 10:75. [PMID: 29628886 PMCID: PMC5876301 DOI: 10.3389/fnagi.2018.00075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/06/2018] [Indexed: 12/12/2022] Open
Abstract
The aberrancy of U1 small nuclear ribonucleoprotein (snRNP) complex and RNA splicing has been demonstrated in Alzheimer’s disease (AD). Importantly, the U1 proteopathy is AD-specific, widespread and early-occurring, thus providing a very unique clue to the AD pathogenesis. The prominent feature of U1 histopathology is its nuclear depletion and redistribution in the neuronal cytoplasm. According to the preliminary data, the initial U1 cytoplasmic distribution pattern is similar to the subcellular translocation of the spliceosome in cells undergoing mitosis. This implies that the U1 mislocalization might reflect the neuronal cell cycle-reentry (CCR) which has been extensively evidenced in AD brains. The CCR phenomenon explains the major molecular and cellular events in AD brains, such as Tau and amyloid precursor protein (APP) phosphorylation, and the possible neuronal death through mitotic catastrophe (MC). Furthermore, the CCR might be mechanistically linked to inflammation, a critical factor in the AD etiology according to the genetic evidence. Therefore, the discovery of U1 aberrancy might strengthen the involvement of CCR in the AD neuronal degeneration.
Collapse
Affiliation(s)
- Bing Bai
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
13
|
Ke S, Anquetil V, Zamalloa JR, Maity A, Yang A, Arias MA, Kalachikov S, Russo JJ, Ju J, Chasin LA. Saturation mutagenesis reveals manifold determinants of exon definition. Genome Res 2017; 28:11-24. [PMID: 29242188 PMCID: PMC5749175 DOI: 10.1101/gr.219683.116] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 11/27/2017] [Indexed: 11/24/2022]
Abstract
To illuminate the extent and roles of exonic sequences in the splicing of human RNA transcripts, we conducted saturation mutagenesis of a 51-nt internal exon in a three-exon minigene. All possible single and tandem dinucleotide substitutions were surveyed. Using high-throughput genetics, 5560 minigene molecules were assayed for splicing in human HEK293 cells. Up to 70% of mutations produced substantial (greater than twofold) phenotypes of either increased or decreased splicing. Of all predicted secondary structural elements, only a single 15-nt stem–loop showed a strong correlation with splicing, acting negatively. The in vitro formation of exon-protein complexes between the mutant molecules and proteins associated with spliceosome formation (U2AF35, U2AF65, U1A, and U1-70K) correlated with splicing efficiencies, suggesting exon definition as the step affected by most mutations. The measured relative binding affinities of dozens of human RNA binding protein domains as reported in the CISBP-RNA database were found to correlate either positively or negatively with splicing efficiency, more than could fit on the 51-nt test exon simultaneously. The large number of these functional protein binding correlations point to a dynamic and heterogeneous population of pre-mRNA molecules, each responding to a particular collection of binding proteins.
Collapse
Affiliation(s)
- Shengdong Ke
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Vincent Anquetil
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Jorge Rojas Zamalloa
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Alisha Maity
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Anthony Yang
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Mauricio A Arias
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Sergey Kalachikov
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
| | - James J Russo
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
| | - Jingyue Ju
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
| | - Lawrence A Chasin
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
14
|
Ohe K, Yoshida M, Nakano-Kobayashi A, Hosokawa M, Sako Y, Sakuma M, Okuno Y, Usui T, Ninomiya K, Nojima T, Kataoka N, Hagiwara M. RBM24 promotes U1 snRNP recognition of the mutated 5' splice site in the IKBKAP gene of familial dysautonomia. RNA (NEW YORK, N.Y.) 2017; 23:1393-1403. [PMID: 28592461 PMCID: PMC5558909 DOI: 10.1261/rna.059428.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 05/25/2017] [Indexed: 06/07/2023]
Abstract
The 5' splice site mutation (IVS20+6T>C) of the inhibitor of κ light polypeptide gene enhancer in B cells, kinase complex-associated protein (IKBKAP) gene in familial dysautonomia (FD) is at the sixth intronic nucleotide of the 5' splice site. It is known to weaken U1 snRNP recognition and result in an aberrantly spliced mRNA product in neuronal tissue, but normally spliced mRNA in other tissues. Aberrantly spliced IKBKAP mRNA abrogates IKK complex-associated protein (IKAP)/elongator protein 1 (ELP1) expression and results in a defect of neuronal cell development in FD. To elucidate the tissue-dependent regulatory mechanism, we screened an expression library of major RNA-binding proteins (RBPs) with our mammalian dual-color splicing reporter system and identified RBM24 as a regulator. RBM24 functioned as a cryptic intronic splicing enhancer binding to an element (IVS20+13-29) downstream from the intronic 5' splice site mutation in the IKBKAP gene and promoted U1 snRNP recognition only to the mutated 5' splice site (and not the wild-type 5' splice site). Our results show that tissue-specific expression of RBM24 can explain the neuron-specific aberrant splicing of IKBKAP exon 20 in familial dysautonomia, and that ectopic expression of RBM24 in neuronal tissue could be a novel therapeutic target of the disease.
Collapse
Affiliation(s)
- Kenji Ohe
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
- Training Program of Leaders for Integrated Medical System for Fruitful Healthy-Longevity Society (LIMS), Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mayumi Yoshida
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | - Akiko Nakano-Kobayashi
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | - Motoyasu Hosokawa
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yukiya Sako
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | - Maki Sakuma
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yukiko Okuno
- Medical Research Support Center, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomomi Usui
- Laboratory of Gene Expression, School of Biomedical Science, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kensuke Ninomiya
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takayuki Nojima
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Naoyuki Kataoka
- Laboratory for Malignancy Control Research, Medical Innovation Center, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan
- Laboratory of Cell Regulation, Departments of Applied Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
15
|
Nuzzo D, Inguglia L, Walters J, Picone P, Di Carlo M. A Shotgun Proteomics Approach Reveals a New Toxic Role for Alzheimer's Disease Aβ Peptide: Spliceosome Impairment. J Proteome Res 2017; 16:1526-1541. [PMID: 28157316 DOI: 10.1021/acs.jproteome.6b00925] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Proteomic changes have been described in many neurodegenerative diseases, including Alzheimer's disease (AD). However, the early events in the onset of the pathology are yet to be fully elucidated. A cell model system in which LAN5 neuroblastoma cells were incubated for a short time with a recombinant form of Aβ42 was utilized. Proteins extracted from these cells were subjected to shotgun proteomics analysis by LTQ-Orbitrap-MS followed by label-free quantitation. By bioinformatics tools we found that the most significant of those found to be up-regulated were related to cytoskeletal dynamics (Rho related) and membrane-related processes. The most significant of the down-regulated proteins were hnRNP-related. In particular, hnRNPs involved in ribosomal biogenesis and in splicing were down-regulated. The latter of these processes stood out as it was highlighted ubiquitously and with the highest significance in the results of every analysis. Furthermore, our findings revealed down-regulation at every stage of the splicing process through down-regulation of every subunit of the spliceosome. Dysregulation of the spliceosome was also confirmed using a Western blot. In conclusion, these data suggest dysregulation of the proteins and processes identified as early events in pathogenesis of AD following Aβ accumulation.
Collapse
Affiliation(s)
- Domenico Nuzzo
- Istituto di Biomedicina ed Immunologia Molecolare "A. Monroy" (IBIM) , Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Luigi Inguglia
- Istituto di Biofisica (IBF) , Via Ugo La Malfa 153, 90146 Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology , 90146 Palermo, Italy
| | - Jessica Walters
- Istituto di Biomedicina ed Immunologia Molecolare "A. Monroy" (IBIM) , Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Pasquale Picone
- Istituto di Biomedicina ed Immunologia Molecolare "A. Monroy" (IBIM) , Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Marta Di Carlo
- Istituto di Biomedicina ed Immunologia Molecolare "A. Monroy" (IBIM) , Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
16
|
|
17
|
Sumter TF, Xian L, Huso T, Koo M, Chang YT, Almasri TN, Chia L, Inglis C, Reid D, Resar LMS. The High Mobility Group A1 (HMGA1) Transcriptome in Cancer and Development. Curr Mol Med 2016; 16:353-93. [PMID: 26980699 DOI: 10.2174/1566524016666160316152147] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 02/15/2016] [Accepted: 03/10/2016] [Indexed: 01/19/2023]
Abstract
BACKGROUND & OBJECTIVES Chromatin structure is the single most important feature that distinguishes a cancer cell from a normal cell histologically. Chromatin remodeling proteins regulate chromatin structure and high mobility group A (HMGA1) proteins are among the most abundant, nonhistone chromatin remodeling proteins found in cancer cells. These proteins include HMGA1a/HMGA1b isoforms, which result from alternatively spliced mRNA. The HMGA1 gene is overexpressed in cancer and high levels portend a poor prognosis in diverse tumors. HMGA1 is also highly expressed during embryogenesis and postnatally in adult stem cells. Overexpression of HMGA1 drives neoplastic transformation in cultured cells, while inhibiting HMGA1 blocks oncogenic and cancer stem cell properties. Hmga1 transgenic mice succumb to aggressive tumors, demonstrating that dysregulated expression of HMGA1 causes cancer in vivo. HMGA1 is also required for reprogramming somatic cells into induced pluripotent stem cells. HMGA1 proteins function as ancillary transcription factors that bend chromatin and recruit other transcription factors to DNA. They induce oncogenic transformation by activating or repressing specific genes involved in this process and an HMGA1 "transcriptome" is emerging. Although prior studies reveal potent oncogenic properties of HMGA1, we are only beginning to understand the molecular mechanisms through which HMGA1 functions. In this review, we summarize the list of putative downstream transcriptional targets regulated by HMGA1. We also briefly discuss studies linking HMGA1 to Alzheimer's disease and type-2 diabetes. CONCLUSION Further elucidation of HMGA1 function should lead to novel therapeutic strategies for cancer and possibly for other diseases associated with aberrant HMGA1 expression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - L M S Resar
- Department of Medicine, Faculty of the Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Room 1025, Baltimore, MD 21205-2109, USA.
| |
Collapse
|
18
|
Reeves R. High mobility group (HMG) proteins: Modulators of chromatin structure and DNA repair in mammalian cells. DNA Repair (Amst) 2015; 36:122-136. [PMID: 26411874 DOI: 10.1016/j.dnarep.2015.09.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It has been almost a decade since the last review appeared comparing and contrasting the influences that the different families of High Mobility Group proteins (HMGA, HMGB and HMGN) have on the various DNA repair pathways in mammalian cells. During that time considerable progress has been made in our understanding of how these non-histone proteins modulate the efficiency of DNA repair by all of the major cellular pathways: nucleotide excision repair, base excision repair, double-stand break repair and mismatch repair. Although there are often similar and over-lapping biological activities shared by all HMG proteins, members of each of the different families appear to have a somewhat 'individualistic' impact on various DNA repair pathways. This review will focus on what is currently known about the roles that different HMG proteins play in DNA repair processes and discuss possible future research areas in this rapidly evolving field.
Collapse
Affiliation(s)
- Raymond Reeves
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-4660, USA.
| |
Collapse
|
19
|
Funayama M, Ohe K, Amo T, Furuya N, Yamaguchi J, Saiki S, Li Y, Ogaki K, Ando M, Yoshino H, Tomiyama H, Nishioka K, Hasegawa K, Saiki H, Satake W, Mogushi K, Sasaki R, Kokubo Y, Kuzuhara S, Toda T, Mizuno Y, Uchiyama Y, Ohno K, Hattori N. CHCHD2 mutations in autosomal dominant late-onset Parkinson's disease: a genome-wide linkage and sequencing study. Lancet Neurol 2015; 14:274-82. [DOI: 10.1016/s1474-4422(14)70266-2] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
20
|
Rahman MA, Masuda A, Ohe K, Ito M, Hutchinson DO, Mayeda A, Engel AG, Ohno K. HnRNP L and hnRNP LL antagonistically modulate PTB-mediated splicing suppression of CHRNA1 pre-mRNA. Sci Rep 2013; 3:2931. [PMID: 24121633 PMCID: PMC3796306 DOI: 10.1038/srep02931] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/25/2013] [Indexed: 12/20/2022] Open
Abstract
CHRNA1 gene, encoding the muscle nicotinic acetylcholine receptor alpha subunit, harbors an inframe exon P3A. Inclusion of exon P3A disables assembly of the acetylcholine receptor subunits. A single nucleotide mutation in exon P3A identified in congenital myasthenic syndrome causes exclusive inclusion of exon P3A. The mutation gains a de novo binding affinity for a splicing enhancing RNA-binding protein, hnRNP LL, and displaces binding of a splicing suppressing RNA-binding protein, hnRNP L. The hnRNP L binds to another splicing repressor PTB through the proline-rich region and promotes PTB binding to the polypyrimidine tract upstream of exon P3A, whereas hnRNP LL lacking the proline-rich region cannot bind to PTB. Interaction of hnRNP L with PTB inhibits association of U2AF(65) and U1 snRNP with the upstream and downstream of P3A, respectively, which causes a defect in exon P3A definition. HnRNP L and hnRNP LL thus antagonistically modulate PTB-mediated splicing suppression of exon P3A.
Collapse
Affiliation(s)
- Mohammad Alinoor Rahman
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Roca X, Krainer AR, Eperon IC. Pick one, but be quick: 5' splice sites and the problems of too many choices. Genes Dev 2013; 27:129-44. [PMID: 23348838 DOI: 10.1101/gad.209759.112] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Splice site selection is fundamental to pre-mRNA splicing and the expansion of genomic coding potential. 5' Splice sites (5'ss) are the critical elements at the 5' end of introns and are extremely diverse, as thousands of different sequences act as bona fide 5'ss in the human transcriptome. Most 5'ss are recognized by base-pairing with the 5' end of the U1 small nuclear RNA (snRNA). Here we review the history of research on 5'ss selection, highlighting the difficulties of establishing how base-pairing strength determines splicing outcomes. We also discuss recent work demonstrating that U1 snRNA:5'ss helices can accommodate noncanonical registers such as bulged duplexes. In addition, we describe the mechanisms by which other snRNAs, regulatory proteins, splicing enhancers, and the relative positions of alternative 5'ss contribute to selection. Moreover, we discuss mechanisms by which the recognition of numerous candidate 5'ss might lead to selection of a single 5'ss and propose that protein complexes propagate along the exon, thereby changing its physical behavior so as to affect 5'ss selection.
Collapse
Affiliation(s)
- Xavier Roca
- School of Biological Sciences, Division of Molecular Genetics and Cell Biology, Nanyang Technological University, Singapore.
| | | | | |
Collapse
|
22
|
Mittendorf KF, Deatherage CL, Ohi MD, Sanders CR. Tailoring of membrane proteins by alternative splicing of pre-mRNA. Biochemistry 2012; 51:5541-56. [PMID: 22708632 DOI: 10.1021/bi3007065] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alternative splicing (AS) of RNA is a key mechanism for diversification of the eukaryotic proteome. In this process, different mRNA transcripts can be produced through altered excision and/or inclusion of exons during processing of the pre-mRNA molecule. Since its discovery, AS has been shown to play roles in protein structure, function, and localization. Dysregulation of this process can result in disease phenotypes. Moreover, AS pathways are promising therapeutic targets for a number of diseases. Integral membrane proteins (MPs) represent a class of proteins that may be particularly amenable to regulation by alternative splicing because of the distinctive topological restraints associated with their folding, structure, trafficking, and function. Here, we review the impact of AS on MP form and function and the roles of AS in MP-related disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Kathleen F Mittendorf
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
23
|
Cacabelos R, Martínez R, Fernández-Novoa L, Carril JC, Lombardi V, Carrera I, Corzo L, Tellado I, Leszek J, McKay A, Takeda M. Genomics of Dementia: APOE- and CYP2D6-Related Pharmacogenetics. Int J Alzheimers Dis 2012; 2012:518901. [PMID: 22482072 PMCID: PMC3312254 DOI: 10.1155/2012/518901] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 11/12/2011] [Indexed: 01/05/2023] Open
Abstract
Dementia is a major problem of health in developed societies. Alzheimer's disease (AD), vascular dementia, and mixed dementia account for over 90% of the most prevalent forms of dementia. Both genetic and environmental factors are determinant for the phenotypic expression of dementia. AD is a complex disorder in which many different gene clusters may be involved. Most genes screened to date belong to different proteomic and metabolomic pathways potentially affecting AD pathogenesis. The ε4 variant of the APOE gene seems to be a major risk factor for both degenerative and vascular dementia. Metabolic factors, cerebrovascular disorders, and epigenetic phenomena also contribute to neurodegeneration. Five categories of genes are mainly involved in pharmacogenomics: genes associated with disease pathogenesis, genes associated with the mechanism of action of a particular drug, genes associated with phase I and phase II metabolic reactions, genes associated with transporters, and pleiotropic genes and/or genes associated with concomitant pathologies. The APOE and CYP2D6 genes have been extensively studied in AD. The therapeutic response to conventional drugs in patients with AD is genotype specific, with CYP2D6-PMs, CYP2D6-UMs, and APOE-4/4 carriers acting as the worst responders. APOE and CYP2D6 may cooperate, as pleiotropic genes, in the metabolism of drugs and hepatic function. The introduction of pharmacogenetic procedures into AD pharmacological treatment may help to optimize therapeutics.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University, 15165 Bergondo, Spain
| | - Rocío Martínez
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University, 15165 Bergondo, Spain
| | - Lucía Fernández-Novoa
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University, 15165 Bergondo, Spain
| | - Juan C. Carril
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University, 15165 Bergondo, Spain
| | - Valter Lombardi
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University, 15165 Bergondo, Spain
| | - Iván Carrera
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University, 15165 Bergondo, Spain
| | - Lola Corzo
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University, 15165 Bergondo, Spain
| | - Iván Tellado
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University, 15165 Bergondo, Spain
| | - Jerzy Leszek
- Department of Psychiatry, Medical University of Wroclaw, Pasteura 10, 50-229 Wroclaw, Poland
| | - Adam McKay
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University, 15165 Bergondo, Spain
| | - Masatoshi Takeda
- Department of Psychiatry and Behavioral Sciences, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| |
Collapse
|
24
|
Moussavi Nik SH, Newman M, Lardelli M. The response of HMGA1 to changes in oxygen availability is evolutionarily conserved. Exp Cell Res 2011; 317:1503-12. [PMID: 21530505 DOI: 10.1016/j.yexcr.2011.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 04/05/2011] [Accepted: 04/10/2011] [Indexed: 10/18/2022]
Abstract
Zebrafish embryos have evolved to cope with hypoxia during development. This includes the ability to completely suspend embryo development for extended periods until normoxia is restored. However, only a limited number of studies have examined the gene regulatory responses of zebrafish embryos to hypoxia. The High Mobility Group A1 protein encoded by the mammalian gene HMGA1 is widely expressed during embryo development but not in adults. Its expression can be induced in adult neurons by hypoxia/oxidative stress and it is commonly reactivated in many types of cancer. We report the identification by phylogenetic and conserved synteny analyses of an HMGA1 orthologue in zebrafish, hmga1 (hmg-i/y) and analysis of sodium azide as a chemical agent for inducing hypoxia-like responses in zebrafish embryos including temporary suspension of development ("suspended animation"). Evidence was only found for the existence of the "a" isoform of HMGA1 in fish. The "b" and "c" isoforms were not detected. We show that zebrafish hmga1 is expressed in a manner similar to in mammals including its induction by hypoxia during hatching stage and in adult zebrafish brain. However, earlier during development, hypoxia causes a decrease in hmga1 transcript levels. By analysis of conservation of the HMGA1a isoform binding site in zebrafish psen2 gene transcripts, we predict that a zebrafish equivalent of the PS2V isoform of human PSEN2 is not formed and we support this by RT-PCR analyses. Thus, analysis of hmga1 function in zebrafish embryogenesis may be valuable for understanding its wider role in vertebrate development, cancer and cellular responses to hypoxia but not for analysis of the action of HMGA1 in PS2V formation.
Collapse
Affiliation(s)
- Seyyed Hani Moussavi Nik
- Discipline of Genetics, School of Molecular and Biomedical Sciences, The University of Adelaide, Australia.
| | | | | |
Collapse
|
25
|
Tsuruno C, Ohe K, Kuramitsu M, Kohma T, Takahama Y, Hamaguchi Y, Hamaguchi I, Okuma K. HMGA1a is involved in specific splice site regulation of human immunodeficiency virus type 1. Biochem Biophys Res Commun 2011; 406:512-7. [PMID: 21329653 DOI: 10.1016/j.bbrc.2011.02.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 02/11/2011] [Indexed: 10/18/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) utilizes a highly complex splice site regulation system, taking advantage of host proteins, to express its own viral protein in an orderly way. We show here that one of the host proteins, high mobility group A protein 1a (HMGA1a), is involved in splice site regulation of 3' splice site 2 (A2) and 5'splice site 3 (D3) of HIV-1 genomic RNA. shRNA knockdown of HMGA1 in HeLa cells resulting in a decrease of HMGA1 showed a significant decrease of Vpr mRNA. RNA electrophoretic mobility shift assays showed HMGA1a specifically binds to a sequence adjacently upstream D3. In vitro splicing using heterologous pre-mRNA with A2 and D3, showed HMGA1a induced a splicing intermediate which decreased when an RNA decoy of the HMGA1a binding site was added. RT-PCR of in vitro splicing products revealed that HMGA1a induced an incomplete splicing product resulting from usage of A2 but inhibition of D3, which is reminiscent of the splicing pattern necessary for Vpr mRNA formation. HMGA1a interacted with hnRNPA1 shown by coimmunoprecipitation and supershifted U1 snRNP in an RNA electrophoretic mobility shift assay. We conclude that HMGA1a anchors U1 snRNP to inhibit D3 function, and that HMGA1a inhibits hnRNPA1 function on exon splicing silencer of Vpr (ESSV) to activate A2 function. We show here for the first time that HMGA1a is involved in specific splice site regulation of HIV-1.
Collapse
Affiliation(s)
- Chikayuki Tsuruno
- National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Spliceosomal RNA infrastructure: The Network of Splicing Components and Their Regulation by miRNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 722:86-102. [DOI: 10.1007/978-1-4614-0332-6_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
Morikawa T, Manabe T. Aberrant regulation of alternative pre-mRNA splicing in schizophrenia. Neurochem Int 2010; 57:691-704. [DOI: 10.1016/j.neuint.2010.08.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 08/07/2010] [Accepted: 08/12/2010] [Indexed: 01/06/2023]
|
28
|
Future Trends in the Pharmacogenomics of Brain Disorders and Dementia: Influence of APOE and CYP2D6 Variants. Pharmaceuticals (Basel) 2010. [PMCID: PMC4034082 DOI: 10.3390/ph3103040] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
About 80% of functional genes in the human genome are expressed in the brain and over 1,200 different genes have been associated with the pathogenesis of CNS disorders and dementia. Pharmacogenetic studies of psychotropic drug response have focused on determining the relationship between variations in specific candidate genes and the positive and adverse effects of drug treatment. Approximately, 18% of neuroleptics are substrates of CYP1A2 enzymes, 40% of CYP2D6, and 23% of CYP3A4; 24% of antidepressants are substrates of CYP1A2 enzymes, 5% of CYP2B6, 38% of CYP2C19, 85% of CYP2D6, and 38% of CYP3A4; 7% of benzodiazepines are substrates of CYP2C19 enzymes, 20% of CYP2D6, and 95% of CYP3A4. 10-20% of Western populations are defective in genes of the CYP superfamily; and the pharmacogenomic response of psychotropic drugs also depends on genetic variants associated with dementia. Prospective studies with anti-dementia drugs or with multifactorial strategies have revealed that the therapeutic response to conventional drugs in Alzheimer’s disease is genotype-specific. The disease-modifying effects (cognitive performance, biomarker modification) of therapeutic intervention are APOE-dependent, with APOE-4 carriers acting as the worst responders (APOE-3/3 > APOE-3/4 > APOE-4/4). APOE-CYP2D6 interactions also influence the therapeutic outcome in patients with dementia.
Collapse
|
29
|
The expression of HMGA1a is increased in lymphoblastoid cell lines from schizophrenia patients. Neurochem Int 2010; 56:736-9. [DOI: 10.1016/j.neuint.2010.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 03/19/2010] [Indexed: 11/19/2022]
|