1
|
James CD, Saini S, Sesay F, Ko K, Felthousen-Rusbasan J, Iness AN, Nulton T, Windle B, Dozmorov MG, Morgan IM, Litovchick L. Restoring the DREAM Complex Inhibits the Proliferation of High-Risk HPV Positive Human Cells. Cancers (Basel) 2021; 13:489. [PMID: 33513914 PMCID: PMC7866234 DOI: 10.3390/cancers13030489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 11/28/2022] Open
Abstract
High-risk (HR) human papillomaviruses are known causative agents in 5% of human cancers including cervical, ano-genital and head and neck carcinomas. In part, HR-HPV causes cancer by targeting host-cell tumor suppressors including retinoblastoma protein (pRb) and RB-like proteins p107 and p130. HR-HPV E7 uses a LxCxE motif to bind RB proteins, impairing their ability to control cell-cycle dependent transcription. E7 disrupts DREAM (Dimerization partner, RB-like, E2F and MuvB), a transcriptional repressor complex that can include p130 or p107, but not pRb, which regulates genes required for cell cycle progression. However, it is not known whether disruption of DREAM plays a significant role in HPV-driven tumorigenesis. In the DREAM complex, LIN52 is an adaptor that binds directly to p130 via an E7-like LxSxE motif. Replacement of the LxSxE sequence in LIN52 with LxCxE (LIN52-S20C) increases p130 binding and partially restores DREAM assembly in HPV-positive keratinocytes and human cervical cancer cells, inhibiting proliferation. Our findings demonstrate that disruption of the DREAM complex by E7 is an important process promoting cellular proliferation by HR-HPV. Restoration of the DREAM complex in HR-HPV positive cells may therefore have therapeutic benefits in HR-HPV positive cancers.
Collapse
Affiliation(s)
- Claire D. James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (C.D.J.); (K.K.); (T.N.); (B.W.)
| | - Siddharth Saini
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (S.S.); (F.S.); (J.F.-R.); (A.N.I.)
| | - Fatmata Sesay
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (S.S.); (F.S.); (J.F.-R.); (A.N.I.)
| | - Kevin Ko
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (C.D.J.); (K.K.); (T.N.); (B.W.)
| | - Jessica Felthousen-Rusbasan
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (S.S.); (F.S.); (J.F.-R.); (A.N.I.)
| | - Audra N. Iness
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (S.S.); (F.S.); (J.F.-R.); (A.N.I.)
| | - Tara Nulton
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (C.D.J.); (K.K.); (T.N.); (B.W.)
| | - Brad Windle
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (C.D.J.); (K.K.); (T.N.); (B.W.)
- Massey Cancer Center, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA
| | - Mikhail G. Dozmorov
- Department of Biostatistics, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA;
- Department of Pathology, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA
| | - Iain M. Morgan
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (C.D.J.); (K.K.); (T.N.); (B.W.)
- Massey Cancer Center, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA
| | - Larisa Litovchick
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (S.S.); (F.S.); (J.F.-R.); (A.N.I.)
- Massey Cancer Center, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA
| |
Collapse
|
2
|
Crawford NT, McIntyre AJ, McCormick A, D'Costa ZC, Buckley NE, Mullan PB. TBX2 interacts with heterochromatin protein 1 to recruit a novel repression complex to EGR1-targeted promoters to drive the proliferation of breast cancer cells. Oncogene 2019; 38:5971-5986. [PMID: 31253870 DOI: 10.1038/s41388-019-0853-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 04/12/2019] [Accepted: 04/14/2019] [Indexed: 11/09/2022]
Abstract
Early Growth Response 1 (EGR1) is a stress response transcription factor with multiple tumour suppressor roles in breast tissue, whose expression is often lost in breast cancers. We have previously shown that the breast cancer oncogene TBX2 (T-BOX2) interacts with EGR1 to co-repress EGR1-target genes including the breast tumour suppressor NDRG1. Here, we show the mechanistic basis of this TBX2 repression complex. We show that siRNA knockdown of TBX2, EGR1, Heterochromatin Protein 1 (HP1) isoforms and the generic HP1-associated corepressor protein KAP1 all resulted in growth inhibition of TBX2-expressing breast cancer cells. We show that TBX2 interacts with HP1 through a conserved HP1-binding motif in its N-terminus, which in turn leads to the recruitment of KAP1 and other associated proteins. Mutation of the TBX2 HP1 binding domain abrogates the TBX2-HP1 interaction and loss of repression of target genes such as NDRG1. Chromatin-immunoprecipitation (ChIP) assays showed that TBX2 establishes a repressive chromatin mark, specifically H3K9me3, around the NDRG1 proximal promoter coincident with the recruitment of the DNA methyltransferase DNMT3B and histone methyltransferase (HMT) complex components (G9A, Enhancer of Zeste 2 (EZH2) and Suppressor of Zeste 12 (SUZ12)). Knockdown of G9A, EZH2 or SUZ12 resulted in upregulation of TBX2/EGR1 co-regulated targets accompanied by a dramatic inhibition of cell proliferation. We show that a generic inhibitor of HMT activity, DzNep, phenocopies expression of an inducible dominant negative TBX2. Knockdown of TBX2, KAP1 or HP1 inhibited NDRG1 promoter decoration specifically with the H3K9me3 repression mark. Correspondingly, treatment with a G9A inhibitor effectively reversed TBX2 repression of NDRG1 and synergistically downregulated cell proliferation following TBX2 functional inhibition. These data demonstrate that TBX2 promotes suppression of normal growth control mechanisms through recruitment of a large repression complex to EGR1-responsive promoters leading to the uncontrolled proliferation of breast cancer cells.
Collapse
Affiliation(s)
- N T Crawford
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - A J McIntyre
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - A McCormick
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Z C D'Costa
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - N E Buckley
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - P B Mullan
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7BL, UK.
| |
Collapse
|
3
|
Wielders CLC, van Nierop P, Vormer TL, Foijer F, Verheij J, Lodder JC, Andersen JB, Mansvelder HD, te Riele H. RNAi screening of subtracted transcriptomes reveals tumor suppression by taurine-activated GABAA receptors involved in volume regulation. PLoS One 2018; 13:e0196979. [PMID: 29787571 PMCID: PMC5963783 DOI: 10.1371/journal.pone.0196979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 04/24/2018] [Indexed: 11/21/2022] Open
Abstract
To identify coding and non-coding suppressor genes of anchorage-independent proliferation by efficient loss-of-function screening, we have developed a method for enzymatic production of low complexity shRNA libraries from subtracted transcriptomes. We produced and screened two LEGO (Low-complexity by Enrichment for Genes shut Off) shRNA libraries that were enriched for shRNA vectors targeting coding and non-coding polyadenylated transcripts that were reduced in transformed Mouse Embryonic Fibroblasts (MEFs). The LEGO shRNA libraries included ~25 shRNA vectors per transcript which limited off-target artifacts. Our method identified 79 coding and non-coding suppressor transcripts. We found that taurine-responsive GABAA receptor subunits, including GABRA5 and GABRB3, were induced during the arrest of non-transformed anchor-deprived MEFs and prevented anchorless proliferation. We show that taurine activates chloride currents through GABAA receptors on MEFs, causing seclusion of cell volume in large membrane protrusions. Volume seclusion from cells by taurine correlated with reduced proliferation and, conversely, suppression of this pathway allowed anchorage-independent proliferation. In human cholangiocarcinomas, we found that several proteins involved in taurine signaling via GABAA receptors were repressed. Low GABRA5 expression typified hyperproliferative tumors, and loss of taurine signaling correlated with reduced patient survival, suggesting this tumor suppressive mechanism operates in vivo.
Collapse
Affiliation(s)
- Camiel L. C. Wielders
- Netherlands Cancer Institute, Division of Tumor Biology and Immunology, Amsterdam, The Netherlands
| | - Pim van Nierop
- VU University, Center for Neurogenomics and Cognitive Research, Amsterdam, The Netherlands
| | - Tinke L. Vormer
- Netherlands Cancer Institute, Division of Tumor Biology and Immunology, Amsterdam, The Netherlands
| | - Floris Foijer
- University Medical Centre Groningen, ERIBA, Groningen, The Netherlands
| | - Joanne Verheij
- Academic Medical Center, Division of Pathology, Amsterdam, The Netherlands
| | - Johannes C. Lodder
- VU University, Center for Neurogenomics and Cognitive Research, Amsterdam, The Netherlands
| | - Jesper B. Andersen
- University of Copenhagen, Biotech Research and Innovation Centre, Copenhagen, Denmark
| | - Huibert D. Mansvelder
- VU University, Center for Neurogenomics and Cognitive Research, Amsterdam, The Netherlands
| | - Hein te Riele
- Netherlands Cancer Institute, Division of Tumor Biology and Immunology, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
4
|
Vivekanandhan S, Mukhopadhyay D. Genetic status of KRAS influences Transforming Growth Factor-beta (TGF-β) signaling: An insight into Neuropilin-1 (NRP1) mediated tumorigenesis. Semin Cancer Biol 2018; 54:72-79. [PMID: 29409705 DOI: 10.1016/j.semcancer.2018.01.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 01/25/2018] [Indexed: 02/07/2023]
Abstract
Oncogenic RAS and deregulated transforming growth factor-beta (TGF)-β signaling have been implicated in several cancers. So far, attempts to target either one of them therapeutically have been futile as both of them are involved in multiple fundamental cellular processes and the normal forms are expressed by almost all cells. Hence, their inhibition would disrupt several physiological processes. Besides, their downregulation stimulates the tumor cells to develop adaptive mechanisms and would most likely be ineffective as therapeutic targets. Furthermore, growing literature suggests that both of these signaling pathways converge to enhance tumor development. Therefore, a lot of interest has been generated to explore the areas where these pathways interface that might identify new molecules that could potentially serve as novel therapeutic targets. In this review, we focus on such convergent signaling and cross-interaction that is mediated by neuropilin-1 (NRP1), a receptor that can interact with multiple growth factors including TGF-β for promoting tumorigenesis process.
Collapse
Affiliation(s)
- Sneha Vivekanandhan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States.
| |
Collapse
|
5
|
Guo C, Wang J, Yang M, Li Y, Cui S, Zhou X, Li Y, Sun Z. Amorphous silica nanoparticles induce malignant transformation and tumorigenesis of human lung epithelial cells via P53 signaling. Nanotoxicology 2017; 11:1176-1194. [DOI: 10.1080/17435390.2017.1403658] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Caixia Guo
- School of Public Health, Capital Medical University, Beijing, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Ji Wang
- School of Public Health, Capital Medical University, Beijing, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Man Yang
- School of Public Health, Capital Medical University, Beijing, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Yang Li
- School of Public Health, Capital Medical University, Beijing, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Shuxiang Cui
- School of Public Health, Capital Medical University, Beijing, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Xianqing Zhou
- School of Public Health, Capital Medical University, Beijing, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Yanbo Li
- School of Public Health, Capital Medical University, Beijing, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Zhiwei Sun
- School of Public Health, Capital Medical University, Beijing, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| |
Collapse
|
6
|
Long-term exposures to low doses of silver nanoparticles enhanced in vitro malignant cell transformation in non-tumorigenic BEAS-2B cells. Toxicol In Vitro 2016; 37:41-49. [PMID: 27596524 DOI: 10.1016/j.tiv.2016.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 09/01/2016] [Indexed: 11/23/2022]
Abstract
To predict carcinogenic potential of AgNPs on the respiratory system, BEAS-2B cells (human bronchial epithelial cells) were chronically exposed to low- and non-cytotoxic dose (0.13 and 1.33μg/ml) of AgNPs for 4months (#40 passages). To assess malignant cell transformation of chronic exposure to AgNPs, several bioassays including anchorage independent agar colony formation, cell migration/invasion assay, and epithelial-mesenchymal transition (EMT) were performed in BEAS-2B cells. Chronic exposure to AgNPs showed a significant increase of anchorage independent agar colony formation and cell migration/invasion. EMT, which is the loss of epithelial markers (E-Cadherin and Keratin) and the gain of mesenchymal marker (N-cadherin and Vimentin), was induced by chronic exposure to AgNPs. These responses indicated that chronic exposure to AgNPs could acquire characteristics of tumorigenic cells from normal BEAS-2B cells. In addition, caspase-3, p-p53, p-p38, and p-JNK were significantly decreased, while p-ERK1/2 was significantly increased. MMP-9 related to cell migration/invasion was upregulated, while a MMP-9 inhibitor, TIMP-1 was down-regulated. These results indicated that BEAS-2B cells exposed to AgNPs could induce anti-apoptotic response/anoikis resistance, and cell migration/invasion by complex regulation of MAPK kinase (p38, JNK, and ERK) and p53 signaling pathways. Therefore, we suggested that long-term exposure to low-dose of AgNPs could enhance malignant cell transformation in non-tumorigenic BEAS-2B cells. Our findings provide useful information needed to assess the carcinogenic potential of AgNPs.
Collapse
|
7
|
Wansleben S, Peres J, Hare S, Goding CR, Prince S. T-box transcription factors in cancer biology. Biochim Biophys Acta Rev Cancer 2014; 1846:380-91. [PMID: 25149433 DOI: 10.1016/j.bbcan.2014.08.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 01/07/2023]
Abstract
The evolutionarily conserved T-box family of transcription factors have critical and well-established roles in embryonic development. More recently, T-box factors have also gained increasing prominence in the field of cancer biology where a wide range of cancers exhibit deregulated expression of T-box factors that possess tumour suppressor and/or tumour promoter functions. Of these the best characterised is TBX2, whose expression is upregulated in cancers including breast, pancreatic, ovarian, liver, endometrial adenocarcinoma, glioblastomas, gastric, uterine cervical and melanoma. Understanding the role and regulation of TBX2, as well as other T-box factors, in contributing directly to tumour progression, and especially in suppression of senescence and control of invasiveness suggests that targeting TBX2 expression or function alone or in combination with currently available chemotherapeutic agents may represent a therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Sabina Wansleben
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Jade Peres
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Shannagh Hare
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Oxford University, Old Road Campus, Headington, Oxford OX3 7DQ, UK
| | - Sharon Prince
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa.
| |
Collapse
|
8
|
Vormer TL, Wojciechowicz K, Dekker M, de Vries S, van der Wal A, Delzenne-Goette E, Naik SH, Song JY, Dannenberg JH, Hansen JB, te Riele H. RB Family Tumor Suppressor Activity May Not Relate to Active Silencing of E2F Target Genes. Cancer Res 2014; 74:5266-76. [DOI: 10.1158/0008-5472.can-13-3706] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Magaye R, Zhou Q, Bowman L, Zou B, Mao G, Xu J, Castranova V, Zhao J, Ding M. Metallic nickel nanoparticles may exhibit higher carcinogenic potential than fine particles in JB6 cells. PLoS One 2014; 9:e92418. [PMID: 24691273 PMCID: PMC3972196 DOI: 10.1371/journal.pone.0092418] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/21/2014] [Indexed: 01/20/2023] Open
Abstract
While numerous studies have described the pathogenic and carcinogenic effects of nickel compounds, little has been done on the biological effects of metallic nickel. Moreover, the carcinogenetic potential of metallic nickel nanoparticles is unknown. Activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) have been shown to play pivotal roles in tumor initiation, promotion, and progression. Mutation of the p53 tumor suppressor gene is considered to be one of the steps leading to the neoplastic state. The present study examines effects of metallic nickel fine and nanoparticles on tumor promoter or suppressor gene expressions as well as on cell transformation in JB6 cells. Our results demonstrate that metallic nickel nanoparticles caused higher activation of AP-1 and NF-κB, and a greater decrease of p53 transcription activity than fine particles. Western blot indicates that metallic nickel nanoparticles induced a higher level of protein expressions for R-Ras, c-myc, C-Jun, p65, and p50 in a time-dependent manner. In addition, both metallic nickel nano- and fine particles increased anchorage-independent colony formation in JB6 P+ cells in the soft agar assay. These results imply that metallic nickel fine and nanoparticles are both carcinogenetic in vitro in JB6 cells. Moreover, metallic nickel nanoparticles may exhibit higher carcinogenic potential, which suggests that precautionary measures should be taken in the use of nickel nanoparticles or its compounds in nanomedicine.
Collapse
Affiliation(s)
- Ruth Magaye
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Qi Zhou
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Linda Bowman
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Baobo Zou
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Guochuan Mao
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Jin Xu
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Vincent Castranova
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Jinshun Zhao
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China; Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Min Ding
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| |
Collapse
|
10
|
The T box transcription factor TBX2 promotes epithelial-mesenchymal transition and invasion of normal and malignant breast epithelial cells. PLoS One 2012; 7:e41355. [PMID: 22844464 PMCID: PMC3402503 DOI: 10.1371/journal.pone.0041355] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/20/2012] [Indexed: 12/18/2022] Open
Abstract
The T box transcription factor TBX2, a master regulator of organogenesis, is aberrantly amplified in aggressive human epithelial cancers. While it has been shown that overexpression of TBX2 can bypass senescence, a failsafe mechanism against cancer, its potential role in tumor invasion has remained obscure. Here we demonstrate that TBX2 is a strong cell-autonomous inducer of the epithelial-mesenchymal transition (EMT), a latent morphogenetic program that is key to tumor progression from noninvasive to invasive malignant states. Ectopic expression of TBX2 in normal HC11 and MCF10A mammary epithelial cells was sufficient to induce morphological, molecular, and behavioral changes characteristic of EMT. These changes included loss of epithelial adhesion and polarity gene (E-cadherin, ß-catenin, ZO1) expression, and abnormal gain of mesenchymal markers (N-cadherin, Vimentin), as well as increased cell motility and invasion. Conversely, abrogation of endogenous TBX2 overexpression in the malignant human breast carcinoma cell lines MDA-MB-435 and MDA-MB-157 led to a restitution of epithelial characteristics with reciprocal loss of mesenchymal markers. Importantly, TBX2 inhibition abolished tumor cell invasion and the capacity to form lung metastases in a Xenograft mouse model. Meta-analysis of gene expression in over one thousand primary human breast tumors further showed that high TBX2 expression was significantly associated with reduced metastasis-free survival in patients, and with tumor subtypes enriched in EMT gene signatures, consistent with a role of TBX2 in oncogenic EMT. ChIP analysis and cell-based reporter assays further revealed that TBX2 directly represses transcription of E-cadherin, a tumor suppressor gene, whose loss is crucial for malignant tumor progression. Collectively, our results uncover an unanticipated link between TBX2 deregulation in cancer and the acquisition of EMT and invasive features of epithelial tumor cells.
Collapse
|
11
|
A pathway for the control of anoikis sensitivity by E-cadherin and epithelial-to-mesenchymal transition. Mol Cell Biol 2011; 31:4036-51. [PMID: 21746881 DOI: 10.1128/mcb.01342-10] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Detachment of epithelial cells from matrix or attachment to an inappropriate matrix engages an apoptotic response known as anoikis, which prevents metastasis. Cellular sensitivity to anoikis is compromised during the oncogenic epithelial-to-mesenchymal transition (EMT), through unknown mechanisms. We report here a pathway through which EMT confers anoikis resistance. NRAGE (neurotrophin receptor-interacting melanoma antigen) interacted with a component of the E-cadherin complex, ankyrin-G, maintaining NRAGE in the cytoplasm. Oncogenic EMT downregulated ankyrin-G, enhancing the nuclear localization of NRAGE. The oncogenic transcriptional repressor protein TBX2 interacted with NRAGE, repressing the tumor suppressor gene p14ARF. P14ARF sensitized cells to anoikis; conversely, the TBX2/NRAGE complex protected cells against anoikis by downregulating this gene. This represents a novel pathway for the regulation of anoikis by EMT and E-cadherin.
Collapse
|
12
|
Lu J, Li XP, Dong Q, Kung HF, He ML. TBX2 and TBX3: the special value for anticancer drug targets. Biochim Biophys Acta Rev Cancer 2010; 1806:268-74. [PMID: 20624445 PMCID: PMC7127380 DOI: 10.1016/j.bbcan.2010.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 06/29/2010] [Accepted: 07/02/2010] [Indexed: 01/04/2023]
Abstract
TBX2 and TBX3 are members of the T-box family of transcription factors, which are implicated in embryonic development. Unlike most members of the T-box family, TBX2 and TBX3 are the only mammalian T-box factors which function as transcriptional repressors, mediated by the repression domain in the C-terminal. In addition to a role in development, recent evidence suggests that TBX2 and TBX3 are overexpressed in a number of cancers, including melanoma, breast, liver, lung, pancreas, ovarian, and cervical cancers. However, there is little information about the mechanisms for how these T-box genes contribute to tumorigenesis. Upregulation of TBX2 and TBX3 suppresses the expression of p14(ARF) and p21(CIP1) and promotes bypass of senescence through inactivation of p53 pathway. TBX2 functionally interacts with pRb, and pRb modulates TBX2 functional specificity. In addition, TBX2 is a player of Wnt signaling while TBX3 is a downstream target of the Wnt/beta-catenin pathway, and overexpression of TBX2 and TBX3 represses the expression of E-cadherin, which is demonstrated to be a prerequisite for epithelial tumor cell invasion. Moreover, TBX2 is shown to interact with EGR1 to block multiple downstream tumor suppressors. Here, we review the current knowledge on TBX2 and TBX3 in tumorigenesis and prospect their special value for development of target-based anticancer drugs.
Collapse
Key Words
- cdks, cyclin-dependent kinases
- egr1, early growth response 1
- fgf, fibroblast growth factor
- mefs, mouse embryonic fibroblasts
- rd, repression domain
- rnai, rna interference
- sirna, small interfering rna
- tgfβ, transforming growth factor β
- ums, ulnar-mammary syndrome
- ctcl, cutaneous t-cell lymphoma
- tbx2
- tbx3
- tumorigenesis
Collapse
Affiliation(s)
- Juan Lu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | | | | | | | | |
Collapse
|
13
|
van Harn T, Foijer F, van Vugt M, Banerjee R, Yang F, Oostra A, Joenje H, te Riele H. Loss of Rb proteins causes genomic instability in the absence of mitogenic signaling. Genes Dev 2010; 24:1377-88. [PMID: 20551164 PMCID: PMC2895197 DOI: 10.1101/gad.580710] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 05/04/2010] [Indexed: 12/23/2022]
Abstract
Loss of G1/S control is a hallmark of cancer, and is often caused by inactivation of the retinoblastoma pathway. However, mouse embryonic fibroblasts lacking the retinoblastoma genes RB1, p107, and p130 (TKO MEFs) are still subject to cell cycle control: Upon mitogen deprivation, they enter and complete S phase, but then firmly arrest in G2. We now show that G2-arrested TKO MEFs have accumulated DNA damage. Upon mitogen readdition, cells resume proliferation, although only part of the damage is repaired. As a result, mitotic cells show chromatid breaks and chromatid cohesion defects. These aberrations lead to aneuploidy in the descendent cell population. Thus, our results demonstrate that unfavorable growth conditions can cause genomic instability in cells lacking G1/S control. This mechanism may allow premalignant tumor cells to acquire additional genetic alterations that promote tumorigenesis.
Collapse
Affiliation(s)
- Tanja van Harn
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Floris Foijer
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
- Wellcome Trust Genome Campus, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Marcel van Vugt
- Department of Medical Oncology, Groningen Medical Centre, Groningen 9713 GZ, The Netherlands
| | - Ruby Banerjee
- Wellcome Trust Genome Campus, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Fentang Yang
- Wellcome Trust Genome Campus, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Anneke Oostra
- Department of Clinical Genetics, VU University Medical Center, Amsterdam 1081 BT, The Netherlands
| | - Hans Joenje
- Department of Clinical Genetics, VU University Medical Center, Amsterdam 1081 BT, The Netherlands
| | - Hein te Riele
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|
14
|
Vance KW, Shaw HM, Rodriguez M, Ott S, Goding CR. The retinoblastoma protein modulates Tbx2 functional specificity. Mol Biol Cell 2010; 21:2770-9. [PMID: 20534814 PMCID: PMC2912361 DOI: 10.1091/mbc.e09-12-1029] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study demonstrates that Tbx2 binds Rb1. The interaction with Rb1 increases Tbx2 DNA-binding activity and enhances the ability of Tbx2 to repress transcription. The results show that Tbx2 regulates the expression of genes involved in cell division and DNA replication and that Rb1 modulates Tbx2 target gene recognition and specificity. Tbx2 is a member of a large family of transcription factors defined by homology to the T-box DNA-binding domain. Tbx2 plays a key role in embryonic development, and in cancer through its capacity to suppress senescence and promote invasiveness. Despite its importance, little is known of how Tbx2 is regulated or how it achieves target gene specificity. Here we show that Tbx2 specifically associates with active hypophosphorylated retinoblastoma protein (Rb1), a known regulator of many transcription factors involved in cell cycle progression and cellular differentiation, but not with the Rb1-related proteins p107 or p130. The interaction with Rb1 maps to a domain immediately carboxy-terminal to the T-box and enhances Tbx2 DNA binding and transcriptional repression. Microarray analysis of melanoma cells expressing inducible dominant-negative Tbx2, comprising the T-box and either an intact or mutated Rb1 interaction domain, shows that Tbx2 regulates the expression of many genes involved in cell cycle control and that a mutation which disrupts the Rb1-Tbx2 interaction also affects Tbx2 target gene selectivity. Taken together, the data show that Rb1 is an important determinant of Tbx2 functional specificity.
Collapse
Affiliation(s)
- Keith W Vance
- Department of Systems Biology, Biomedical Research Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom.
| | | | | | | | | |
Collapse
|