1
|
Wang H, Yang Y, Ni Z, Qiao X, Guo Y, Wang X, Cao D, Wang Y, Ruan C. Advances in the molecular mechanisms of zinc-finger transcription factors in neurodevelopmental disorders. IBRO Neurosci Rep 2025; 18:409-413. [PMID: 40124112 PMCID: PMC11930196 DOI: 10.1016/j.ibneur.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/22/2025] [Indexed: 03/25/2025] Open
Abstract
Neurodevelopmental disorders (NDDs) constitute a heterogeneous group of early-onset brain dysfunction disorders, which may arise from genetic or acquired etiologies. These disorders are characterized by behavioral and cognitive deficits that predominantly manifest during childhood development, thereby potentially impairing an individual's performance in learning, sports, and social situations. A comprehensive understanding of the pathogenesis of NDDs is crucial for the development of targeted therapeutic interventions. Zinc-finger transcription factors (ZFPs) play a pivotal role in regulating gene expression by modulating the binding of RNA polymerase to DNA, thereby either activating or repressing gene transcription. In recent years, the BCL11 gene family of ZFPs has garnered significant attention due to its critical involvement in nervous system development. This review aims to elucidate the structure and molecular functions of the BCL11 gene family, discuss its impact on the development of the central nervous system, and explore its association with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Hailin Wang
- Medical School of Yan’an University, Yan'an, Shaanxi 716000, China
| | - Ying Yang
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China
- Xi'an Children's Hospital Research Institute, Xi'an, Shaanxi 710003, China
| | - Ziwei Ni
- Medical School of Yan’an University, Yan'an, Shaanxi 716000, China
| | - Xiaoting Qiao
- Medical School of Yan’an University, Yan'an, Shaanxi 716000, China
| | - Yaqian Guo
- Medical School of Yan’an University, Yan'an, Shaanxi 716000, China
| | - Xiaomin Wang
- Medical School of Yan’an University, Yan'an, Shaanxi 716000, China
| | - Duo Cao
- School of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Yayun Wang
- National Experimental Center of Air Force Medical University, Xi'an, Shaanxi 716000, China
| | - Cailian Ruan
- Medical School of Yan’an University, Yan'an, Shaanxi 716000, China
- Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710032, China
| |
Collapse
|
2
|
Horton JR, Yu M, Zhou J, Tran M, Anakal RR, Lu Y, Blumenthal RM, Zhang X, Huang Y, Zhang X, Cheng X. Multimeric transcription factor BCL11A utilizes two zinc-finger tandem arrays to bind clustered short sequence motifs. Nat Commun 2025; 16:3672. [PMID: 40246927 PMCID: PMC12006351 DOI: 10.1038/s41467-025-58998-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/08/2025] [Indexed: 04/19/2025] Open
Abstract
BCL11A, a transcription factor, is vital for hematopoiesis, including B and T cell maturation and the fetal-to-adult hemoglobin switch. Mutations in BCL11A are linked to neurodevelopmental disorders. BCL11A contains two DNA-binding zinc-finger arrays, low-affinity ZF2-3 and high-affinity ZF4-6, separated by a 300-amino-acid linker. ZF2-3 and ZF4-5 share 73% identity, including five out of six DNA base-interacting residues. These arrays bind similar short sequence motifs in clusters, with the linker enabling a broader binding span. Crystallographic structures of ZF4-6, in complex with oligonucleotides from the β-globin locus region, reveal DNA sequence recognition by residues Asn756 (ZF4), Lys784 and Arg787 (ZF5). A Lys784-to-Thr mutation, linked to a neurodevelopmental disorder with persistent fetal globin expression, reduces DNA binding over 10-fold but gains interaction with a variable base pair. BCL11A isoforms may form oligomers, enhancing chromatin occupancy and repressor functions by allowing multiple copies of both low- and high-affinity ZF arrays to bind DNA. These distinctive properties, apparently conserved among vertebrates, provide essential functional flexibility to this crucial regulator.
Collapse
Affiliation(s)
- John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Meigen Yu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jujun Zhou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Melody Tran
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rithvi R Anakal
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Xiaotian Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center Houston, McGovern Medical School, Houston, TX, 77030, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Harris RE, Whitehead RD, Alexandrescu AT. Solution structure of the Z0 domain from transcription repressor BCL11A sheds light on the sequence properties of protein-binding zinc fingers. Protein Sci 2025; 34:e70097. [PMID: 40099876 PMCID: PMC11915622 DOI: 10.1002/pro.70097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/20/2025]
Abstract
The transcription repressor BCL11A governs the switch from fetal to adult hemoglobin during development. By targeting BCL11A, fetal hemoglobin expression can be de-repressed to substitute for defective adult hemoglobin in inherited diseases including beta-thalassemia and sickle-cell anemia. BCL11A has six CCHH-type zinc fingers, of which domains 4-6 are necessary and sufficient for dsDNA binding. Here, we focus on a putative ZNF at the N-terminus of BCL11A (residues 46-72), Z0, thought to modulate oligomerization of the transcription repressor. Using NMR and CD spectroscopy at low concentrations that favor the monomer, Z0 is shown to be a thermostable CCHC zinc finger with a pM dissociation constant for zinc. The NMR structure of Z0 has a prototypical beta-beta-alpha fold, with a hydrophobic knob comprising about half the structure. The unusual proportion of hydrophobic residues in Z0 led us to investigate if this is a more general feature of zinc fingers that do not bind dsDNA. We used the ZF and WebLogo servers to examine sequences of zinc fingers with demonstrated DNA-binding function, non-DNA-binders, and the CCHC-type family of protein-binders. DNA-binders are distinguished by contiguous stretches of high-scoring zinc fingers. Non-DNA-binders show a depletion of polar residues at the positions expected to contact nucleotides and increased sequence divergence, making these domains more likely to be annotated as atypical, degenerate, or to be missed as zinc fingers. We anticipate these sequence patterns will help distinguish DNA-binders from non-binders, an open problem in the functional understanding of zinc-finger motifs.
Collapse
Affiliation(s)
- Rilee E Harris
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Richard D Whitehead
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Andrei T Alexandrescu
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
4
|
Qiu L, Wang H, Li W, Yang T, Bai H, Chang G. Analysis of the Transcriptional Control of Bcl11b in Chicken: IRF1 and GATA1 as Negative Regulators. Animals (Basel) 2025; 15:665. [PMID: 40075948 PMCID: PMC11898421 DOI: 10.3390/ani15050665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/15/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
B-cell lymphoma/leukemia 11B (Bcl11b) plays roles in cell proliferation and apoptosis and holds a pivotal position within the immune system. Our previous studies have demonstrated that Bcl11b can promote cell apoptosis to curb ALV-J infection. To gain insights into the molecular mechanisms underlying Bcl11b expression regulation in chickens, we constructed various truncated dual luciferase reporter vectors and analyzed the promoter region of Bcl11b. We employed promoter-binding TF profiling assay and the dual luciferase assay of site-directed mutagenesis and the expression level of interfering or overexpressing transcription factors were used to study their transcriptional regulation mechanism of chicken Bcl11b and functions in ALV-J infection. Our findings revealed core regulatory regions of the chicken Bcl11b promoter. By examining the -606~-363 bp region, we identified several transcription factors and their binding sites. Mutational and functional analysis further revealed interferon regulatory factor-1 (IRF1) and GATA-binding protein 1 (GATA1) as critical factors for the repression of chicken Bcl11b, thereby affecting cell apoptosis and ALV-J replication. Furthermore, DNA methylation analysis indicated that methylation may also contribute to changes in Bcl11b promoter activity. These findings offer valuable insights into the regulatory mechanisms of chicken Bcl11b and provide promising targets for molecular breeding and genetic improvement of disease resistance in chickens.
Collapse
Affiliation(s)
- Lingling Qiu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.Q.); (H.W.); (W.L.); (T.Y.)
| | - Haojie Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.Q.); (H.W.); (W.L.); (T.Y.)
| | - Wenhao Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.Q.); (H.W.); (W.L.); (T.Y.)
| | - Ting Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.Q.); (H.W.); (W.L.); (T.Y.)
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China;
| | - Guobin Chang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.Q.); (H.W.); (W.L.); (T.Y.)
| |
Collapse
|
5
|
Okuyama K, Yamashita M, Koumoundourou A, Wiegreffe C, Ohno-Oishi M, Murphy SJH, Zhao X, Yoshida H, Ebihara T, Satoh-Takayama N, Kojo S, Ohno H, Morio T, Wu Y, Puck J, Xue HH, Britsch S, Taniuchi I. A mutant BCL11B-N440K protein interferes with BCL11A function during T lymphocyte and neuronal development. Nat Immunol 2024; 25:2284-2296. [PMID: 39487351 DOI: 10.1038/s41590-024-01997-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 09/30/2024] [Indexed: 11/04/2024]
Abstract
Genetic studies in mice have shown that the zinc finger transcription factor BCL11B has an essential role in regulating early T cell development and neurogenesis. A de novo heterozygous missense BCL11B variant, BCL11BN441K, was isolated from a patient with T cell deficiency and neurological disorders. Here, we show that mice harboring the corresponding Bcl11bN440K mutation show the emergence of natural killer (NK)/group 1 innate lymphoid cell (ILC1)-like NKp46+ cells in the thymus and reduction in TBR1+ neurons in the neocortex, which are observed with loss of Bcl11a but not Bcl11b. Thus, the mutant BCL11B-N440K protein interferes with BCL11A function upon heterodimerization. Mechanistically, the Bcl11bN440K mutation dampens the interaction of BCL11B with T cell factor 1 (TCF1) in thymocytes, resulting in weakened antagonism against TCF1 activity that supports the differentiation of NK/ILC1-like cells. Collectively, our results shed new light on the function of BCL11A in suppressing non-T lymphoid developmental potential and uncover the pathogenic mechanism by which BCL11B-N440K interferes with partner BCL11 family proteins.
Collapse
Affiliation(s)
- Kazuki Okuyama
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Motoi Yamashita
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | - Michiko Ohno-Oishi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Samuel J H Murphy
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Medical Scientist Training Program, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Xin Zhao
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Hideyuki Yoshida
- YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Takashi Ebihara
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, Japan
| | - Naoko Satoh-Takayama
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Satoshi Kojo
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Immunology and Stem Cell Biology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yibo Wu
- YCI Laboratory for Next-Generation Proteomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Chemical Biology Mass Spectrometry Platform, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Jennifer Puck
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm, Germany
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.
| |
Collapse
|
6
|
Sobhy H, De Rovere M, Ait-Ammar A, Kashif M, Wallet C, Daouad F, Loustau T, Van Lint C, Schwartz C, Rohr O. BCL11b interacts with RNA and proteins involved in RNA processing and developmental diseases. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195065. [PMID: 39455000 DOI: 10.1016/j.bbagrm.2024.195065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
BCL11b is a transcription regulator and a tumor suppressor involved in lymphomagenesis, central nervous system (CNS) and immune system developments. BCL11b favors persistence of HIV latency and contributes to control cell cycle, differentiation and apoptosis in multiple organisms and cell models. Although BCL11b recruits the non-coding RNA 7SK and epigenetic enzymes to regulate gene expression, BCL11b-associated ribonucleoprotein complexes are unknown. Thanks to CLIP-seq and quantitative LC-MS/MS mass spectrometry approaches complemented with systems biology validations, we show that BCL11b interacts with RNA splicing and non-sense-mediated decay proteins, including FUS, SMN1, UPF1 and Drosha, which may contribute in isoform selection of protein-coding RNA isoforms from noncoding-RNAs isoforms (retained introns or nonsense mediated RNA). Interestingly, BCL11b binds to RNA transcripts and proteins encoded by the same genes (FUS, ESWR1, CHD and Tubulin). Our study highlights that BCL11b targets RNA processing and splicing proteins, and RNAs that implicate cell cycle, development, neurodegenerative, and cancer pathways. These findings will help future mechanistic understanding of developmental disorders. IMPORTANCE: BCL11b-protein and RNA interactomes reveal BLC11b association with specific nucleoprotein complexes involved in the regulation of genes expression. BCL11b interacts with RNA processing and splicing proteins.
Collapse
Affiliation(s)
- Haitham Sobhy
- University of Strasbourg, UR 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France.
| | - Marco De Rovere
- University of Strasbourg, UR 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Amina Ait-Ammar
- University of Strasbourg, UR 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France; Université Libre de Bruxelles, ULB, Gosselies, Belgium
| | - Muhammad Kashif
- University of Strasbourg, UPR CNRS 9002, ARN, IUT Louis Pasteur, Schiltigheim, France
| | - Clementine Wallet
- University of Strasbourg, UPR CNRS 9002, ARN, IUT Louis Pasteur, Schiltigheim, France
| | - Fadoua Daouad
- University of Strasbourg, UR 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Thomas Loustau
- University of Strasbourg, UPR CNRS 9002, ARN, IUT Louis Pasteur, Schiltigheim, France
| | | | - Christian Schwartz
- University of Strasbourg, UPR CNRS 9002, ARN, IUT Louis Pasteur, Schiltigheim, France
| | - Olivier Rohr
- University of Strasbourg, UPR CNRS 9002, ARN, IUT Louis Pasteur, Schiltigheim, France.
| |
Collapse
|
7
|
Zheng G, Yin M, Mehta S, Chu IT, Wang S, AlShaye A, Drainville K, Buyanbat A, Bienfait F, Tenglin K, Zhu Q, Orkin SH. A tetramer of BCL11A is required for stable protein production and fetal hemoglobin silencing. Science 2024; 386:1010-1018. [PMID: 39607926 DOI: 10.1126/science.adp3025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/08/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024]
Abstract
Down-regulation of BCL11A protein reverses the fetal (HbF, α2γ2) to adult (HbA, α2β2) hemoglobin switch and is exploited in gene-based therapy for hemoglobin disorders. Because of reliance on ex vivo cell manipulation and marrow transplant, such therapies cannot lessen disease burden. To develop new small-molecule approaches, we investigated the state of BCL11A protein in erythroid cells. We report that tetramer formation mediated by a single zinc finger (ZnF0) is required for production of steady-state protein. Beyond its role in protein stability, the tetramer state is necessary for γ-globin gene repression, because an engineered monomer fails to engage a critical co-repressor complex. These aspects of BCL11A protein production identify tetramer formation as a vulnerability for HbF silencing and provide opportunities for drug discovery.
Collapse
Affiliation(s)
- Ge Zheng
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorder Center, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Maolu Yin
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorder Center, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Stuti Mehta
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorder Center, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - I-Te Chu
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorder Center, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Stacy Wang
- Lester Sue Smith Breast Center, Department of Human Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Alia AlShaye
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorder Center, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Kirstin Drainville
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorder Center, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Altantsetseg Buyanbat
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorder Center, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Frédérique Bienfait
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorder Center, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Karin Tenglin
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorder Center, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Qian Zhu
- Lester Sue Smith Breast Center, Department of Human Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Stuart H Orkin
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorder Center, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Qiu L, Yang T, Guo Q, Hua T, Bi Y, Chu P, Bai H, Chen S, Chang G. C 2H 2-type zinc-finger protein BCL11B suppresses avian Leukosis virus subgroup J replication by regulating apoptosis. Int J Biol Macromol 2024; 275:133644. [PMID: 38964687 DOI: 10.1016/j.ijbiomac.2024.133644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
Apoptosis plays a crucial role in host antiviral defense. The avian leukosis virus subgroup J (ALV-J), an avian oncogenic retrovirus, has been shown to suppress apoptosis while promoting its own replication. ALV-J induces myeloid tumors and hemangiomas in chickens resulting in significant economic losses for commercial layer and meat-type chicken production. B-cell lymphoma/leukemia 11B (Bcl11b) encodes a C2H2-type zinc finger protein-BCL11B, that exerts critical functions in cell proliferation, differentiation, and plays an essential role in the immune system. Previous study has been shown that Bcl11b is associated with ALV-J infection. In this study, we further investigated the pathological changes in ALV-J infected cells and examined the role and expression regulation of chicken Bcl11b. Our results demonstrate that Bcl11b, as an interferon-stimulated gene (ISG), encodes C2H2-type zinc finger protein BCL11B that promotes apoptosis to inhibit ALV-J infection. Additionally, gga-miR-1612 and gga-miR-6701-3p regulate apoptosis and are involved in ALV-J infection by targeting Bcl11b, thus revealing immune response strategies between the host and ALV-J. Although the underlying mechanisms require further validation, Bcl11b and its regulatory miRNAs are the first to demonstrate inhibition of ALV-J replication via apoptosis. BCL11B can a valuable target for treating diseases triggered by ALV-J infection.
Collapse
Affiliation(s)
- Lingling Qiu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.
| | - Ting Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.
| | - Qixin Guo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.
| | - Tian Hua
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.
| | - Yulin Bi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.
| | - Pengfei Chu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.
| | - Hao Bai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China.
| | - Shihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.
| | - Guobin Chang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.
| |
Collapse
|
9
|
Khassanova G, Oshergina I, Ten E, Jatayev S, Zhanbyrshina N, Gabdola A, Gupta NK, Schramm C, Pupulin A, Philp-Dutton L, Anderson P, Sweetman C, Jenkins CL, Soole KL, Shavrukov Y. Zinc finger knuckle genes are associated with tolerance to drought and dehydration in chickpea ( Cicer arietinum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1354413. [PMID: 38766473 PMCID: PMC11099236 DOI: 10.3389/fpls.2024.1354413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/17/2024] [Indexed: 05/22/2024]
Abstract
Chickpea (Cicer arietinum L.) is a very important food legume and needs improved drought tolerance for higher seed production in dry environments. The aim of this study was to determine diversity and genetic polymorphism in zinc finger knuckle genes with CCHC domains and their functional analysis for practical improvement of chickpea breeding. Two CaZF-CCHC genes, Ca04468 and Ca07571, were identified as potentially important candidates associated with plant responses to drought and dehydration. To study these genes, various methods were used including Sanger sequencing, DArT (Diversity array technology) and molecular markers for plant genotyping, gene expression analysis using RT-qPCR, and associations with seed-related traits in chickpea plants grown in field trials. These genes were studied for genetic polymorphism among a set of chickpea accessions, and one SNP was selected for further study from four identified SNPs between the promoter regions of each of the two genes. Molecular markers were developed for the SNP and verified using the ASQ and CAPS methods. Genotyping of parents and selected breeding lines from two hybrid populations, and SNP positions on chromosomes with haplotype identification, were confirmed using DArT microarray analysis. Differential expression profiles were identified in the parents and the hybrid populations under gradual drought and rapid dehydration. The SNP-based genotypes were differentially associated with seed weight per plant but not with 100 seed weight. The two developed and verified SNP molecular markers for both genes, Ca04468 and Ca07571, respectively, could be used for marker-assisted selection in novel chickpea cultivars with improved tolerance to drought and dehydration.
Collapse
Affiliation(s)
- Gulmira Khassanova
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical Research University, Astana, Kazakhstan
- Department of Crop Breeding, A.I.Barayev Research and Production Centre of Grain Farming, Shortandy, Kazakhstan
| | - Irina Oshergina
- Department of Crop Breeding, A.I.Barayev Research and Production Centre of Grain Farming, Shortandy, Kazakhstan
| | - Evgeniy Ten
- Department of Crop Breeding, A.I.Barayev Research and Production Centre of Grain Farming, Shortandy, Kazakhstan
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical Research University, Astana, Kazakhstan
| | - Nursaule Zhanbyrshina
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical Research University, Astana, Kazakhstan
| | - Ademi Gabdola
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical Research University, Astana, Kazakhstan
| | - Narendra K. Gupta
- Department of Plant Physiology, Sri Karan Narendra (SNK) Agricultural University, Jobster, Rajastan, India
| | - Carly Schramm
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| | - Antonio Pupulin
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| | - Lauren Philp-Dutton
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| | - Peter Anderson
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| | - Crystal Sweetman
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| | - Colin L.D. Jenkins
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| | - Kathleen L. Soole
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| | - Yuri Shavrukov
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| |
Collapse
|
10
|
Seigfried FA, Britsch S. The Role of Bcl11 Transcription Factors in Neurodevelopmental Disorders. BIOLOGY 2024; 13:126. [PMID: 38392344 PMCID: PMC10886639 DOI: 10.3390/biology13020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024]
Abstract
Neurodevelopmental disorders (NDDs) comprise a diverse group of diseases, including developmental delay, autism spectrum disorder (ASD), intellectual disability (ID), and attention-deficit/hyperactivity disorder (ADHD). NDDs are caused by aberrant brain development due to genetic and environmental factors. To establish specific and curative therapeutic approaches, it is indispensable to gain precise mechanistic insight into the cellular and molecular pathogenesis of NDDs. Mutations of BCL11A and BCL11B, two closely related, ultra-conserved zinc-finger transcription factors, were recently reported to be associated with NDDs, including developmental delay, ASD, and ID, as well as morphogenic defects such as cerebellar hypoplasia. In mice, Bcl11 transcription factors are well known to orchestrate various cellular processes during brain development, for example, neural progenitor cell proliferation, neuronal migration, and the differentiation as well as integration of neurons into functional circuits. Developmental defects observed in both, mice and humans display striking similarities, suggesting Bcl11 knockout mice provide excellent models for analyzing human disease. This review offers a comprehensive overview of the cellular and molecular functions of Bcl11a and b and links experimental research to the corresponding NDDs observed in humans. Moreover, it outlines trajectories for future translational research that may help to better understand the molecular basis of Bcl11-dependent NDDs as well as to conceive disease-specific therapeutic approaches.
Collapse
Affiliation(s)
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany;
| |
Collapse
|
11
|
Vickridge E, Faraco CCF, Lo F, Rahimian H, Liu Z, Tehrani P, Djerir B, Ramdzan ZM, Leduy L, Maréchal A, Gingras AC, Nepveu A. The function of BCL11B in base excision repair contributes to its dual role as an oncogene and a haplo-insufficient tumor suppressor gene. Nucleic Acids Res 2024; 52:223-242. [PMID: 37956270 PMCID: PMC10783527 DOI: 10.1093/nar/gkad1037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Genetic studies in mice and human cancers established BCL11B as a haploinsufficient tumor suppressor gene. Paradoxically, BCL11B is overexpressed in some human cancers where its knockdown is synthetic lethal. We identified the BCL11B protein in a proximity-dependent biotinylation screen performed with the DNA glycosylase NTHL1. In vitro DNA repair assays demonstrated that both BCL11B and a small recombinant BCL11B213-560 protein lacking transcription regulation potential can stimulate the enzymatic activities of two base excision repair (BER) enzymes: NTHL1 and Pol β. In cells, BCL11B is rapidly recruited to sites of DNA damage caused by laser microirradiation. BCL11B knockdown delays, whereas ectopic expression of BCL11B213-560 accelerates, the repair of oxidative DNA damage. Inactivation of one BCL11B allele in TK6 lymphoblastoid cells causes an increase in spontaneous and radiation-induced mutation rates. In turn, ectopic expression of BCL11B213-560 cooperates with the RAS oncogene in cell transformation by reducing DNA damage and cellular senescence. These findings indicate that BCL11B functions as a BER accessory factor, safeguarding normal cells from acquiring mutations. Paradoxically, it also enables the survival of cancer cells that would otherwise undergo senescence or apoptosis due to oxidative DNA damage resulting from the elevated production of reactive oxygen species.
Collapse
Affiliation(s)
- Elise Vickridge
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
| | - Camila C F Faraco
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
- Department of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
| | - Fanny Lo
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
- Department of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
| | - Hedyeh Rahimian
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
| | - Zi Yang Liu
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
- Department of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
| | - Payman S Tehrani
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario Canada
| | - Billel Djerir
- Department of Biology and Cancer Research Institute, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Zubaidah M Ramdzan
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
| | - Lam Leduy
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
| | - Alexandre Maréchal
- Department of Biology and Cancer Research Institute, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Alain Nepveu
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
- Department of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
- Department of Medicine, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
- Department of Oncology, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|
12
|
Zheng G, Orkin SH. Transcriptional Repressor BCL11A in Erythroid Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:199-215. [PMID: 39017845 DOI: 10.1007/978-3-031-62731-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
BCL11A, a zinc finger repressor, is a stage-specific transcription factor that controls the switch from fetal (HbF, α2γ2) to adult (HbA, α2β2) hemoglobin in erythroid cells. While BCL11A was known as a factor critical for B-lymphoid cell development, its relationship to erythroid cells and HbF arose through genome-wide association studies (GWAS). Subsequent work validated its role as a silencer of γ-globin gene expression in cultured cells and mice. Erythroid-specific loss of BCL11A rescues the phenotype of engineered sickle cell disease (SCD) mice, thereby suggesting that downregulation of BCL11A expression might be beneficial in patients with SCD and β-thalassemia. Common genetic variation in GWAS resides in an erythroid-specific enhancer within the BCL11A gene that is required for its own expression. CRISPR/Cas9 gene editing of the enhancer revealed a GATA-binding site that confers a large portion of its regulatory function. Disruption of the GATA site leads to robust HbF reactivation. Advancement of a guide RNA targeting the GATA-binding site in clinical trials has recently led to approval of first-in-man use of ex vivo CRISPR editing of hematopoietic stem/progenitor cells (HSPCs) as therapy of SCD and β-thalassemia. Future challenges include expanding access and infrastructure for delivery of genetic therapy to eligible patients, reducing potential toxicity and costs, exploring prospects for in vivo targeting of hematopoietic stem cells (HSCs), and developing small molecule drugs that impair function of BCL11A protein as an alternative option.
Collapse
Affiliation(s)
- Ge Zheng
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Harvard Medical School and HHMI, Boston, MA, USA
| | - Stuart H Orkin
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.
- Harvard Medical School and HHMI, Boston, MA, USA.
| |
Collapse
|
13
|
Rua AJ, Whitehead RD, Alexandrescu AT. NMR structure verifies the eponymous zinc finger domain of transcription factor ZNF750. J Struct Biol X 2023; 8:100093. [PMID: 37655311 PMCID: PMC10465944 DOI: 10.1016/j.yjsbx.2023.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
ZNF750 is a nuclear transcription factor that activates skin differentiation and has tumor suppressor roles in several cancers. Unusually, ZNF750 has only a single zinc-finger (ZNF) domain, Z*, with an amino acid sequence that differs markedly from the CCHH family consensus. Because of its sequence differences Z* is classified as degenerate, presumed to have lost the ability to bind the zinc ion required for folding. AlphaFold predicts an irregular structure for Z* with low confidence. Low confidence predictions are often inferred to be intrinsically disordered regions of proteins, which would be the case if Z* did not bind Zn2+. We use NMR and CD spectroscopy to show that a 25-51 segment of ZNF750 corresponding to the Z* domain folds into a well-defined antiparallel ββα tertiary structure with a pM dissociation constant for Zn2+ and a thermal stability >80 °C. Of three alternative Zn2+ ligand sets, Z* uses a CCHC rather than the expected CCHH ligating motif. The switch in the last ligand maintains the folding topology and hydrophobic core of the classical ZNF motif. CCHC ZNFs are typically associated with protein-protein interactions, raising the possibility that ZNF750 interacts with DNA through other proteins rather than directly. The structure of Z* provides context for understanding the function of the domain and its cancer-associated mutations. We expect other ZNFs currently classified as degenerate could be CCHC-type structures like Z*.
Collapse
Affiliation(s)
- Antonio J. Rua
- Department of Molecular and Cellular Biology, University of Connecticut, United States
| | - Richard D. Whitehead
- Department of Molecular and Cellular Biology, University of Connecticut, United States
| | | |
Collapse
|
14
|
Shen F, Dassama LMK. Opportunities and challenges of protein-based targeted protein degradation. Chem Sci 2023; 14:8433-8447. [PMID: 37592990 PMCID: PMC10430753 DOI: 10.1039/d3sc02361c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/02/2023] [Indexed: 08/19/2023] Open
Abstract
In the 20 years since the first report of a proteolysis targeting chimeric (PROTAC) molecule, targeted protein degradation (TPD) technologies have attempted to revolutionize the fields of chemical biology and biomedicine by providing exciting research opportunities and potential therapeutics. However, they primarily focus on the use of small molecules to recruit the ubiquitin proteasome system to mediate target protein degradation. This then limits protein targets to cytosolic domains with accessible and suitable small molecule binding pockets. In recent years, biologics such as proteins and nucleic acids have instead been used as binders for targeting proteins, thereby expanding the scope of TPD platforms to include secreted proteins, transmembrane proteins, and soluble but highly disordered intracellular proteins. This perspective summarizes the recent TPD platforms that utilize nanobodies, antibodies, and other proteins as binding moieties to deplete challenging targets, either through the ubiquitin proteasome system or the lysosomal degradation pathway. Importantly, the perspective also highlights opportunities and remaining challenges of current protein-based TPD technologies.
Collapse
Affiliation(s)
- Fangfang Shen
- Department of Chemistry, Sarafan ChEM-H Institute, Stanford University USA
| | - Laura M K Dassama
- Department of Chemistry, Sarafan ChEM-H Institute, Stanford University USA
- Department of Microbiology & Immunology, Stanford School of Medicine USA
| |
Collapse
|
15
|
Rua AJ, Whitehead Iii RD, Alexandrescu AT. WITHDRAWN: NMR structure verifies the eponymous zinc finger domain of transcription factor ZNF750. J Struct Biol 2023:108003. [PMID: 37487847 DOI: 10.1016/j.jsb.2023.108003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/16/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
This article was initially published in the Journal of Structural Biology, instead of the Journal of Structural Biology: X, due to a publisher error. We regret the inconvenience. The link to the article published in Journal of Structural Biology: X is presented below: https://www.sciencedirect.com/science/article/pii/S2590152423000090. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.
Collapse
Affiliation(s)
- Antonio J Rua
- Department of Molecular and Cellular Biology, University of Connecticut
| | | | | |
Collapse
|
16
|
Goodier JL, Wan H, Soares AO, Sanchez L, Selser JM, Pereira GC, Karma S, García-Pérez JL, Kazazian HH, García Cañadas MM. ZCCHC3 is a stress granule zinc knuckle protein that strongly suppresses LINE-1 retrotransposition. PLoS Genet 2023; 19:e1010795. [PMID: 37405998 DOI: 10.1371/journal.pgen.1010795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 05/23/2023] [Indexed: 07/07/2023] Open
Abstract
Retrotransposons have generated about half of the human genome and LINE-1s (L1s) are the only autonomously active retrotransposons. The cell has evolved an arsenal of defense mechanisms to protect against retrotransposition with factors we are only beginning to understand. In this study, we investigate Zinc Finger CCHC-Type Containing 3 (ZCCHC3), a gag-like zinc knuckle protein recently reported to function in the innate immune response to infecting viruses. We show that ZCCHC3 also severely restricts human retrotransposons and associates with the L1 ORF1p ribonucleoprotein particle. We identify ZCCHC3 as a bona fide stress granule protein, and its association with LINE-1 is further supported by colocalization with L1 ORF1 protein in stress granules, dense cytoplasmic aggregations of proteins and RNAs that contain stalled translation pre-initiation complexes and form when the cell is under stress. Our work also draws links between ZCCHC3 and the anti-viral and retrotransposon restriction factors Mov10 RISC Complex RNA Helicase (MOV10) and Zinc Finger CCCH-Type, Antiviral 1 (ZC3HAV1, also called ZAP). Furthermore, collective evidence from subcellular localization, co-immunoprecipitation, and velocity gradient centrifugation connects ZCCHC3 with the RNA exosome, a multi-subunit ribonuclease complex capable of degrading various species of RNA molecules and that has previously been linked with retrotransposon control.
Collapse
Affiliation(s)
- John L Goodier
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Han Wan
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Alisha O Soares
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Laura Sanchez
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - John Michael Selser
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Gavin C Pereira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sadik Karma
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jose Luis García-Pérez
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - Haig H Kazazian
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Marta M García Cañadas
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| |
Collapse
|
17
|
Shen F, Zheng G, Setegne M, Tenglin K, Izadi M, Xie H, Zhai L, Orkin SH, Dassama LMK. A Cell-Permeant Nanobody-Based Degrader That Induces Fetal Hemoglobin. ACS CENTRAL SCIENCE 2022; 8:1695-1703. [PMID: 36589886 PMCID: PMC9801508 DOI: 10.1021/acscentsci.2c00998] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 06/13/2023]
Abstract
Proximity-based strategies to degrade proteins have enormous therapeutic potential in medicine, but the technologies are limited to proteins for which small molecule ligands exist. The identification of such ligands for therapeutically relevant but "undruggable" proteins remains challenging. Herein, we employed yeast surface display of synthetic nanobodies to identify a protein ligand selective for BCL11A, a critical repressor of fetal globin gene transcription. Fusion of the nanobody to a cell-permeant miniature protein and an E3 adaptor creates a degrader that depletes cellular BCL11A in differentiated primary erythroid precursor cells, thereby inducing the expression of fetal hemoglobin, a modifier of clinical severity of sickle cell disease and β-thalassemia. Our strategy provides a means of fetal hemoglobin induction through reversible, temporal modulation of BCL11A. Additionally, it establishes a new paradigm for the targeted degradation of previously intractable proteins.
Collapse
Affiliation(s)
- Fangfang Shen
- Department
of Chemistry and Sarafan ChEM-H, Stanford
University, Stanford, California 94305, United States
| | - Ge Zheng
- Dana
Farber Boston Children’s Cancer and Blood Disorders Center
and Howard Hughes Medical Institute, Boston, Massachusetts 02215, United States
- Department
of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Mekedlawit Setegne
- Department
of Chemistry and Sarafan ChEM-H, Stanford
University, Stanford, California 94305, United States
| | - Karin Tenglin
- Dana
Farber Boston Children’s Cancer and Blood Disorders Center
and Howard Hughes Medical Institute, Boston, Massachusetts 02215, United States
- Department
of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Manizheh Izadi
- Dana
Farber Boston Children’s Cancer and Blood Disorders Center
and Howard Hughes Medical Institute, Boston, Massachusetts 02215, United States
| | - Henry Xie
- Dana
Farber Boston Children’s Cancer and Blood Disorders Center
and Howard Hughes Medical Institute, Boston, Massachusetts 02215, United States
- Department
of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Liting Zhai
- Department
of Chemistry and Sarafan ChEM-H, Stanford
University, Stanford, California 94305, United States
| | - Stuart H. Orkin
- Dana
Farber Boston Children’s Cancer and Blood Disorders Center
and Howard Hughes Medical Institute, Boston, Massachusetts 02215, United States
- Department
of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Laura M. K. Dassama
- Department
of Chemistry and Sarafan ChEM-H, Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
18
|
Genome-wide identification and development of miniature inverted-repeat transposable elements and intron length polymorphic markers in tea plant (Camellia sinensis). Sci Rep 2022; 12:16233. [PMID: 36171247 PMCID: PMC9519581 DOI: 10.1038/s41598-022-20400-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
Marker-assisted breeding and tagging of important quantitative trait loci for beneficial traits are two important strategies for the genetic improvement of plants. However, the scarcity of diverse and informative genetic markers covering the entire tea genome limits our ability to achieve such goals. In the present study, we used a comparative genomic approach to mine the tea genomes of Camellia sinensis var. assamica (CSA) and C. sinensis var. sinensis (CSS) to identify the markers to differentiate tea genotypes. In our study, 43 and 60 Camellia sinensis miniature inverted-repeat transposable element (CsMITE) families were identified in these two sequenced tea genomes, with 23,170 and 37,958 putative CsMITE sequences, respectively. In addition, we identified 4912 non-redundant, Camellia sinensis intron length polymorphic (CsILP) markers, 85.8% of which were shared by both the CSS and CSA genomes. To validate, a subset of randomly chosen 10 CsMITE markers and 15 CsILP markers were tested and found to be polymorphic among the 36 highly diverse tea genotypes. These genome-wide markers, which were identified for the first time in tea plants, will be a valuable resource for genetic diversity analysis as well as marker-assisted breeding of tea genotypes for quality improvement.
Collapse
|
19
|
Che F, Tie X, Lei H, Zhang X, Duan M, Zhang L, Yang Y. Identification of two novel variants of the BCL11B gene in two Chinese pedigrees associated with neurodevelopmental disorders. Front Mol Neurosci 2022; 15:927357. [PMID: 36176959 PMCID: PMC9513357 DOI: 10.3389/fnmol.2022.927357] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveAccording to a recent report, the mutation of transcription factor gene BCL11B is associated with the development of neurodevelopmental disorders and immune deficiency. By analyzing both clinical features and genetic variations, this study aims to reveal the genetic etiology of four patients with neurodevelopmental disorders from two unrelated Chinese pedigrees.MethodsFrom the 4 cases, the clinical data were collected. The potential pathogenic gene variations were analyzed by means of based-trio whole exome sequencing (Trio-WES) and then validated through Sanger sequencing in their respective pedigrees. Furthermore, both the in vitro minigene assay and the NMD assay were performed to evaluate the impact of splicing and frameshift variants.ResultsThe 4 patients displayed mild-to-severe intellectual developmental disorder, which was accompanied by speech delay, dysmorphic facies, and serious caries. In addition, the extended phenotype of developmental regression was observed in the proband from Family 1, which has been unreported previously. Molecular analysis was conducted to identify two novel heterozygous variants in the BCL11B gene: a maternal splicing variant c.427 + 1G > A in Family 1 and a de novo frameshift variant c.2461_2462insGAGCCACACCGGCG (p.Glu821Glyfs*28) in Family 2. As revealed by the in vitro minigene assay, the c.427 + 1G > A variant activated a new cryptic splice site. As confirmed by an overexpression assay, there was no significant difference in the level of mRNA and protein expression between the mutate-BCL11B (p.Glu821Glyfs*28) and the wild type. It confirms that p.Glu821Glyfs*28 variant could be an NMD escaping variant.ConclusionThe extended phenotype of BCL11B-related disorders is reported in this study to reveal the clinical and genetic heterogeneity of the disease. The study starts by identifying a splicing variant and a novel frameshift variant of the BCL11B gene, thus confirming its aberrant translation. The findings of this study expand the mutation spectrum of the genetic BCL11B gene, which not only improves the understanding of the associated neurodevelopmental disorders from a clinical perspective but also provides guidance on diagnosis and genetic counseling for patients.
Collapse
Affiliation(s)
- Fengyu Che
- Shaanxi Institute for Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, China
| | - Xiaoling Tie
- Department of Rehabilitation, Xi’an Children’s Hospital, Xi’an, China
| | - Hong Lei
- Shaanxi Institute for Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, China
| | - Xi Zhang
- Shaanxi Institute for Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, China
| | - Mingyue Duan
- Shaanxi Institute for Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, China
| | - Liyu Zhang
- Shaanxi Institute for Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, China
| | - Ying Yang
- Shaanxi Institute for Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, China
- *Correspondence: Ying Yang,
| |
Collapse
|
20
|
Okuyama K, Taniuchi I. Three residues in the BTB domain promote a good partnership between NuRD and Thpok. Sci Immunol 2022; 7:eabq1408. [PMID: 35687694 DOI: 10.1126/sciimmunol.abq1408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Among the BTB-ZF transcription factor family, three amino acids in the BTB domain make Thpok unique in repressing cytotoxic lineage-related genes via recruitment of the NuRD chormatin-remodeling complex (see the related Research Article by Gao et al.).
Collapse
Affiliation(s)
- Kazuki Okuyama
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
21
|
Susemihl A, Nagel F, Grabarczyk P, Schmidt CA, Delcea M. Easy Expression and Purification of Fluorescent N-Terminal BCL11B CCHC Zinc Finger Domain. Molecules 2021; 26:molecules26247576. [PMID: 34946663 PMCID: PMC8708588 DOI: 10.3390/molecules26247576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 12/05/2022] Open
Abstract
Zinc finger proteins play pivotal roles in health and disease and exert critical functions in various cellular processes. A majority of zinc finger proteins bind DNA and act as transcription factors. B-cell lymphoma/leukemia 11B (BCL11B) represents one member of the large family of zinc finger proteins. The N-terminal domain of BCL11B was shown to be crucial for BCL11B to exert its proper function by homodimerization. Here, we describe an easy and fast preparation protocol to yield the fluorescently tagged protein of the recombinant N-terminal BCL11B zinc finger domain (BCL11B42-94) for in vitro studies. First, we expressed fluorescently tagged BCL11B42-94 in E. coli and described the subsequent purification utilizing immobilized metal ion affinity chromatography to achieve very high yields of a purified fusion protein of 200 mg/L culture. We proceeded with characterizing the atypical zinc finger domain using circular dichroism and size exclusion chromatography. Validation of the functional fluorescent pair CyPet-/EYFP-BCL11B42-94 was achieved with Förster resonance energy transfer. Our protocol can be utilized to study other zinc finger domains to expand the knowledge in this field.
Collapse
Affiliation(s)
- Anne Susemihl
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany; (A.S.); (F.N.)
- Department of Hematology and Oncology, Internal Medicine C, University of Greifswald, 17489 Greifswald, Germany; (P.G.); (C.A.S.)
| | - Felix Nagel
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany; (A.S.); (F.N.)
| | - Piotr Grabarczyk
- Department of Hematology and Oncology, Internal Medicine C, University of Greifswald, 17489 Greifswald, Germany; (P.G.); (C.A.S.)
| | - Christian A. Schmidt
- Department of Hematology and Oncology, Internal Medicine C, University of Greifswald, 17489 Greifswald, Germany; (P.G.); (C.A.S.)
| | - Mihaela Delcea
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany; (A.S.); (F.N.)
- Correspondence:
| |
Collapse
|
22
|
Grabarczyk P, Delin M, Rogińska D, Schulig L, Forkel H, Depke M, Link A, Machaliński B, Schmidt CA. Nuclear import of BCL11B is mediated by a classical nuclear localization signal and not the Krüppel-like zinc fingers. J Cell Sci 2021; 134:272659. [PMID: 34714335 DOI: 10.1242/jcs.258655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 10/24/2021] [Indexed: 11/20/2022] Open
Abstract
The Krüppel-like transcription factor BCL11B is characterized by wide tissue distribution and crucial functions in key developmental and cellular processes and various pathologies including cancer or HIV infection. Although basics of BCL11B activity and relevant interactions with other proteins were uncovered, how this exclusively nuclear protein localizes to its compartment remained unclear. Here, we demonstrate that unlike other KLFs, BCL11B does not require the C-terminal DNA-binding domain to pass through the nuclear envelope but encodes an independent, previously unidentified nuclear localization signal (NLS) which is located distantly from the zinc finger domains and fulfills the essential criteria of an autonomous NLS. First, it can redirect a heterologous cytoplasmic protein to the nucleus. Second, its mutations cause aberrant localization of the protein of origin. Finally, we provide experimental and in silico evidences of the direct interaction with importin alpha. The relative conservation of this motif allows formulating a consensus sequence (K/R)K-X13-14-KR+K++ which can be found in all BCL11B orthologues among vertebrates and in the closely related protein BCL11A.
Collapse
Affiliation(s)
- Piotr Grabarczyk
- Clinic of Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Martin Delin
- Clinic of Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Dorota Rogińska
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Lukas Schulig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Hannes Forkel
- Clinic of Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Maren Depke
- Clinic of Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Andreas Link
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | | |
Collapse
|
23
|
Sidwell T, Rothenberg EV. Epigenetic Dynamics in the Function of T-Lineage Regulatory Factor Bcl11b. Front Immunol 2021; 12:669498. [PMID: 33936112 PMCID: PMC8079813 DOI: 10.3389/fimmu.2021.669498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/23/2021] [Indexed: 11/18/2022] Open
Abstract
The transcription factor Bcl11b is critically required to support the development of diverse cell types, including T lymphocytes, type 2 innate lymphoid cells, neurons, craniofacial mesenchyme and keratinocytes. Although in T cell development its onset of expression is tightly linked to T-lymphoid lineage commitment, the Bcl11b protein in fact regulates substantially different sets of genes in different lymphocyte populations, playing strongly context-dependent roles. Somewhat unusually for lineage-defining transcription factors with site-specific DNA binding activity, much of the reported chromatin binding of Bcl11b appears to be indirect, or guided in large part by interactions with other transcription factors. We describe evidence suggesting that a further way in which Bcl11b exerts such distinct stage-dependent functions is by nucleating changes in regional suites of epigenetic modifications through recruitment of multiple families of chromatin-modifying enzyme complexes. Herein we explore what is - and what remains to be - understood of the roles of Bcl11b, its cofactors, and how it modifies the epigenetic state of the cell to enforce its diverse set of context-specific transcriptional and developmental programs.
Collapse
Affiliation(s)
- Tom Sidwell
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
24
|
Unveiling the N-Terminal Homodimerization of BCL11B by Hybrid Solvent Replica-Exchange Simulations. Int J Mol Sci 2021; 22:ijms22073650. [PMID: 33807484 PMCID: PMC8036541 DOI: 10.3390/ijms22073650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 01/28/2023] Open
Abstract
Transcription factors play a crucial role in regulating biological processes such as cell growth, differentiation, organ development and cellular signaling. Within this group, proteins equipped with zinc finger motifs (ZFs) represent the largest family of sequence-specific DNA-binding transcription regulators. Numerous studies have proven the fundamental role of BCL11B for a variety of tissues and organs such as central nervous system, T cells, skin, teeth, and mammary glands. In a previous work we identified a novel atypical zinc finger domain (CCHC-ZF) which serves as a dimerization interface of BCL11B. This domain and formation of the dimer were shown to be critically important for efficient regulation of the BCL11B target genes and could therefore represent a promising target for novel drug therapies. Here, we report the structural basis for BCL11B-BCL11B interaction mediated by the N-terminal ZF domain. By combining structure prediction algorithms, enhanced sampling molecular dynamics and fluorescence resonance energy transfer (FRET) approaches, we identified amino acid residues indispensable for the formation of the single ZF domain and directly involved in forming the dimer interface. These findings not only provide deep insight into how BCL11B acquires its active structure but also represent an important step towards rational design or selection of potential inhibitors.
Collapse
|
25
|
Simon R, Wiegreffe C, Britsch S. Bcl11 Transcription Factors Regulate Cortical Development and Function. Front Mol Neurosci 2020; 13:51. [PMID: 32322190 PMCID: PMC7158892 DOI: 10.3389/fnmol.2020.00051] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022] Open
Abstract
Transcription factors regulate multiple processes during brain development and in the adult brain, from brain patterning to differentiation and maturation of highly specialized neurons as well as establishing and maintaining the functional neuronal connectivity. The members of the zinc-finger transcription factor family Bcl11 are mainly expressed in the hematopoietic and central nervous systems regulating the expression of numerous genes involved in a wide range of pathways. In the brain Bcl11 proteins are required to regulate progenitor cell proliferation as well as differentiation, migration, and functional integration of neural cells. Mutations of the human Bcl11 genes lead to anomalies in multiple systems including neurodevelopmental impairments like intellectual disabilities and autism spectrum disorders.
Collapse
Affiliation(s)
- Ruth Simon
- Institute of Molecular and Cellular Anatomy, Ulm University, Germany
| | | | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Germany
| |
Collapse
|