1
|
Telomerase gene therapy: a remission toward cancer. Med Oncol 2022; 39:105. [DOI: 10.1007/s12032-022-01702-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/02/2022] [Indexed: 12/21/2022]
|
2
|
Zhang B, Liu ZY, Wu R, Zhang CM, Cao K, Shan WG, Liu Z, Ji M, Tian ZL, Sethi G, Shi HL, Wang RH. Transcriptional regulator CTR9 promotes hepatocellular carcinoma progression and metastasis via increasing PEG10 transcriptional activity. Acta Pharmacol Sin 2021; 43:2109-2118. [PMID: 34876700 PMCID: PMC9343652 DOI: 10.1038/s41401-021-00812-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/31/2021] [Indexed: 11/09/2022]
Abstract
Cln Three Requiring 9 (CTR9), a scaffold protein of the polymerase-associated factor-1 (PAF1) complex (PAF1c), is primarily localized in the nucleus of cells. Recent studies show that CTR9 plays essential roles in the development of various human cancers and their occurrence; however, its regulatory roles and precise mechanisms in hepatocellular carcinoma (HCC) remain unclear. In this study, we investigated the roles of CTR9 using in vitro assays and a xenograft mouse model. We found that CTR9 protein is upregulated in tumor tissues from HCC patients. Knockdown of CTR9 substantially reduced HCC cell proliferation, invasion, and migration, whereas its overexpression promoted these activities. In addition, in vitro results revealed that CTR9 silencing dramatically increased cell cycle regulators, p21 and p27, but markedly decreased matrix metalloproteinases, MMP2 and MMP9, with these outcomes reversed upon CTR9 overexpression. Furthermore, the underlying molecular mechanism suggests that CTR9 promoted the oncogene paternally expressed gene 10 (PEG10) transcription via its promoter region. Finally, the oncogenic roles of CTR9 were confirmed in a xenograft mouse model. This study confirms that CTR9, an oncoprotein that promotes HCC cell proliferation, invasion, and migration, increases tumor growth in a xenograft mouse model. CTR9 could be a novel therapeutic target. Further investigation is warranted to verify CTR9 potential in novel therapies for HCC.
Collapse
|
3
|
Connelly CJ, Vidal-Cardenas S, Goldsmith S, Greider CW. The Bur1 cyclin-dependent kinase regulates telomere length in Saccharomyces cerevisiae. Yeast 2021; 39:177-192. [PMID: 34781413 PMCID: PMC9299788 DOI: 10.1002/yea.3680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/09/2021] [Accepted: 11/04/2021] [Indexed: 11/26/2022] Open
Abstract
Telomere length regulation is essential for cell viability in eukaryotes. While many pathways that affect telomere length are known, we do not yet have a complete understanding of the mechanism of length regulation. To identify new pathways that might regulate telomere length, we carried out a genetic screen in yeast and identified the cyclin‐dependent kinase complex Bur1/2 as a regulator of telomere length. Mutations in either BUR1 cyclin‐dependent kinase or the associated BUR2 cyclin resulted in short telomeres. This regulation did not function through the known role of BUR1 in regulating histone modification as bur1∆ set2∆ and bur2∆ set2∆ double mutants rescued cell growth but did not rescue the telomere shortening effects. We found that both bur1∆ and bur2∆ set2∆ were also defective in de novo telomere addition, and deletion of SET2 did also not rescue this elongation defect. The Bur1/2 cyclin‐dependent kinase regulates transcription of many genes. We found that TLC1 RNA levels were reduced in bur2∆ set2∆ mutants; however, overexpression of TLC1 restored the transcript levels but did not restore de novo telomere elongation or telomere length. These data suggest that the Bur1/2 kinase plays a role in telomere elongation separate from its role in transcription of telomerase components. Dissecting the role of the Bur1/2 kinase pathway at telomeres will help complete our understanding of the complex network of telomere length regulation. Loss of Bur1/2 cyclin‐dependent kinase activity causes short telomeres. Short telomere phenotype is not due to the role of Bur1/2 in histone modification. Short telomeres are not due to decreased levels of telomerase components Est1, Est2, Est3, or Tlc1. In absence of Bur1/2 activity, TLC1 deleted cells do not form survivors. Bur1/2 kinase directly or indirectly regulates telomere length.
Collapse
Affiliation(s)
- Carla J Connelly
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sofia Vidal-Cardenas
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Exelixis, Inc., Alameda, California, USA
| | - Stephanie Goldsmith
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Carol W Greider
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
4
|
Francette AM, Tripplehorn SA, Arndt KM. The Paf1 Complex: A Keystone of Nuclear Regulation Operating at the Interface of Transcription and Chromatin. J Mol Biol 2021; 433:166979. [PMID: 33811920 PMCID: PMC8184591 DOI: 10.1016/j.jmb.2021.166979] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022]
Abstract
The regulation of transcription by RNA polymerase II is closely intertwined with the regulation of chromatin structure. A host of proteins required for the disassembly, reassembly, and modification of nucleosomes interacts with Pol II to aid its movement and counteract its disruptive effects on chromatin. The highly conserved Polymerase Associated Factor 1 Complex, Paf1C, travels with Pol II and exerts control over transcription elongation and chromatin structure, while broadly impacting the transcriptome in both single cell and multicellular eukaryotes. Recent studies have yielded exciting new insights into the mechanisms by which Paf1C regulates transcription elongation, epigenetic modifications, and post-transcriptional steps in eukaryotic gene expression. Importantly, these functional studies are now supported by an extensive foundation of high-resolution structural information, providing intimate views of Paf1C and its integration into the larger Pol II elongation complex. As a global regulatory factor operating at the interface between chromatin and transcription, the impact of Paf1C is broad and its influence reverberates into other domains of nuclear regulation, including genome stability, telomere maintenance, and DNA replication.
Collapse
Affiliation(s)
- Alex M Francette
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Sarah A Tripplehorn
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
5
|
Liu JC, Li QJ, He MH, Hu C, Dai P, Meng FL, Zhou BO, Zhou JQ. Swc4 positively regulates telomere length independently of its roles in NuA4 and SWR1 complexes. Nucleic Acids Res 2021; 48:12792-12803. [PMID: 33270890 PMCID: PMC7736797 DOI: 10.1093/nar/gkaa1150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/19/2020] [Accepted: 11/10/2020] [Indexed: 01/25/2023] Open
Abstract
Telomeres at the ends of eukaryotic chromosomes are essential for genome integrality and stability. In order to identify genes that sustain telomere maintenance independently of telomerase recruitment, we have exploited the phenotype of over-long telomeres in the cells that express Cdc13-Est2 fusion protein, and examined 195 strains, in which individual non-essential gene deletion causes telomere shortening. We have identified 24 genes whose deletion results in dramatic failure of Cdc13-Est2 function, including those encoding components of telomerase, Yku, KEOPS and NMD complexes, as well as quite a few whose functions are not obvious in telomerase activity regulation. We have characterized Swc4, a shared subunit of histone acetyltransferase NuA4 and chromatin remodeling SWR1 (SWR1-C) complexes, in telomere length regulation. Deletion of SWC4, but not other non-essential subunits of either NuA4 or SWR1-C, causes significant telomere shortening. Consistently, simultaneous disassembly of NuA4 and SWR1-C does not affect telomere length. Interestingly, inactivation of Swc4 in telomerase null cells accelerates both telomere shortening and senescence rates. Swc4 associates with telomeric DNA in vivo, suggesting a direct role of Swc4 at telomeres. Taken together, our work reveals a distinct role of Swc4 in telomere length regulation, separable from its canonical roles in both NuA4 and SWR1-C.
Collapse
Affiliation(s)
- Jia-Cheng Liu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Qian-Jin Li
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming-Hong He
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Can Hu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Pengfei Dai
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Fei-Long Meng
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bo O Zhou
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jin-Qiu Zhou
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
6
|
Carballar R, Martínez-Láinez JM, Samper B, Bru S, Bállega E, Mirallas O, Ricco N, Clotet J, Jiménez J. CDK-mediated Yku80 Phosphorylation Regulates the Balance Between Non-homologous End Joining (NHEJ) and Homologous Directed Recombination (HDR). J Mol Biol 2020; 432:166715. [PMID: 33217428 DOI: 10.1016/j.jmb.2020.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 11/28/2022]
Abstract
There are two major pathways for repairing DNA double-strand breaks (DSBs): homologous directed recombination (HDR) and non-homologous end-joining (NHEJ). While NHEJ functions throughout the cell cycle, HDR is only possible during S/G2 phases, suggesting that there are cell cycle-specific mechanisms regulating the balance between the two repair systems. The regulation exerted by CDKs on HDR has been extensively demonstrated, and here we present evidence that the CDK Pho85, in association with the G1 cyclin Pcl1, phosphorylates Yku80 on Ser 623 to regulate NHEJ activity. Cells bearing a non-phosphorylatable version of Yku80 show increased NHEJ and reduced HDR activity. Accordingly, yku80S623A cells present diminished viability upon treatment with the DSB-producer bleomycin, specifically in the G2 phase of the cell cycle. Interestingly, the mutation of the equivalent residue in human Ku80 increases sensitivity to bleomycin in several cancer cell lines, suggesting that this mechanism is conserved in humans. Altogether, our results reveal a new mechanism whereby G1-CDKs mediate the choice between HDR and NHEJ repair pathways, putting the error prone NHEJ on a leash and enabling error free HDR in G2 when homologous sequences are available.
Collapse
Affiliation(s)
- Reyes Carballar
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Joan M Martínez-Láinez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Bàrbara Samper
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Samuel Bru
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Elisabet Bállega
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Oriol Mirallas
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Natalia Ricco
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Josep Clotet
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain.
| | - Javier Jiménez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain.
| |
Collapse
|
7
|
Lemon LD, Morris DK, Bertuch AA. Loss of Ku's DNA end binding activity affects telomere length via destabilizing telomere-bound Est1 rather than altering TLC1 homeostasis. Sci Rep 2019; 9:10607. [PMID: 31337791 PMCID: PMC6650470 DOI: 10.1038/s41598-019-46840-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/05/2019] [Indexed: 11/21/2022] Open
Abstract
Saccharomyces cerevisiae telomerase, which maintains telomere length, is comprised of an RNA component, TLC1, the reverse transcriptase, Est2, and regulatory subunits, including Est1. The Yku70/Yku80 (Ku) heterodimer, a DNA end binding (DEB) protein, also contributes to telomere length maintenance. Ku binds TLC1 and telomere ends in a mutually exclusive fashion, and is required to maintain levels and nuclear localization of TLC1. Ku also interacts with Sir4, which localizes to telomeres. Here we sought to determine the role of Ku's DEB activity in telomere length maintenance by utilizing yku70-R456E mutant strains, in which Ku has reduced DEB and telomere association but proficiency in TLC1 and Sir4 binding, and TLC1 nuclear retention. Telomere lengths in a yku70-R456E strain were nearly as short as those in yku∆ strains and shorter than in strains lacking either Sir4, Ku:Sir4 interaction, or Ku:TLC1 interaction. TLC1 levels were decreased in the yku70-R456E mutant, yet overexpression of TLC1 failed to restore telomere length. Reduced DEB activity did not impact Est1's ability to associate with telomerase but did result in decreased association of Est1 with the telomere. These findings suggest Ku's DEB activity maintains telomere length homeostasis by preserving Est1's interaction at the telomere rather than altering TLC1 levels.
Collapse
Affiliation(s)
- Laramie D Lemon
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Danna K Morris
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Alison A Bertuch
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Rodrigues J, Lydall D. Cis and trans interactions between genes encoding PAF1 complex and ESCRT machinery components in yeast. Curr Genet 2018; 64:1105-1116. [PMID: 29564528 PMCID: PMC6153643 DOI: 10.1007/s00294-018-0828-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 12/23/2022]
Abstract
Saccharomyces cerevisiae is a commonly used model organism for understanding eukaryotic gene function. However, the close proximity between yeast genes can complicate the interpretation of yeast genetic data, particularly high-throughput data. In this study, we examined the interplay between genes encoding components of the PAF1 complex and VPS36, the gene located next to CDC73 on chromosome XII. The PAF1 complex (Cdc73, Paf1, Ctr9, Leo1, and Rtf1, in yeast) affects RNA levels by affecting transcription, histone modifications, and post-transcriptional RNA processing. The human PAF1 complex is linked to cancer, and in yeast, it has been reported to play a role in telomere biology. Vps36, part of the ESCRT-II complex, is involved in sorting proteins for vacuolar/lysosomal degradation. We document a complex set of genetic interactions, which include an adjacent gene effect between CDC73 and VPS36 and synthetic sickness between vps36Δ and cdc73Δ, paf1Δ, or ctr9Δ. Importantly, paf1Δ and ctr9Δ are synthetically lethal with deletions of other components of the ESCRT-II (SNF8 and VPS25), ESCRT-I (STP22), or ESCRT-III (SNF7) complexes. We found that RNA levels of VPS36, but not other ESCRT components, are positively regulated by all components of the PAF1 complex. Finally, we show that deletion of ESCRT components decreases the telomere length in the S288C yeast genetic background, but not in the W303 background. Together, our results outline complex interactions, in cis and in trans, between genes encoding PAF1 and ESCRT-II complex components that affect telomere function and cell viability in yeast.
Collapse
Affiliation(s)
- Joana Rodrigues
- Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne, NE2 4HH, UK
| | - David Lydall
- Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
9
|
Rodrigues J, Lydall D. Paf1 and Ctr9, core components of the PAF1 complex, maintain low levels of telomeric repeat containing RNA. Nucleic Acids Res 2018; 46:621-634. [PMID: 29145644 PMCID: PMC5778495 DOI: 10.1093/nar/gkx1131] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/23/2017] [Accepted: 10/27/2017] [Indexed: 02/06/2023] Open
Abstract
The conserved PAF1 complex (Cdc73, Paf1, Ctr9, Leo1 and Rtf1, in yeast), binds RNA pol II, and affects levels of many RNAs. Although PAF1 is a complex, there is evidence that different components perform different functions. In yeast, Cdc73, Paf1 and Ctr9 maintain normal telomerase RNA (TLC1) levels and affect telomere length. Here we report a new connection between the PAF1 complex and telomere biology. We show that Paf1 and Ctr9 maintain low telomere repeat containing RNA (TERRA) levels while Cdc73, Leo1 and Rtf1 have lesser effects. Analysis of double mutants shows that Paf1 and Ctr9 can affect TERRA independently of Sir4, Rat1, and Trf4, previously identified regulators of TERRA. The data suggest that Paf1 and Ctr9 maintain low TERRA levels by affecting both transcription and degradation and that short telomeres in cdc73Δ, paf1Δ and ctr9Δ mutants do not induce TERRA. These data establish the PAF1 complex as a new regulator of TERRA, and are consistent with the model in which Paf1 and Ctr9, the core components of the PAF1 complex, affect transcript levels and cell fitness by numerous mechanisms.
Collapse
Affiliation(s)
- Joana Rodrigues
- Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK
| | - David Lydall
- Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
10
|
Cdc73 suppresses genome instability by mediating telomere homeostasis. PLoS Genet 2018; 14:e1007170. [PMID: 29320491 PMCID: PMC5779705 DOI: 10.1371/journal.pgen.1007170] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/23/2018] [Accepted: 12/25/2017] [Indexed: 12/18/2022] Open
Abstract
Defects in the genes encoding the Paf1 complex can cause increased genome instability. Loss of Paf1, Cdc73, and Ctr9, but not Rtf1 or Leo1, caused increased accumulation of gross chromosomal rearrangements (GCRs). Combining the cdc73Δ mutation with individual deletions of 43 other genes, including TEL1 and YKU80, which are involved in telomere maintenance, resulted in synergistic increases in GCR rates. Whole genome sequence analysis of GCRs indicated that there were reduced relative rates of GCRs mediated by de novo telomere additions and increased rates of translocations and inverted duplications in cdc73Δ single and double mutants. Analysis of telomere lengths and telomeric gene silencing in strains containing different combinations of cdc73Δ, tel1Δ and yku80Δ mutations suggested that combinations of these mutations caused increased defects in telomere maintenance. A deletion analysis of Cdc73 revealed that a central 105 amino acid region was necessary and sufficient for suppressing the defects observed in cdc73Δ strains; this region was required for the binding of Cdc73 to the Paf1 complex through Ctr9 and for nuclear localization of Cdc73. Taken together, these data suggest that the increased GCR rate of cdc73Δ single and double mutants is due to partial telomere dysfunction and that Ctr9 and Paf1 play a central role in the Paf1 complex potentially by scaffolding the Paf1 complex subunits or by mediating recruitment of the Paf1 complex to the different processes it functions in. Maintaining a stable genome is crucial for all organisms, and loss of genome stability has been linked to multiple human diseases, including many cancers. Previously we found that defects in Cdc73, a component of the Paf1 transcriptional elongation complex, give rise to increased genome instability. Here, we explored the mechanism underlying this instability and found that Cdc73 defects give rise to partial defects in maintaining telomeres, which are the specialized ends of chromosomes, and interact with other mutations causing telomere defects. Remarkably, Cdc73 function is mediated through a short central region of the protein that is not a part of previously identified protein domains but targets Cdc73 to the Paf1 complex through interaction with the Ctr9 subunit. Analysis of the other components of the Paf1 complex provides a model in which the Paf1 subunit mediates recruitment of the other subunits to different processes they function in. Together, these data suggest that the mutations in CDC73 and CTR9 found in patients with hyperparathyroidism-jaw tumor syndrome and some patients with Wilms tumors, respectively, may contribute to cancer progression by contributing to genome instability.
Collapse
|
11
|
Majerská J, Schrumpfová PP, Dokládal L, Schořová Š, Stejskal K, Obořil M, Honys D, Kozáková L, Polanská PS, Sýkorová E. Tandem affinity purification of AtTERT reveals putative interaction partners of plant telomerase in vivo. PROTOPLASMA 2017; 254:1547-1562. [PMID: 27853871 DOI: 10.1007/s00709-016-1042-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/04/2016] [Indexed: 05/15/2023]
Abstract
The life cycle of telomerase involves dynamic and complex interactions between proteins within multiple macromolecular networks. Elucidation of these associations is a key to understanding the regulation of telomerase under diverse physiological and pathological conditions from telomerase biogenesis, through telomere recruitment and elongation, to its non-canonical activities outside of telomeres. We used tandem affinity purification coupled to mass spectrometry to build an interactome of the telomerase catalytic subunit AtTERT, using Arabidopsis thaliana suspension cultures. We then examined interactions occurring at the AtTERT N-terminus, which is thought to fold into a discrete domain connected to the rest of the molecule via a flexible linker. Bioinformatic analyses revealed that interaction partners of AtTERT have a range of molecular functions, a subset of which is specific to the network around its N-terminus. A significant number of proteins co-purifying with the N-terminal constructs have been implicated in cell cycle and developmental processes, as would be expected of bona fide regulatory interactions and we have confirmed experimentally the direct nature of selected interactions. To examine AtTERT protein-protein interactions from another perspective, we also analysed AtTERT interdomain contacts to test potential dimerization of AtTERT. In total, our results provide an insight into the composition and architecture of the plant telomerase complex and this will aid in delineating molecular mechanisms of telomerase functions.
Collapse
Affiliation(s)
- Jana Majerská
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265, Brno, Czech Republic
- Central European Institute of Technology and Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Petra Procházková Schrumpfová
- Central European Institute of Technology and Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Ladislav Dokládal
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265, Brno, Czech Republic
| | - Šárka Schořová
- Central European Institute of Technology and Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
| | - Karel Stejskal
- Central European Institute of Technology and Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
| | - Michal Obořil
- Central European Institute of Technology and Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
| | - David Honys
- Institute of Experimental Biology, Academy of Sciences of the Czech Republic, v.v.i., Rozvojová 263, CZ-165 02, Prague, Czech Republic
| | - Lucie Kozáková
- Central European Institute of Technology and Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
| | - Pavla Sováková Polanská
- Central European Institute of Technology and Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
| | - Eva Sýkorová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265, Brno, Czech Republic.
| |
Collapse
|
12
|
Martin-Yken H, François JM, Zerbib D. Knr4: a disordered hub protein at the heart of fungal cell wall signalling. Cell Microbiol 2016; 18:1217-27. [PMID: 27199081 DOI: 10.1111/cmi.12618] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/14/2016] [Accepted: 05/17/2016] [Indexed: 02/05/2023]
Abstract
The most highly connected proteins in protein-protein interactions networks are called hubs; they generally connect signalling pathways. In Saccharomyces cerevisiae, Knr4 constitutes a connecting node between the two main signal transmission pathways involved in cell wall maintenance upon stress: the cell wall integrity and the calcium-calcineurin pathway. Knr4 is required to enable the cells to resist many cell wall-affecting stresses, and KNR4 gene deletion is synthetic lethal with the simultaneous deletion of numerous other genes involved in morphogenesis and cell wall biogenesis. Knr4 has been shown to engage in multiple physical interactions, an ability conferred by the intrinsic structural adaptability of major disordered regions present in the N-terminal and C-terminal parts of the protein. Taking all together, Knr4 is an intrinsically disordered hub protein. Available data from other fungi indicate the conservation of Knr4 homologs cellular function and localization at sites of polarized growth among fungal species, including pathogenic species. Because of their particular role in morphogenesis control and of their fungal specificity, these proteins could constitute interesting new pharmaceutical drug targets for antifungal combination therapy.
Collapse
Affiliation(s)
- Hélène Martin-Yken
- LISBP, Université Fédérale de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil, F-31077, Toulouse, France
| | - Jean Marie François
- LISBP, Université Fédérale de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil, F-31077, Toulouse, France
| | - Didier Zerbib
- LISBP, Université Fédérale de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil, F-31077, Toulouse, France.,Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, F-31077, Toulouse, France
| |
Collapse
|
13
|
Matsuguchi T, Blackburn E. The yeast telomerase RNA, TLC1, participates in two distinct modes of TLC1-TLC1 association processes in vivo. PeerJ 2016; 4:e1534. [PMID: 27004145 PMCID: PMC4800423 DOI: 10.7717/peerj.1534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 12/04/2015] [Indexed: 11/23/2022] Open
Abstract
Telomerase core enzyme minimally consists of the telomerase reverse transcriptase domain-containing protein (Est2 in budding yeast S. cerevisiae) and telomerase RNA, which contains the template specifying the telomeric repeat sequence synthesized. Here we report that in vivo, a fraction of S. cerevisiae telomerase RNA (TLC1) molecules form complexes containing at least two molecules of TLC1, via two separable modes: one requiring a sequence in the 3′ region of the immature TLC1 precursor and the other requiring Ku and Sir4. Such physical TLC1-TLC1 association peaked in G1 phase and did not require telomere silencing, telomere tethering to the nuclear periphery, telomerase holoenzyme assembly, or detectable Est2-Est2 protein association. These data indicate that TLC1-TLC1 associations reflect processes occurring during telomerase biogenesis; we propose that TLC1-TLC1 associations and subsequent reorganization may be regulatory steps in telomerase enzymatic activation.
Collapse
Affiliation(s)
- Tet Matsuguchi
- Department of Biochemistry and Biophysics, University of California , San Francisco, CA , United States
| | - Elizabeth Blackburn
- Department of Biochemistry and Biophysics, University of California , San Francisco, CA , United States
| |
Collapse
|
14
|
Poos AM, Maicher A, Dieckmann AK, Oswald M, Eils R, Kupiec M, Luke B, König R. Mixed Integer Linear Programming based machine learning approach identifies regulators of telomerase in yeast. Nucleic Acids Res 2016; 44:e93. [PMID: 26908654 PMCID: PMC4889924 DOI: 10.1093/nar/gkw111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 01/25/2016] [Indexed: 11/24/2022] Open
Abstract
Understanding telomere length maintenance mechanisms is central in cancer biology as their dysregulation is one of the hallmarks for immortalization of cancer cells. Important for this well-balanced control is the transcriptional regulation of the telomerase genes. We integrated Mixed Integer Linear Programming models into a comparative machine learning based approach to identify regulatory interactions that best explain the discrepancy of telomerase transcript levels in yeast mutants with deleted regulators showing aberrant telomere length, when compared to mutants with normal telomere length. We uncover novel regulators of telomerase expression, several of which affect histone levels or modifications. In particular, our results point to the transcription factors Sum1, Hst1 and Srb2 as being important for the regulation of EST1 transcription, and we validated the effect of Sum1 experimentally. We compiled our machine learning method leading to a user friendly package for R which can straightforwardly be applied to similar problems integrating gene regulator binding information and expression profiles of samples of e.g. different phenotypes, diseases or treatments.
Collapse
Affiliation(s)
- Alexandra M Poos
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, D-07747 Jena, Erlanger Allee 101, Germany Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI) Jena, Beutenbergstrasse 11a, 07745 Jena, Germany Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - André Maicher
- Center for Molecular Biology at Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH-Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Anna K Dieckmann
- Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI) Jena, Beutenbergstrasse 11a, 07745 Jena, Germany Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Marcus Oswald
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, D-07747 Jena, Erlanger Allee 101, Germany Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI) Jena, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Roland Eils
- Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, and Bioquant, University of Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Martin Kupiec
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Brian Luke
- Center for Molecular Biology at Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH-Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany Telomere Biology Group, Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Rainer König
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, D-07747 Jena, Erlanger Allee 101, Germany Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI) Jena, Beutenbergstrasse 11a, 07745 Jena, Germany Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| |
Collapse
|
15
|
Hass EP, Zappulla DC. The Ku subunit of telomerase binds Sir4 to recruit telomerase to lengthen telomeres in S. cerevisiae. eLife 2015. [PMID: 26218225 PMCID: PMC4547093 DOI: 10.7554/elife.07750] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In Saccharomyces cerevisiae and in humans, the telomerase RNA subunit is bound by Ku, a ring-shaped protein heterodimer best known for its function in DNA repair. Ku binding to yeast telomerase RNA promotes telomere lengthening and telomerase recruitment to telomeres, but how this is achieved remains unknown. Using telomere-length analysis and chromatin immunoprecipitation, we show that Sir4 – a previously identified Ku-binding protein that is a component of telomeric silent chromatin – is required for Ku-mediated telomere lengthening and telomerase recruitment. We also find that specifically tethering Sir4 directly to Ku-binding-defective telomerase RNA restores otherwise-shortened telomeres to wild-type length. These findings suggest that Sir4 is the telomere-bound target of Ku-mediated telomerase recruitment and provide one mechanism for how the Sir4-competing Rif1 and Rif2 proteins negatively regulate telomere length in yeast. DOI:http://dx.doi.org/10.7554/eLife.07750.001 Inside a cell's nucleus, DNA is packaged into structures called chromosomes. The ends of every chromosome are capped by repeating sequences of DNA known as telomeres, which protect the chromosomes from damage. Every time a cell divides, the telomeres shorten. If telomere length falls below a critical level, the cell can die or enter a state in which it can no longer divide. During cell division, an enzyme called telomerase normally restores telomeres to their original length. Telomerase is made up of several proteins and an RNA molecule. In yeast and humans, a protein called Ku is one part of the telomerase enzyme. Ku binds to the RNA subunit of telomerase and helps the enzyme find and interact with the telomeres. Previous research has shown that Ku is unable to work alone to recruit telomerase to the chromosome. A protein called Sir4 binds to telomeres and cells lacking it have short telomeres, but the reason behind this was not known. Hass and Zappulla confirmed previous reports that Ku binds to Sir4 using a biochemical approach. Additional experiments provided genetic evidence that this binding interaction is important for telomerase to lengthen telomeres appropriately. Cells in which the RNA subunit of telomerase is unable to bind effectively to Ku have short telomeres. Hass and Zappulla directly tethered Sir4 to this defective RNA and found this restored the shortened telomeres to a normal length, indicating that Sir4 normally binds Ku to recruit telomerase. Discovering this mode of recruitment also helps to explain how two other telomeric proteins (Rif1 and 2) limit telomere lengthening; they compete with Ku-Sir4 recruitment to form a length-regulating system. Taken together, Hass and Zappulla's results provide strong evidence that Sir4 cooperates with Ku to control the lengthening of chromosome ends. Future research will hopefully reveal the precise space and time requirements for this telomerase-controlling system in yeast. Additionally, because Ku has been reported to be a subunit of human telomerase, future studies could also explore whether human cells use a similar strategy. DOI:http://dx.doi.org/10.7554/eLife.07750.002
Collapse
Affiliation(s)
- Evan P Hass
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - David C Zappulla
- Department of Biology, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
16
|
The Ku heterodimer: function in DNA repair and beyond. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:15-29. [PMID: 25795113 DOI: 10.1016/j.mrrev.2014.06.002] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/07/2014] [Accepted: 06/25/2014] [Indexed: 01/11/2023]
Abstract
Ku is an abundant, highly conserved DNA binding protein found in both prokaryotes and eukaryotes that plays essential roles in the maintenance of genome integrity. In eukaryotes, Ku is a heterodimer comprised of two subunits, Ku70 and Ku80, that is best characterized for its central role as the initial DNA end binding factor in the "classical" non-homologous end joining (C-NHEJ) pathway, the main DNA double-strand break (DSB) repair pathway in mammals. Ku binds double-stranded DNA ends with high affinity in a sequence-independent manner through a central ring formed by the intertwined strands of the Ku70 and Ku80 subunits. At the break, Ku directly and indirectly interacts with several C-NHEJ factors and processing enzymes, serving as the scaffold for the entire DNA repair complex. There is also evidence that Ku is involved in signaling to the DNA damage response (DDR) machinery to modulate the activation of cell cycle checkpoints and the activation of apoptosis. Interestingly, Ku is also associated with telomeres, where, paradoxically to its DNA end-joining functions, it protects the telomere ends from being recognized as DSBs, thereby preventing their recombination and degradation. Ku, together with the silent information regulator (Sir) complex is also required for transcriptional silencing through telomere position effect (TPE). How Ku associates with telomeres, whether it is through direct DNA binding, or through protein-protein interactions with other telomere bound factors remains to be determined. Ku is central to the protection of organisms through its participation in C-NHEJ to repair DSBs generated during V(D)J recombination, a process that is indispensable for the establishment of the immune response. Ku also functions to prevent tumorigenesis and senescence since Ku-deficient mice show increased cancer incidence and early onset of aging. Overall, Ku function is critical to the maintenance of genomic integrity and to proper cellular and organismal development.
Collapse
|
17
|
Harari Y, Kupiec M. Genome-wide studies of telomere biology in budding yeast. MICROBIAL CELL (GRAZ, AUSTRIA) 2014; 1:70-80. [PMID: 28357225 PMCID: PMC5349225 DOI: 10.15698/mic2014.01.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 02/16/2014] [Indexed: 11/13/2022]
Abstract
Telomeres are specialized DNA-protein structures at the ends of eukaryotic chromosomes. Telomeres are essential for chromosomal stability and integrity, as they prevent chromosome ends from being recognized as double strand breaks. In rapidly proliferating cells, telomeric DNA is synthesized by the enzyme telomerase, which copies a short template sequence within its own RNA moiety, thus helping to solve the "end-replication problem", in which information is lost at the ends of chromosomes with each DNA replication cycle. The basic mechanisms of telomere length, structure and function maintenance are conserved among eukaryotes. Studies in the yeast Saccharomyces cerevisiae have been instrumental in deciphering the basic aspects of telomere biology. In the last decade, technical advances, such as the availability of mutant collections, have allowed carrying out systematic genome-wide screens for mutants affecting various aspects of telomere biology. In this review we summarize these efforts, and the insights that this Systems Biology approach has produced so far.
Collapse
Affiliation(s)
- Yaniv Harari
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Martin Kupiec
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
18
|
|
19
|
Abstract
The Mediator complex is a multi-subunit assembly that appears to be required for regulating expression of most RNA polymerase II (pol II) transcripts, which include protein-coding and most non-coding RNA genes. Mediator and pol II function within the pre-initiation complex (PIC), which consists of Mediator, pol II, TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH and is approximately 4.0 MDa in size. Mediator serves as a central scaffold within the PIC and helps regulate pol II activity in ways that remain poorly understood. Mediator is also generally targeted by sequence-specific, DNA-binding transcription factors (TFs) that work to control gene expression programs in response to developmental or environmental cues. At a basic level, Mediator functions by relaying signals from TFs directly to the pol II enzyme, thereby facilitating TF-dependent regulation of gene expression. Thus, Mediator is essential for converting biological inputs (communicated by TFs) to physiological responses (via changes in gene expression). In this review, we summarize an expansive body of research on the Mediator complex, with an emphasis on yeast and mammalian complexes. We focus on the basics that underlie Mediator function, such as its structure and subunit composition, and describe its broad regulatory influence on gene expression, ranging from chromatin architecture to transcription initiation and elongation, to mRNA processing. We also describe factors that influence Mediator structure and activity, including TFs, non-coding RNAs and the CDK8 module.
Collapse
Affiliation(s)
- Zachary C Poss
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, CO , USA
| | | | | |
Collapse
|
20
|
Dionne I, Larose S, Dandjinou AT, Abou Elela S, Wellinger RJ. Cell cycle-dependent transcription factors control the expression of yeast telomerase RNA. RNA (NEW YORK, N.Y.) 2013; 19:992-1002. [PMID: 23690630 PMCID: PMC3683933 DOI: 10.1261/rna.037663.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/12/2013] [Indexed: 06/02/2023]
Abstract
Telomerase is a specialized ribonucleoprotein that adds repeated DNA sequences to the ends of eukaryotic chromosomes to preserve genome integrity. Some secondary structure features of the telomerase RNA are very well conserved, and it serves as a central scaffold for the binding of associated proteins. The Saccharomyces cerevisiae telomerase RNA, TLC1, is found in very low copy number in the cell and is the limiting component of the known telomerase holoenzyme constituents. The reasons for this low abundance are unclear, but given that the RNA is very stable, transcriptional control mechanisms must be extremely important. Here we define the sequences forming the TLC1 promoter and identify the elements required for its low expression level, including enhancer and repressor elements. Within an enhancer element, we found consensus sites for Mbp1/Swi4 association, and chromatin immunoprecipitation (ChIP) assays confirmed the binding of Mbp1 and Swi4 to these sites of the TLC1 promoter. Furthermore, the enhancer element conferred cell cycle-dependent regulation to a reporter gene, and mutations in the Mbp1/Swi4 binding sites affected the levels of telomerase RNA and telomere length. Finally, ChIP experiments using a TLC1 RNA-binding protein as target showed cell cycle-dependent transcription of the TLC1 gene. These results indicate that the budding yeast TLC1 RNA is transcribed in a cell cycle-dependent fashion late in G1 and may be part of the S phase-regulated group of genes involved in DNA replication.
Collapse
|
21
|
Darvishi E, Omidi M, Bushehri AA, Golshani A, Smith ML. Thymol antifungal mode of action involves telomerase inhibition. Med Mycol 2013; 51:826-34. [PMID: 23718894 DOI: 10.3109/13693786.2013.795664] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The antifungal mode of action of thymol was investigated by a chemical-genetic profile analysis. Growth of each of ~4700 haploid Saccharomyces cerevisiae gene deletion mutants was monitored on medium with a subinhibitory concentration (50 μg/ml) of thymol and compared to growth on non-thymol control medium. This analysis revealed that, of the 76 deletion mutants with the greatest degree of susceptibility to thymol, 29% had deletions in genes involved in telomere length maintenance. A telomere restriction fragment (TRF) length assay showed that yeast exposed to a subinhibitory concentration of thymol for 15 days had telomere size reductions of 13-20% compared to non-thymol controls. By accelerating telomere shortening, thymol may increase the rate of cell senescence and apoptosis. Furthermore, real-time RT-PCR analysis revealed approximately two-fold reductions in EST2 mRNA but no change in TLC1 RNA in thymol-treated S. cerevisiae relative to untreated cells. EST2 encodes the essential reverse transcriptase subunit of telomerase that uses TLC1 RNA as a template during addition of TG(1-3) repeats to maintain telomere ends. This study provides compelling evidence that a primary mode of thymol antifungal activity is through inhibition of transcription of EST2 and thus telomerase activity.
Collapse
Affiliation(s)
- Emad Darvishi
- * Department of Agronomy and Plant Breeding, College of Agriculture, University of Tehran , Karaj , Iran
| | | | | | | | | |
Collapse
|
22
|
Abstract
The mechanisms that maintain the stability of chromosome ends have broad impact on genome integrity in all eukaryotes. Budding yeast is a premier organism for telomere studies. Many fundamental concepts of telomere and telomerase function were first established in yeast and then extended to other organisms. We present a comprehensive review of yeast telomere biology that covers capping, replication, recombination, and transcription. We think of it as yeast telomeres—soup to nuts.
Collapse
|
23
|
Abstract
Telomerase adds simple-sequence repeats to the ends of linear chromosomes to counteract the loss of end sequence inherent in conventional DNA replication. Catalytic activity for repeat synthesis results from the cooperation of the telomerase reverse transcriptase protein (TERT) and the template-containing telomerase RNA (TER). TERs vary widely in sequence and structure but share a set of motifs required for TERT binding and catalytic activity. Species-specific TER motifs play essential roles in RNP biogenesis, stability, trafficking, and regulation. Remarkably, the biogenesis pathways that generate mature TER differ across eukaryotes. Furthermore, the cellular processes that direct the assembly of a biologically functional telomerase holoenzyme and its engagement with telomeres are evolutionarily varied and regulated. This review highlights the diversity of strategies for telomerase RNP biogenesis, RNP assembly, and telomere recruitment among ciliates, yeasts, and vertebrates and suggests common themes in these pathways and their regulation.
Collapse
Affiliation(s)
- Emily D. Egan
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3200, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3200, USA
- Corresponding authorE-mail
| |
Collapse
|
24
|
The many roles of the conserved eukaryotic Paf1 complex in regulating transcription, histone modifications, and disease states. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:116-26. [PMID: 22982193 DOI: 10.1016/j.bbagrm.2012.08.011] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/18/2012] [Accepted: 08/29/2012] [Indexed: 12/20/2022]
Abstract
The Paf1 complex was originally identified over fifteen years ago in budding yeast through its physical association with RNA polymerase II. The Paf1 complex is now known to be conserved throughout eukaryotes and is well studied for promoting RNA polymerase II transcription elongation and transcription-coupled histone modifications. Through these critical regulatory functions, the Paf1 complex participates in numerous cellular processes such as gene expression and silencing, RNA maturation, DNA repair, cell cycle progression and prevention of disease states in higher eukaryotes. In this review, we describe the historic and current research involving the eukaryotic Paf1 complex to explain the cellular roles that underlie its conservation and functional importance. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
|
25
|
Chen H, Shi N, Gao Y, Li X, Teng M, Niu L. Crystallographic analysis of the conserved C-terminal domain of transcription factor Cdc73 from Saccharomyces cerevisiae reveals a GTPase-like fold. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:953-9. [PMID: 22868760 DOI: 10.1107/s0907444912017325] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/18/2012] [Indexed: 11/10/2022]
Abstract
The yeast Paf1 complex (Paf1C), which is composed of the proteins Paf1, Cdc73, Ctr9, Leo1 and Rtf1, accompanies RNA polymerase II from the promoter to the 3'-end formation site of mRNA- and snoRNA-encoding genes. As one of the first identified subunits of Paf1C, yeast Cdc73 (yCdc73) takes part in many transcription-related processes, including binding to RNA polymerase II, recruitment and activation of histone-modification factors and communication with other transcriptional activators. The human homologue of yCdc73, parafibromin, has been identified as a tumour suppressor linked to breast, renal and gastric cancers. However, the functional mechanism of yCdc73 has until recently been unclear. Here, a 2.2 Å resolution crystal structure of the highly conserved C-terminal region of yCdc73 is reported. It revealed that yCdc73 appears to have a GTPase-like fold. However, no GTPase activity was observed. The crystal structure of yCdc73 will shed new light on the modes of function of Cdc73 and Paf1C.
Collapse
Affiliation(s)
- Hongkai Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | | | | | | | | | | |
Collapse
|
26
|
Noël JF, Larose S, Abou Elela S, Wellinger RJ. Budding yeast telomerase RNA transcription termination is dictated by the Nrd1/Nab3 non-coding RNA termination pathway. Nucleic Acids Res 2012; 40:5625-36. [PMID: 22379137 PMCID: PMC3384322 DOI: 10.1093/nar/gks200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The RNA component of budding yeast telomerase (Tlc1) occurs in two forms, a non-polyadenylated form found in functional telomerase and a rare polyadenylated version with unknown function. Previous work suggested that the functional Tlc1 polyA- RNA is processed from the polyA+ form, but the mechanisms regulating its transcription termination and 3'-end formation remained unclear. Here we examined transcription termination of Tlc1 RNA in the sequences 3' of the TLC1 gene and relate it to telomere maintenance. Strikingly, disruption of all probable or cryptic polyadenylation signals near the 3'-end blocked the accumulation of the previously reported polyA+ RNA without affecting the level, function or specific 3' nucleotide of the mature polyA- form. A genetic approach analysing TLC1 3'-end sequences revealed that transcription terminates upstream of the polyadenylation sites. Furthermore, the results also demonstrate that the function of this Tlc1 terminator depends on the Nrd1/Nab3 transcription termination pathway. The data thus show that transcription termination of the budding yeast telomerase RNA occurs as that of snRNAs and Tlc1 functions in telomere maintenance are not strictly dependent on a polyadenylated precursor, even if the polyA+ form can serve as intermediate in a redundant termination/maturation pathway.
Collapse
Affiliation(s)
- Jean-François Noël
- RNA Group, Department of Microbiology and Infectious Diseases, Faculty of Medicine, Université de Sherbrooke, 3001, 12e Ave Nord, Sherbrooke, Quebec, J1H 5N4, Canada
| | | | | | | |
Collapse
|
27
|
Pfingsten JS, Goodrich KJ, Taabazuing C, Ouenzar F, Chartrand P, Cech TR. Mutually exclusive binding of telomerase RNA and DNA by Ku alters telomerase recruitment model. Cell 2012; 148:922-32. [PMID: 22365814 PMCID: PMC3327133 DOI: 10.1016/j.cell.2012.01.033] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 11/01/2011] [Accepted: 01/04/2012] [Indexed: 11/27/2022]
Abstract
In Saccharomyces cerevisiae, the Ku heterodimer contributes to telomere maintenance as a component of telomeric chromatin and as an accessory subunit of telomerase. How Ku binding to double-stranded DNA (dsDNA) and to telomerase RNA (TLC1) promotes Ku's telomeric functions is incompletely understood. We demonstrate that deletions designed to constrict the DNA-binding ring of Ku80 disrupt nonhomologous end-joining (NHEJ), telomeric gene silencing, and telomere length maintenance, suggesting that these functions require Ku's DNA end-binding activity. Contrary to the current model, a mutant Ku with low affinity for dsDNA also loses affinity for TLC1 both in vitro and in vivo. Competition experiments reveal that wild-type Ku binds dsDNA and TLC1 mutually exclusively. Cells expressing the mutant Ku are deficient in nuclear accumulation of TLC1, as expected from the RNA-binding defect. These findings force reconsideration of the mechanisms by which Ku assists in recruiting telomerase to natural telomeres and broken chromosome ends. PAPERCLIP:
Collapse
Affiliation(s)
- Jennifer S Pfingsten
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado Biofrontiers Institute, Boulder, CO 80309-0215, USA
| | | | | | | | | | | |
Collapse
|
28
|
RPA facilitates telomerase activity at chromosome ends in budding and fission yeasts. EMBO J 2012; 31:2034-46. [PMID: 22354040 DOI: 10.1038/emboj.2012.40] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 01/31/2012] [Indexed: 11/08/2022] Open
Abstract
In Saccharomyces cerevisiae, the telomerase complex binds to chromosome ends and is activated in late S-phase through a process coupled to the progression of the replication fork. Here, we show that the single-stranded DNA-binding protein RPA (replication protein A) binds to the two daughter telomeres during telomere replication but only its binding to the leading-strand telomere depends on the Mre11/Rad50/Xrs2 (MRX) complex. We further demonstrate that RPA specifically co-precipitates with yKu, Cdc13 and telomerase. The interaction of RPA with telomerase appears to be mediated by both yKu and the telomerase subunit Est1. Moreover, a mutation in Rfa1 that affects both the interaction with yKu and telomerase reduces the dramatic increase in telomere length of a rif1Δ, rif2Δ double mutant. Finally, we show that the RPA/telomerase association and function are conserved in Schizosaccharomyces pombe. Our results indicate that in both yeasts, RPA directly facilitates telomerase activity at chromosome ends.
Collapse
|
29
|
Harrington L. Haploinsufficiency and telomere length homeostasis. Mutat Res 2012; 730:37-42. [PMID: 22100521 DOI: 10.1016/j.mrfmmm.2011.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 11/01/2011] [Indexed: 05/22/2023]
Abstract
In humans, autosomal dominant or X-linked disease can arise through a phenomenon termed haploinsufficiency, where one remaining wild-type allele is insufficient for function. In model organisms, the impact of heterozygosity can be tested directly with engineered mutant alleles or in a hemizygous state where the expression of one allele is abrogated completely. This review will focus on haploinsufficiency as it relates to telomerase and telomere length maintenance and, citing selected examples in various model organisms, it will discuss how the problem of gene dosage relates to telomere function in normal and diseased states.
Collapse
|
30
|
Peng J, Zhou JQ. The tail-module of yeast Mediator complex is required for telomere heterochromatin maintenance. Nucleic Acids Res 2012; 40:581-93. [PMID: 21930512 PMCID: PMC3258146 DOI: 10.1093/nar/gkr757] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 08/15/2011] [Accepted: 08/30/2011] [Indexed: 11/23/2022] Open
Abstract
Eukaryotic chromosome ends have a DNA-protein complex structure termed telomere. Integrity of telomeres is essential for cell proliferation. Genome-wide screenings for telomere length maintenance genes identified several components of the transcriptional regulator, the Mediator complex. Our work provides evidence that Mediator is involved in telomere length regulation and telomere heterochromatin maintenance. Tail module of Mediator is required for telomere silencing by promoting or stabilizing Sir protein binding and spreading on telomeres. Mediator binds on telomere and may be a component of telomeric chromatin. Our study reveals a specific role of Mediator complex at the heterochromatic telomere and this function is specific to telomeres as it has no effect on the HMR locus.
Collapse
Affiliation(s)
| | - Jin-Qiu Zhou
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
31
|
Zvereva MI, Shcherbakova DM, Dontsova OA. Telomerase: structure, functions, and activity regulation. BIOCHEMISTRY (MOSCOW) 2011; 75:1563-83. [PMID: 21417995 DOI: 10.1134/s0006297910130055] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Telomerase is the enzyme responsible for maintenance of the length of telomeres by addition of guanine-rich repetitive sequences. Telomerase activity is exhibited in gametes and stem and tumor cells. In human somatic cells proliferation potential is strictly limited and senescence follows approximately 50-70 cell divisions. In most tumor cells, on the contrary, replication potential is unlimited. The key role in this process of the system of the telomere length maintenance with involvement of telomerase is still poorly studied. No doubt, DNA polymerase is not capable to completely copy DNA at the very ends of chromosomes; therefore, approximately 50 nucleotides are lost during each cell cycle, which results in gradual telomere length shortening. Critically short telomeres cause senescence, following crisis, and cell death. However, in tumor cells the system of telomere length maintenance is activated. Besides catalytic telomere elongation, independent telomerase functions can be also involved in cell cycle regulation. Inhibition of the telomerase catalytic function and resulting cessation of telomere length maintenance will help in restriction of tumor cell replication potential. On the other hand, formation of temporarily active enzyme via its intracellular activation or due to stimulation of expression of telomerase components will result in telomerase activation and telomere elongation that can be used for correction of degenerative changes. Data on telomerase structure and function are summarized in this review, and they are compared for evolutionarily remote organisms. Problems of telomerase activity measurement and modulation by enzyme inhibitors or activators are considered as well.
Collapse
Affiliation(s)
- M I Zvereva
- Faculty of Chemistry, Lomonosov Moscow State University, Russia.
| | | | | |
Collapse
|
32
|
Zappulla DC, Goodrich KJ, Arthur JR, Gurski LA, Denham EM, Stellwagen AE, Cech TR. Ku can contribute to telomere lengthening in yeast at multiple positions in the telomerase RNP. RNA (NEW YORK, N.Y.) 2011; 17:298-311. [PMID: 21177376 PMCID: PMC3022279 DOI: 10.1261/rna.2483611] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 11/15/2010] [Indexed: 05/21/2023]
Abstract
Unlike ribonucleoprotein complexes that have a highly ordered overall architecture, such as the ribosome, yeast telomerase appears to be much more loosely constrained. Here, we investigate the importance of positioning of the Ku subunit within the 1157-nt yeast telomerase RNA (TLC1). Deletion of the 48-nt Ku-binding hairpin in TLC1 RNA (tlc1Δ48) reduces telomere length, survival of cells with gross chromosomal rearrangements, and de novo telomere addition at a broken chromosome end. To test the function of Ku at novel positions in the telomerase RNP, we reintroduced its binding site into tlc1Δ48 RNA at position 446 or 1029. We found that Ku bound to these repositioned sites in vivo and telomere length increased slightly, but statistically significantly. The ability of telomerase to promote survival of cells with gross chromosomal rearrangements by healing damaged chromosome arms was also partially restored, whereas the kinetics of DNA addition to a specific chromosome break was delayed. Having two Ku sites in TLC1 caused progressive hyperelongation of a variable subset of telomeres, consistent with Ku's role in telomerase recruitment to chromosome ends. The number of Ku-binding sites in TLC1 contributed to telomerase RNA abundance in vivo but was only partially responsible for telomere length phenotypes. Thus, telomerase RNA levels and telomere length regulation can be modulated by the number of Ku sites in telomerase RNA. Furthermore, there is substantial flexibility in the relative positioning of Ku in the telomerase RNP for native telomere length maintenance, although not as much flexibility as for the essential Est1p subunit.
Collapse
Affiliation(s)
- David C Zappulla
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Jaehning JA. The Paf1 complex: platform or player in RNA polymerase II transcription? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:379-88. [PMID: 20060942 DOI: 10.1016/j.bbagrm.2010.01.001] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/31/2009] [Accepted: 01/04/2010] [Indexed: 12/01/2022]
Abstract
The Paf1 complex (Paf1C), composed of the proteins Paf1, Ctr9, Cdc73, Rtf1, and Leo1, accompanies RNA polymerase II (pol II) from the promoter to the 3' end formation site of mRNA and snoRNA encoding genes; it is also found associated with RNA polymerase I (pol I) on rDNA. The Paf1C is found in simple and complex eukaryotes; in human cells hSki8 is also part of the complex. The Paf1C has been linked to a large and growing list of transcription related processes including: communication with transcriptional activators; recruitment and activation of histone modification factors; facilitation of elongation on chromatin templates; and the recruitment of 3' end-processing factors necessary for accurate termination of transcription. Absence of, or mutations in, Paf1C factors result in alterations in gene expression that can result in misregulation of developmental programs and loss of control of cell division leading to cancer in humans. This review considers recent information that may help to resolve whether the Paf1C is primarily a "platform" on pol II that coordinates the association of many critical transcription factors, or if the complex itself plays a more direct role in one or more steps in transcription.
Collapse
Affiliation(s)
- Judith A Jaehning
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
34
|
Ungar L, Yosef N, Sela Y, Sharan R, Ruppin E, Kupiec M. A genome-wide screen for essential yeast genes that affect telomere length maintenance. Nucleic Acids Res 2009; 37:3840-9. [PMID: 19386622 PMCID: PMC2709559 DOI: 10.1093/nar/gkp259] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Telomeres are structures composed of repetitive DNA and proteins that protect the chromosomal ends in eukaryotic cells from fusion or degradation, thus contributing to genomic stability. Although telomere length varies between species, in all organisms studied telomere length appears to be controlled by a dynamic equilibrium between elongating mechanisms (mainly addition of repeats by the enzyme telomerase) and nucleases that shorten the telomeric sequences. Two previous studies have analyzed a collection of yeast deletion strains (deleted for nonessential genes) and found over 270 genes that affect telomere length (Telomere Length Maintenance or TLM genes). Here we complete the list of TLM by analyzing a collection of strains carrying hypomorphic alleles of most essential genes (DAmP collection). We identify 87 essential genes that affect telomere length in yeast. These genes interact with the nonessential TLM genes in a significant manner, and provide new insights on the mechanisms involved in telomere length maintenance. The newly identified genes span a variety of cellular processes, including protein degradation, pre-mRNA splicing and DNA replication.
Collapse
Affiliation(s)
- Lior Ungar
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
35
|
Yosef N, Ungar L, Zalckvar E, Kimchi A, Kupiec M, Ruppin E, Sharan R. Toward accurate reconstruction of functional protein networks. Mol Syst Biol 2009; 5:248. [PMID: 19293828 PMCID: PMC2671920 DOI: 10.1038/msb.2009.3] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 01/07/2009] [Indexed: 01/04/2023] Open
Abstract
Genome-scale screening studies are gradually accumulating a wealth of data on the putative involvement of hundreds of genes/proteins in various cellular responses or functions. A fundamental challenge is to chart out the protein pathways that underlie these systems. Previous approaches to the problem have either employed a local optimization criterion, aiming to infer each pathway independently, or a global criterion, searching for the overall most parsimonious subnetwork. Here, we study the trade-off between the two approaches and present a new intermediary scheme that provides explicit control over it. We demonstrate its utility in the analysis of the apoptosis network in humans, and the telomere length maintenance (TLM) system in yeast. Our results show that in the majority of real-life cases, the intermediary approach provides the most plausible solutions. We use a new set of perturbation experiments measuring the role of essential genes in telomere length regulation to further study the TLM network. Surprisingly, we find that the proteasome plays an important role in telomere length regulation through its associations with transcription and DNA repair circuits.
Collapse
Affiliation(s)
- Nir Yosef
- The Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel.
| | | | | | | | | | | | | |
Collapse
|
36
|
Strawn LA, Lin CA, Tank EMH, Osman MM, Simpson SA, True HL. Mutants of the Paf1 complex alter phenotypic expression of the yeast prion [PSI+]. Mol Biol Cell 2009; 20:2229-41. [PMID: 19225160 DOI: 10.1091/mbc.e08-08-0813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The yeast [PSI+] prion is an epigenetic modifier of translation termination fidelity that causes nonsense suppression. The prion [PSI+] forms when the translation termination factor Sup35p adopts a self-propagating conformation. The presence of the [PSI+] prion modulates survivability in a variety of growth conditions. Nonsense suppression is essential for many [PSI+]-mediated phenotypes, but many do not appear to be due to read-through of a single stop codon, but instead are multigenic traits. We hypothesized that other global mechanisms act in concert with [PSI+] to influence [PSI+]-mediated phenotypes. We have identified one such global regulator, the Paf1 complex (Paf1C). Paf1C is conserved in eukaryotes and has been implicated in several aspects of transcriptional and posttranscriptional regulation. Mutations in Ctr9p and other Paf1C components reduced [PSI+]-mediated nonsense suppression. The CTR9 deletion also alters nonsense suppression afforded by other genetic mutations but not always to the same extent as the effects on [PSI+]-mediated read-through. Our data suggest that the Paf1 complex influences mRNA translatability but not solely through changes in transcript stability or abundance. Finally, we demonstrate that the CTR9 deletion alters several [PSI+]-dependent phenotypes. This provides one example of how [PSI+] and genetic modifiers can interact to uncover and regulate phenotypic variability.
Collapse
Affiliation(s)
- Lisa A Strawn
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
37
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|