1
|
Zrimšek M, Draganić K, Malzer A, Doblmayr V, Mišura K, de Freitas E Silva R, Matthews JD, Iannelli F, Wohlhaupter S, Pérez Malla CU, Fischer H, Schachner H, Schiefer AI, Sheibani-Tezerji R, Chiarle R, Turner SD, Ellmeier W, Seiser C, Egger G. HDAC1 acts as a tumor suppressor in ALK-positive anaplastic large cell lymphoma: implications for HDAC inhibitor therapy. Leukemia 2025:10.1038/s41375-025-02584-9. [PMID: 40175628 DOI: 10.1038/s41375-025-02584-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 03/03/2025] [Accepted: 03/21/2025] [Indexed: 04/04/2025]
Abstract
Histone deacetylases (HDACs) are frequently deregulated in cancer, and several HDAC inhibitors (HDACi) have gained approval for treating peripheral T cell lymphomas. Here, we investigated the effects of pharmacological or genetic HDAC inhibition on NPM::ALK positive anaplastic large cell lymphoma (ALCL) development to assess the potential use of HDACi for the treatment of this disease. Short-term systemic pharmacological inhibition of HDACs using the HDACi Entinostat in a premalignant ALCL mouse model postponed or even abolished lymphoma development, despite high expression of the NPM::ALK fusion oncogene. To further disentangle the effects of systemic HDAC inhibition from thymocyte intrinsic effects, conditional genetic deletions of HDAC1 and HDAC2 enzymes were employed. In sharp contrast, T cell-specific deletion of Hdac1 or Hdac2 in the ALCL mouse model significantly accelerated NPM::ALK-driven lymphomagenesis, with Hdac1 loss having a more pronounced effect. Integration of gene expression and chromatin accessibility data revealed that Hdac1 deletion selectively perturbed cell type-specific transcriptional programs, crucial for T cell differentiation and signaling. Moreover, multiple oncogenic signaling pathways, including PDGFRB signaling, were highly upregulated. Our findings underscore the tumor-suppressive function of HDAC1 and HDAC2 in T cells during ALCL development. Nevertheless, systemic pharmacological inhibition of HDACs could still potentially improve current therapeutic outcomes.
Collapse
Affiliation(s)
- Maša Zrimšek
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Kristina Draganić
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Anna Malzer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Verena Doblmayr
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Katarina Mišura
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Rafael de Freitas E Silva
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Fabio Iannelli
- Division of Hematopathology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | | | - Carlos Uziel Pérez Malla
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Heinz Fischer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Helga Schachner
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Ana-Iris Schiefer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Raheleh Sheibani-Tezerji
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Roberto Chiarle
- Division of Hematopathology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Suzanne Dawn Turner
- Department of Pathology, University of Cambridge, Cambridge, UK
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Christian Seiser
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Gerda Egger
- Department of Pathology, Medical University of Vienna, Vienna, Austria.
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria.
| |
Collapse
|
2
|
Xu Q, Ma X, Wei X, Chen Z, Duan Y, Ju Y, Wang Z, Chen J, Zheng L, Chen X, Huang J, Zhang J, Chen X. Histone H4K8hib modification promotes gene expression and regulates rice immunity. MOLECULAR PLANT 2025; 18:9-13. [PMID: 39645580 DOI: 10.1016/j.molp.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 11/15/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
This study uncovers the role of H4K8hib as an active epigenetic mark in rice that positively correlates with gene expression and enhances immune responses. Furthermore, HDA705 was identified as the key enzyme regulating H4K8hib. Mutation of HDA705 led to hyper-H4K8hib, which in turn activated the expression of defense-related genes and enhanced rice resistance to pathogens.
Collapse
Affiliation(s)
- Qiutao Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, Guangxi University, Nanning 530004, China.
| | - Xuan Ma
- College of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Xuelu Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Zhengting Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuhang Duan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuliang Ju
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Zhaoyun Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Jing Chen
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Lu Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaolin Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Junbin Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jisen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xiaoyang Chen
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
3
|
Guo S, Zhao J, Zhang Y, Qin Y, Yuan J, Yu Z, Xing Y, Zhang Y, Hui Y, Wang A, Han M, Zhao Y, Ning X, Sun S. Histone deacetylases: potential therapeutic targets in cisplatin-induced acute kidney injury. Ann Med 2024; 56:2418958. [PMID: 39450927 PMCID: PMC11514411 DOI: 10.1080/07853890.2024.2418958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/11/2024] [Accepted: 07/20/2024] [Indexed: 10/26/2024] Open
Abstract
Aim: Chemotherapy has been well shown to enhance life expectancy in patients with malignancy. However, conventional chemotherapy drugs, particularly cisplatin, are highly associated with nephrotoxicity, which limits therapeutic efficacy and impairs quality of life. Histone deacetylases (HDACs) are proteases that play significant roles in diseases by influencing protein post-translational modification and gene expression. Agents that inhibit HDAC enzymes have been developed and approved by the FDA as anticancer drugs. It is worth noting that in certain preclinical studies with tumour cell lines, the integration of HDAC modulators and cisplatin not only exerts synergistic or additive tumour-killing effects but also alleviates cisplatin nephrotoxicity. The aim of this review is to discuss the role of HDACs in cisplatin nephrotoxicity. Methods: After searching in PubMed and Web of Science databases using 'Histone deacetylase', 'nephrotoxicity', 'cisplatin', and 'onconpehrology' as keywords, studies related was compiled and examined. Results: HDAC inhibitors exert renal protective effects by inhibiting inflammation, apoptosis, oxidative stress, and promoting autophagy; whereas sirtuins play a renal protective role by regulating lipid metabolism, inhibiting inflammation and apoptosis, and protecting mitochondrial biosynthesis and mitochondrial dynamics. These potential interactions provide clues concerning targets for molecular treatment. Conclusion: This review encapsulates the function and molecular mechanisms of HDACs in cisplatin nephrotoxicity, providing the current view by which HDACs induce different biological signaling in the regulation of chemotherapy-associated renal injury. More importantly, this review exhaustively elucidates that HDACs could be targeted to develop a new therapeutic strategy in treating cisplatin nephrotoxicity, which will extend the knowledge of the biological impact and clinical implications of HDACs.
Collapse
Affiliation(s)
- Shuxian Guo
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Jin Zhao
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yuzhan Zhang
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yunlong Qin
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Jinguo Yuan
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Zixian Yu
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yan Xing
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yumeng Zhang
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yueqing Hui
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Anjing Wang
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Mei Han
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yueru Zhao
- School of Clinical Medicine, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Xiaoxuan Ning
- Department of Geriatric, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
4
|
Dhanya SK, Kalia K, Mohanty S, Azam T, Channakkar AS, D'Souza L, Swathi KS, Reddy PC, Muralidharan B. Histone-binding protein RBBP4 is necessary to promote neurogenesis in the developing mouse neocortical progenitors. eNeuro 2024; 11:ENEURO.0391-23.2024. [PMID: 39592227 PMCID: PMC7617683 DOI: 10.1523/eneuro.0391-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Chromatin regulation plays a crucial role in neocortical neurogenesis, and mutations in chromatin modifiers are linked to neurodevelopmental disorders. RBBP4 is a core subunit of several chromatin-modifying complexes; however, its functional role and genome-wide occupancy profile in the neocortical primordium are unknown. To address this, we performed RBBP4 knockdown using CRISPR/Cas9 on neocortical progenitors derived from mice of both sexes at embryonic age 12.5 during deep-layer neurogenesis. Our study demonstrates that downregulation of RBBP4 in the E12.5 neocortical progenitors reduced neuronal output, specifically affecting CTIP2-expressing neurons. We demonstrate that RBBP4 plays an essential role in regulating neocortical progenitor proliferation. However, overexpression of RBBP4 alone was not sufficient to regulate neuronal fate.Genome-wide occupancy analysis revealed that RBBP4 primarily binds to distal regulatory elements, and neuron differentiation is a significant GO biological pathway of RBBP4-bound genes. Interestingly, we found that RBBP4 binds to Cdon, a receptor protein in the Shh signaling pathway, and knockdown of Cdon phenocopies RBBP4 knockdown resulting in a significant reduction in neurogenesis, particularly CTIP2-expressing neurons. CDON overexpression could rescue the phenotype caused upon loss of RBBP4 in the neocortex, thereby suggesting the functional link between RBBP4 and its target gene CDON. Our results shed light on the cellular role of RBBP4 and identify CDON as a novel regulator of deep-layer neurogenesis in the neocortical progenitors. Our findings are significant in the context of understanding how dysregulated chromatin regulation impacts cellular mechanisms in neurodevelopmental disorders.Significance Statement Chromatin modifier RBBP4 regulates chromatin structure and, thereby, gene expression. It is expressed in the dorsal telencephalon progenitors during deep-layer neurogenesis. In this study, we unveil a novel role for RBBP4 in regulating deep-layer neurogenesis in the neocortical progenitors. Our research underscores RBBP4's critical role in governing progenitor proliferation and neuronal subtype specification in the neocortex while identifying its genome-wide binding occupancy profile. Moreover, we identify Cdon as a novel binding target of RBBP4, also involved in regulating deep-layer neurogenesis. These findings illuminate the mechanisms by which chromatin modifiers influence neocortical development, offering insights into how mutations in chromatin modifiers could impact cortical development and contribute to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sreeja Kumari Dhanya
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore-560065, India
| | - Kishan Kalia
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore-560065, India
| | - Sattwik Mohanty
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore-560065, India
| | - Tulaib Azam
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore-560065, India
| | - Asha S Channakkar
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore-560065, India
- Regional Centre for Biotechnology, Faridabad - 121001
| | - Leora D'Souza
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore-560065, India
| | - K S Swathi
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore-560065, India
| | - Puli Chandramouli Reddy
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi- 201314, India
| | - Bhavana Muralidharan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore-560065, India
| |
Collapse
|
5
|
Hess L, Moos V, Seiser C. Development of a Cellular Model Mimicking Specific HDAC Inhibitors. Methods Mol Biol 2023; 2589:51-73. [PMID: 36255617 DOI: 10.1007/978-1-0716-2788-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Class I histone deacetylases (HDACs) are important regulators of cellular functions in health and disease. HDAC1, HDAC2, HDAC3, and HDAC8 are promising targets for the treatment of cancer, neurological, and immunological disorders. These enzymes have both catalytic and non-catalytic functions in the regulation of gene expression. We here describe the generation of a genetic toolbox by the CRISPR/Cas9 methodology in nearly haploid human tumor cells. This novel model system allows to discriminate between catalytic and structural functions of class I HDAC enzymes and to mimic the treatment with specific HDAC inhibitors.
Collapse
Affiliation(s)
- Lena Hess
- Center for Anatomy and Cell Biology, Division for Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Verena Moos
- Center for Anatomy and Cell Biology, Division for Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Christian Seiser
- Center for Anatomy and Cell Biology, Division for Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Hess L, Moos V, Lauber AA, Reiter W, Schuster M, Hartl N, Lackner D, Boenke T, Koren A, Guzzardo PM, Gundacker B, Riegler A, Vician P, Miccolo C, Leiter S, Chandrasekharan MB, Vcelkova T, Tanzer A, Jun JQ, Bradner J, Brosch G, Hartl M, Bock C, Bürckstümmer T, Kubicek S, Chiocca S, Bhaskara S, Seiser C. A toolbox for class I HDACs reveals isoform specific roles in gene regulation and protein acetylation. PLoS Genet 2022; 18:e1010376. [PMID: 35994477 PMCID: PMC9436093 DOI: 10.1371/journal.pgen.1010376] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 09/01/2022] [Accepted: 08/06/2022] [Indexed: 02/07/2023] Open
Abstract
The class I histone deacetylases are essential regulators of cell fate decisions in health and disease. While pan- and class-specific HDAC inhibitors are available, these drugs do not allow a comprehensive understanding of individual HDAC function, or the therapeutic potential of isoform-specific targeting. To systematically compare the impact of individual catalytic functions of HDAC1, HDAC2 and HDAC3, we generated human HAP1 cell lines expressing catalytically inactive HDAC enzymes. Using this genetic toolbox we compare the effect of individual HDAC inhibition with the effects of class I specific inhibitors on cell viability, protein acetylation and gene expression. Individual inactivation of HDAC1 or HDAC2 has only mild effects on cell viability, while HDAC3 inactivation or loss results in DNA damage and apoptosis. Inactivation of HDAC1/HDAC2 led to increased acetylation of components of the COREST co-repressor complex, reduced deacetylase activity associated with this complex and derepression of neuronal genes. HDAC3 controls the acetylation of nuclear hormone receptor associated proteins and the expression of nuclear hormone receptor regulated genes. Acetylation of specific histone acetyltransferases and HDACs is sensitive to inactivation of HDAC1/HDAC2. Over a wide range of assays, we determined that in particular HDAC1 or HDAC2 catalytic inactivation mimics class I specific HDAC inhibitors. Importantly, we further demonstrate that catalytic inactivation of HDAC1 or HDAC2 sensitizes cells to specific cancer drugs. In summary, our systematic study revealed isoform-specific roles of HDAC1/2/3 catalytic functions. We suggest that targeted genetic inactivation of particular isoforms effectively mimics pharmacological HDAC inhibition allowing the identification of relevant HDACs as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Lena Hess
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Verena Moos
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Arnel A. Lauber
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Reiter
- Mass Spectrometry Core Facility, Max Perutz Labs, Vienna BioCenter, Vienna, Austria
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Michael Schuster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Natascha Hartl
- Mass Spectrometry Core Facility, Max Perutz Labs, Vienna BioCenter, Vienna, Austria
| | | | - Thorina Boenke
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Anna Koren
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Brigitte Gundacker
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Anna Riegler
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Petra Vician
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Claudia Miccolo
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Susanna Leiter
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Mahesh B. Chandrasekharan
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Terezia Vcelkova
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Andrea Tanzer
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Jun Qi Jun
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - James Bradner
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Gerald Brosch
- Institute of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria
| | - Markus Hartl
- Mass Spectrometry Core Facility, Max Perutz Labs, Vienna BioCenter, Vienna, Austria
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | | | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Susanna Chiocca
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Srividya Bhaskara
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Christian Seiser
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Abstract
Histone deacetylases (HDACs) have been implicated in learning and memory, and their dysregulation has been linked to cognitive impairment in brain aging and neurodegenerative diseases. In this review, we focus on HDAC1 and HDAC2, highlighting recent progress on their roles in regulating brain function through distinct mechanisms, including gene repression and DNA repair pathways. Moreover, we discuss evidence demonstrating how HDAC1 and HDAC2 could be modulated and their potential as targets to combat memory deficits.
Collapse
Affiliation(s)
- Ping-Chieh Pao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
D'Souza L, Channakkar AS, Muralidharan B. Chromatin remodelling complexes in cerebral cortex development and neurodevelopmental disorders. Neurochem Int 2021; 147:105055. [PMID: 33964373 PMCID: PMC7611358 DOI: 10.1016/j.neuint.2021.105055] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/11/2021] [Accepted: 04/24/2021] [Indexed: 12/19/2022]
Abstract
The diverse number of neurons in the cerebral cortex are generated during development by neural stem cells lining the ventricle, and they continue maturing postnatally. Dynamic chromatin regulation in these neural stem cells is a fundamental determinant of the emerging property of the functional neural network, and the chromatin remodellers are critical determinants of this process. Chromatin remodellers participate in several steps of this process from proliferation, differentiation, migration leading to complex network formation which forms the basis of higher-order functions of cognition and behaviour. Here we review the role of these ATP-dependent chromatin remodellers in cortical development in health and disease and highlight several key mouse mutants of the subunits of the complexes which have revealed how the remodelling mechanisms control the cortical stem cell chromatin landscape for expression of stage-specific transcripts. Consistent with their role in cortical development, several putative risk variants in the subunits of the remodelling complexes have been identified as the underlying causes of several neurodevelopmental disorders. A basic understanding of the detailed molecular mechanism of their action is key to understating how mutations in the same networks lead to disease pathologies and perhaps pave the way for therapeutic development for these complex multifactorial disorders.
Collapse
Affiliation(s)
- Leora D'Souza
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore Life Science Cluster, Bangalore, India
| | - Asha S Channakkar
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore Life Science Cluster, Bangalore, India
| | - Bhavana Muralidharan
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore Life Science Cluster, Bangalore, India.
| |
Collapse
|
9
|
D'Mello SR. Regulation of Central Nervous System Development by Class I Histone Deacetylases. Dev Neurosci 2020; 41:149-165. [PMID: 31982872 PMCID: PMC7263453 DOI: 10.1159/000505535] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
Neurodevelopment is a highly complex process composed of several carefully regulated events starting from the proliferation of neuroepithelial cells and culminating with and refining of neural networks and synaptic transmission. Improper regulation of any of these neurodevelopmental events often results in severe brain dysfunction. Accumulating evidence indicates that epigenetic modifications of chromatin play a key role in neurodevelopmental regulation. Among these modifications are histone acetylation and deacetylation, which control access of transcription factors to DNA, thereby regulating gene transcription. Histone deacetylation, which restricts access of transcription factor repressing gene transcription, involves the action of members of a family of 18 enzymes, the histone deacetylases (HDAC), which are subdivided in 4 subgroups. This review focuses on the Group 1 HDACs - HDAC 1, 2, 3, and 8. Although much of the evidence for HDAC involvement in neurodevelopment has come from the use of pharmacological inhibitors, because these agents are generally nonselective with regard to their effects on individual members of the HDAC family, this review is limited to evidence garnered from the use of molecular genetic approaches. Our review describes that Class I HDACs play essential roles in all phases of neurodevelopment. Modulation of the activity of individual HDACs could be an important therapeutic approach for neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Santosh R D'Mello
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas, USA,
| |
Collapse
|
10
|
Histone deacetylases 1, 2 and 3 in nervous system development. Curr Opin Pharmacol 2020; 50:74-81. [PMID: 31901696 DOI: 10.1016/j.coph.2019.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/21/2019] [Accepted: 11/30/2019] [Indexed: 12/16/2022]
Abstract
Although histone acetylases (HDACS) were initially believed to render chromatin in a transcriptionally repressed state by deacetylating histones, it is now known that they both repress and activate transcription. Moreover, HDACs regulate the activity and/or function of a large number of other cellular proteins localized in the nucleus and cytoplasm. Accumulating evidence indicates that HDACs also play a key role in the development of the nervous system. This review focuses on three classical HDACS - HDACs 1, 2 and 3. Although much evidence on the involvement of HDACs in neurodevelopment has come from the use of pharmacological inhibitors, because these agents are not specific in their action on individual HDAC proteins, this review only describes evidence derived from the use of molecular genetic approaches. Our review describes that HDACs 1, 2 and 3 play crucial roles in neurodevelopment by regulating neurogenesis, gliogenesis, the development of neural circuitry and synaptic transmission.
Collapse
|
11
|
Bagchi RA, Weeks KL. Histone deacetylases in cardiovascular and metabolic diseases. J Mol Cell Cardiol 2019; 130:151-159. [PMID: 30978343 DOI: 10.1016/j.yjmcc.2019.04.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/29/2019] [Accepted: 04/06/2019] [Indexed: 12/13/2022]
Abstract
Histone deacetylases (HDACs) regulate gene transcription by catalyzing the removal of acetyl groups from key lysine residues in nucleosomal histones and via the recruitment of other epigenetic regulators to DNA promoter/enhancer regions. Over the past two decades, HDACs have been implicated in multiple processes pertinent to cardiovascular and metabolic diseases, including cardiac hypertrophy and remodeling, fibrosis, calcium handling, inflammation and energy metabolism. The development of small molecule HDAC inhibitors and genetically modified loss- and gain-of-function mouse models has allowed interrogation of the roles of specific HDAC isoforms in these processes. Isoform-selective HDAC inhibitors may prove to be powerful therapeutic agents for the treatment of cardiovascular diseases, obesity and diabetes.
Collapse
Affiliation(s)
- Rushita A Bagchi
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Kate L Weeks
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
12
|
Reversible, Spatial and Temporal Control over Protein Activity Using Light. Trends Biochem Sci 2018; 43:567-575. [DOI: 10.1016/j.tibs.2018.05.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/03/2018] [Accepted: 05/27/2018] [Indexed: 12/22/2022]
|
13
|
Nitarska J, Smith JG, Sherlock WT, Hillege MMG, Nott A, Barshop WD, Vashisht AA, Wohlschlegel JA, Mitter R, Riccio A. A Functional Switch of NuRD Chromatin Remodeling Complex Subunits Regulates Mouse Cortical Development. Cell Rep 2017; 17:1683-1698. [PMID: 27806305 PMCID: PMC5149529 DOI: 10.1016/j.celrep.2016.10.022] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 08/03/2016] [Accepted: 10/07/2016] [Indexed: 12/31/2022] Open
Abstract
Histone modifications and chromatin remodeling represent universal mechanisms by which cells adapt their transcriptional response to rapidly changing environmental conditions. Extensive chromatin remodeling takes place during neuronal development, allowing the transition of pluripotent cells into differentiated neurons. Here, we report that the NuRD complex, which couples ATP-dependent chromatin remodeling with histone deacetylase activity, regulates mouse brain development. Subunit exchange of CHDs, the core ATPase subunits of the NuRD complex, is required for distinct aspects of cortical development. Whereas CHD4 promotes the early proliferation of progenitors, CHD5 facilitates neuronal migration and CHD3 ensures proper layer specification. Inhibition of each CHD leads to defects of neuronal differentiation and migration, which cannot be rescued by expressing heterologous CHDs. Finally, we demonstrate that NuRD complexes containing specific CHDs are recruited to regulatory elements and modulate the expression of genes essential for brain development. The ATPases CHD3, CHD4, and CHD5 are mutually exclusive subunits of the NuRD complex CHD3, CHD4, and CHD5 regulate distinct and non-redundant aspects of cortical development Loss of each CHD leads to specific defects of neuronal proliferation and migration CHD3, CHD4, and CHD5 regulate distinct set of genes essential for brain development
Collapse
Affiliation(s)
- Justyna Nitarska
- MRC Laboratory for Molecular and Cell Biology, University College London, London WC1E 6BT, UK
| | - Jacob G Smith
- MRC Laboratory for Molecular and Cell Biology, University College London, London WC1E 6BT, UK
| | - William T Sherlock
- MRC Laboratory for Molecular and Cell Biology, University College London, London WC1E 6BT, UK
| | - Michele M G Hillege
- MRC Laboratory for Molecular and Cell Biology, University College London, London WC1E 6BT, UK
| | - Alexi Nott
- MRC Laboratory for Molecular and Cell Biology, University College London, London WC1E 6BT, UK
| | - William D Barshop
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1737 USA
| | - Ajay A Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1737 USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1737 USA
| | - Richard Mitter
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London WC2A 3LY, UK
| | - Antonella Riccio
- MRC Laboratory for Molecular and Cell Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
14
|
Ma T, Huang C, Xu Q, Yang Y, Liu Y, Meng X, Li J, Ye M, Liang H. Suppression of BMP-7 by histone deacetylase 2 promoted apoptosis of renal tubular epithelial cells in acute kidney injury. Cell Death Dis 2017; 8:e3139. [PMID: 29072686 PMCID: PMC5680919 DOI: 10.1038/cddis.2017.552] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/12/2017] [Accepted: 09/18/2017] [Indexed: 01/30/2023]
Abstract
Cisplatin, a highly effective and widely used chemotherapeutic agent, has a major limitation for its nephrotoxicity. Currently, there are no therapies available to treat or prevent cisplatin nephrotoxicity. We recently identified a novel strategy for attenuating its nephrotoxicity in chemotherapy by histone deacetylase (HDAC) inhibitors via epigenetic modification to enhance bone morphogenetic protein 7 (BMP-7) expression. Cisplatin upregulated the activity of HDAC2 in the kidney. Inhibition of HDAC with clinically used trichostatin A (TSA) or valproic acid (VPA) suppressed cisplatin-induced kidney injury and epithelial cell apoptosis. Overexpression of HDAC2 promotes CP-treated tubular epithelium cells apoptosis. Chromatin immunoprecipitation assay clearly detected HDAC2 assosiation with BMP-7 promoter. Western blot and immunofluorescence results demonstrated that the expression of BMP-7 was clearly induced by TSA or VPA in vivo and in vitro. Interestingly, administration of recombinant BMP-7 (rhBMP-7) reduced cisplatin-induced kidney dysfunction. Moreover, BMP-7 treatment suppressed epithelial cell apoptosis and small interfering RNA-based knockdown of BMP-7 expression abolished HDAC inhibitors suppression of epithelial cell apoptosis in vitro. Results of current study indicated that TSA or VPA inhibited apoptosis of renal tubular epithelial cells via promoting the level of BMP-7 epigenetically through targeting HDAC2. Hence, HDAC inhibitors could be useful therapeutic agents for the prevention of cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- Taotao Ma
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drug, School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Cheng Huang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drug, School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Qingqing Xu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drug, School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yang Yang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drug, School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yaru Liu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drug, School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xiaoming Meng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drug, School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drug, School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Hong Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
15
|
Nagesh PT, Hussain M, Galvin HD, Husain M. Histone Deacetylase 2 Is a Component of Influenza A Virus-Induced Host Antiviral Response. Front Microbiol 2017; 8:1315. [PMID: 28769891 PMCID: PMC5511851 DOI: 10.3389/fmicb.2017.01315] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 06/29/2017] [Indexed: 11/13/2022] Open
Abstract
Host cells produce variety of antiviral factors that create an antiviral state and target various stages of influenza A virus (IAV) life cycle to inhibit infection. However, IAV has evolved various strategies to antagonize those antiviral factors. Recently, we reported that a member of class I host histone deacetylases (HDACs), HDAC1 possesses an anti-IAV function. Herein, we provide evidence that HDAC2, another class I member and closely related to HDAC1 in structure and function, also possesses anti-IAV properties. In turn, IAV, like HDAC1, dysregulates HDAC2, mainly at the polypeptide level through proteasomal degradation to potentially minimize its antiviral effect. We found that IAV downregulated the HDAC2 polypeptide level in A549 cells in an H1N1 strain-independent manner by up to 47%, which was recovered to almost 100% level in the presence of proteasome-inhibitor MG132. A further knockdown in HDAC2 expression by up to 90% via RNA interference augmented the growth kinetics of IAV in A549 cells by more than four-fold after 24 h of infection. Furthermore, the knockdown of HDAC2 expression decreased the IAV-induced phosphorylation of the transcription factor, Signal Transducer and Activator of Transcription I (STAT1) and the expression of interferon-stimulated gene, viperin in infected cells by 41 and 53%, respectively. The role of HDAC2 in viperin expression was analogous to that of HDAC1, but it was not in the phosphorylation of STAT1. This indicated that, like HDAC1, HDAC2 is a component of IAV-induced host innate antiviral response and performs both redundant and non-redundant functions vis-a-vis HDAC1; however, IAV dysregulates them both in a redundant manner.
Collapse
Affiliation(s)
- Prashanth T Nagesh
- Department of Microbiology and Immunology, University of OtagoDunedin, New Zealand.,Department of Microbiology, New York University School of Medicine, New YorkNY, United States
| | - Mazhar Hussain
- Department of Microbiology and Immunology, University of OtagoDunedin, New Zealand
| | - Henry D Galvin
- Department of Microbiology and Immunology, University of OtagoDunedin, New Zealand
| | - Matloob Husain
- Department of Microbiology and Immunology, University of OtagoDunedin, New Zealand
| |
Collapse
|
16
|
A Kinase-Independent Role for Cyclin-Dependent Kinase 19 in p53 Response. Mol Cell Biol 2017; 37:MCB.00626-16. [PMID: 28416637 PMCID: PMC5472832 DOI: 10.1128/mcb.00626-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/11/2017] [Indexed: 12/12/2022] Open
Abstract
The human Mediator complex regulates RNA polymerase II transcription genome-wide. A general factor that regulates Mediator function is the four-subunit kinase module, which contains either cyclin-dependent kinase 8 (CDK8) or CDK19. Whereas CDK8 is linked to specific signaling cascades and oncogenesis, the cellular roles of its paralog, CDK19, are poorly studied. We discovered that osteosarcoma cells (SJSA) are naturally depleted of CDK8 protein. Whereas stable CDK19 knockdown was tolerated in SJSA cells, proliferation was reduced. Notably, proliferation defects were rescued upon the reexpression of wild-type or kinase-dead CDK19. Comparative RNA sequencing analyses showed reduced expression of mitotic genes and activation of genes associated with cholesterol metabolism and the p53 pathway in CDK19 knockdown cells. SJSA cells treated with 5-fluorouracil, which induces metabolic and genotoxic stress and activates p53, further implicated CDK19 in p53 target gene expression. To better probe the p53 response, SJSA cells (shCDK19 versus shCTRL) were treated with the p53 activator nutlin-3. Remarkably, CDK19 was required for SJSA cells to return to a proliferative state after nutlin-3 treatment, and this effect was kinase independent. These results implicate CDK19 as a regulator of p53 stress responses and suggest a role for CDK19 in cellular resistance to nutlin-3.
Collapse
|
17
|
Shan W, Jiang Y, Yu H, Huang Q, Liu L, Guo X, Li L, Mi Q, Zhang K, Yang Z. HDAC2 overexpression correlates with aggressive clinicopathological features and DNA-damage response pathway of breast cancer. Am J Cancer Res 2017; 7:1213-1226. [PMID: 28560068 PMCID: PMC5446485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/08/2017] [Indexed: 06/07/2023] Open
Abstract
There are 18 lysine deacetylases, also known as histone deacetylases (HDACs), that remove acetyl groups from histone and non-histone proteins, thereby playing critical roles in numerous biological processes. In many human cancers, HDACs are dysregulated through mutation, altered expression, or inappropriate recruitment to certain loci. However, knowledge of the genomic and transcriptomic alterations and the clinical significance of most HDACs in breast cancer remain incomplete. We used TCGA and METABRIC datasets to perform comprehensive, integrated genomic and transcriptomic analyses of 18 HDAC genes in approximately 3000 primary breast cancers and identified associations among recurrent copy number alteration, gene expression, clinicopathological features, and patient survival. We found distinct patterns of copy number alteration and expression for each HDAC in breast cancer subtypes. We demonstrated that HDAC2 and SIRT7 were the most commonly amplified/overexpressed, and SIRT3 was most deleted/underexpressed, particularly in aggressive basal-like breast cancer. Overexpression of HDAC2 was significantly correlated with high tumor grade, positive lymph node status, and poor prognosis. The HDAC inhibitor mocetinostat showed anti-tumor effects in HDAC2-overexpressing basal-like breast cancer lines in vitro. Furthermore, HDAC2 expression was positively correlated with a set of DNA-damage response genes, notably RAD51. We revealed a potential mechanism by which HDAC2 regulates RAD51 expression-by indirect mediation through microRNAs, e.g., miR-182. HDAC inhibitors have emerged as a promising new class of multifunctional anticancer agents. Identifying which breast cancers or patients show HDAC deregulation that contributes to tumor development/progression might enable us to improve target cancer therapy.
Collapse
Affiliation(s)
- Wenqi Shan
- Department of Oncology, Wayne State University School of MedicineDetroit, MI, USA
- Department of Hygiene Analysis and Detection, School of Public Health, Nanjing Medical UniversityNanjing, China
| | - Yuanyuan Jiang
- Department of Oncology, Wayne State University School of MedicineDetroit, MI, USA
| | - Huimei Yu
- Department of Oncology, Wayne State University School of MedicineDetroit, MI, USA
- College of Basic Medicine, Jilin UniversityChangchun, China
| | - Qianhui Huang
- Department of Oncology, Wayne State University School of MedicineDetroit, MI, USA
| | - Lanxin Liu
- Department of Oncology, Wayne State University School of MedicineDetroit, MI, USA
| | - Xuhui Guo
- Department of Oncology, Wayne State University School of MedicineDetroit, MI, USA
- Department of Breast Surgery, Affiliated Cancer Hospital of Zhengzhou UniversityZhengzhou 450008, Henan, China
| | - Lei Li
- Department of Hygiene Analysis and Detection, School of Public Health, Nanjing Medical UniversityNanjing, China
| | - Qingsheng Mi
- Immunology Program, Department of Dermatology, Henry Ford Health SystemDetroit, MI, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Department of Immunology and Microbiology, Wayne State University School of MedicineDetroit, MI, USA
| | - Zengquan Yang
- Department of Oncology, Wayne State University School of MedicineDetroit, MI, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer InstituteDetroit, MI, USA
| |
Collapse
|
18
|
Hagelkruys A, Moser MA, Seiser C. Generation of Tissue-Specific Mouse Models to Analyze HDAC Functions. Methods Mol Biol 2017; 1510:169-192. [PMID: 27761821 DOI: 10.1007/978-1-4939-6527-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Histone deacetylases (HDACs) play crucial roles during mammalian development and for cellular homeostasis. In addition, these enzymes are promising targets for small molecule inhibitors in the treatment of cancer and neurological diseases. Conditional HDAC knock-out mice are excellent tools for defining the functions of individual HDACs in vivo and for identifying the molecular targets of HDAC inhibitors in disease. Here, we describe the generation of tissue-specific HDAC knock-out mice and delineate a strategy for the generation of conditional HDAC knock-in mice.
Collapse
MESH Headings
- Animals
- Blastocyst/cytology
- Blastocyst/enzymology
- Blotting, Southern
- CRISPR-Cas Systems
- Chromatin/chemistry
- Chromatin/metabolism
- Chromosomes, Artificial, Bacterial/chemistry
- Chromosomes, Artificial, Bacterial/metabolism
- Crosses, Genetic
- Epigenesis, Genetic
- Female
- Gene Knock-In Techniques
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Histone Deacetylase 1/deficiency
- Histone Deacetylase 1/genetics
- Homologous Recombination
- Integrases/genetics
- Integrases/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mouse Embryonic Stem Cells/cytology
- Mouse Embryonic Stem Cells/enzymology
- Organ Specificity
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Astrid Hagelkruys
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9/2, 1030, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Mirjam A Moser
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9/2, 1030, Vienna, Austria
| | - Christian Seiser
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9/2, 1030, Vienna, Austria.
| |
Collapse
|