1
|
Mishra PK, Au WC, Choy JS, Castineira PG, Khawar A, Tessier C, Das S, Thorkell A, Thorpe PH, Yeh E, Bloom KS, Basrai MA. Cell cycle dependent methylation of Dam1 contributes to kinetochore integrity and faithful chromosome segregation. PLoS Genet 2025; 21:e1011760. [PMID: 40523001 DOI: 10.1371/journal.pgen.1011760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 06/27/2025] [Accepted: 06/04/2025] [Indexed: 06/29/2025] Open
Abstract
The kinetochore, a megadalton structure composed of centromeric (CEN) DNA and protein complexes, is required for faithful chromosome segregation in eukaryotes. The evolutionarily conserved Dam1/DASH complex (Ska1 in metazoans) is one of the essential protein sub-complexes of the budding yeast kinetochore. Previous studies showed that methylation of lysine residue 233 in Dam1 by Set1 is important for haploid growth as mutation of lysine 233 to alanine results in lethality. In this study, we report that Set1-mediated cell cycle dependent Dam1 lysine methylation contributes to kinetochore assembly and chromosomal stability. Our results show that Dam1 methylation is cell cycle regulated with the highest levels of methylation in metaphase. Consistent with these results, co-immunoprecipitation experiments revealed an interaction between Dam1 with Set1 in metaphase cells. Set1 has been shown to colocalize with Jhd2, a histone lysine demethylase which demethylates Set1-methylated histones. Affinity purification-based mass spectroscopy of Jhd2 associated proteins identified seven of the ten subunits of the Dam1 complex; an association of Jhd2 with non-histone proteins, such as Dam1 has not been previously reported. We confirmed the interaction of Jhd2 with Dam1 and showed that cells overexpressing JHD2 exhibit reduced levels of methylated lysine in Dam1 in wild type and UBP8 deletion strains, growth defects in kinetochore mutants, reduced levels of kinetochore proteins at CEN chromatin, defects in kinetochore biorientation and chromosome missegregation. In summary, we have shown that cell cycle dependent methylation of Dam1 plays a crucial role in the maintenance of kinetochore assembly for faithful chromosome segregation.
Collapse
Affiliation(s)
- Prashant K Mishra
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Wei-Chun Au
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John S Choy
- The Catholic University of America, Washington DC, United States of America
| | - Pedro G Castineira
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Afsa Khawar
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chloé Tessier
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Sudipto Das
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Andresson Thorkell
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Peter H Thorpe
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Elaine Yeh
- University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kerry S Bloom
- University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Munira A Basrai
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
2
|
Kuwik J, Scott V, Chedid S, Stransky S, Hinkelman K, Kavoosi S, Calderon M, Watkins S, Sidoli S, Islam K. Analogue-Sensitive Inhibition of Histone Demethylases Uncovers Member-Specific Function in Ribosomal Protein Synthesis. J Am Chem Soc 2025; 147:3341-3352. [PMID: 39808475 PMCID: PMC11783601 DOI: 10.1021/jacs.4c13870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
Lysine demethylases (KDMs) catalyze the oxidative removal of the methyl group from histones using earth-abundant iron and the metabolite 2-oxoglutarate (2OG). KDMs have emerged as master regulators of eukaryotic gene expression and are novel drug targets; small-molecule inhibitors of KDMs are in the clinical pipeline for the treatment of human cancer. Yet, mechanistic insights into the functional heterogeneity of human KDMs are limited, necessitating the development of chemical probes for precision targeting. Herein, we identify analogue-sensitive (as) mutants of the KDM4 subfamily to elucidate member-specific biological functions in a temporally defined manner. By replacing the highly conserved phenylalanine residue in the active site of KDM4 members with alanine, we develop mutants with intact catalytic activity and substrate specificity indistinguishable from those of the wild type congener. Unlike the wild type demethylases, mutants were sensitized toward cofactor-competitive N-oxalyl glycine (NOG) analogues carrying complementary steric appendage. Particularly notable is N-oxalyl leucine (NOL) which inhibited the KDM4 mutants reversibly with submicromolar efficacy. Cell-permeable NOL prodrugs inhibited as enzymes in cultured human cells to modulate lysine methylation on nucleosomal histones. Through conditional perturbation of the orthogonal enzymes, we uncover a KDM4A-specific role in ribosomal protein synthesis and map a remarkably dynamic signaling cascade involving locus-specific histone demethylation leading to fast rRNA expression, enhanced ribosome assembly, and protein synthesis. The results provide a mechanistic clue into KDM4A's role in cancers that rely on heightened ribosomal activity to support uncontrolled cellular proliferation.
Collapse
Affiliation(s)
- Jordan Kuwik
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Valerie Scott
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sara Chedid
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephanie Stransky
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| | - Kathryn Hinkelman
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sam Kavoosi
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael Calderon
- Department
of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Simon Watkins
- Department
of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Simone Sidoli
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| | - Kabirul Islam
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
3
|
Deshpande N, Bryk M. Diverse and dynamic forms of gene regulation by the S. cerevisiae histone methyltransferase Set1. Curr Genet 2023; 69:91-114. [PMID: 37000206 DOI: 10.1007/s00294-023-01265-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 04/01/2023]
Abstract
Gene transcription is an essential and highly regulated process. In eukaryotic cells, the structural organization of nucleosomes with DNA wrapped around histone proteins impedes transcription. Chromatin remodelers, transcription factors, co-activators, and histone-modifying enzymes work together to make DNA accessible to RNA polymerase. Histone lysine methylation can positively or negatively regulate gene transcription. Methylation of histone 3 lysine 4 by SET-domain-containing proteins is evolutionarily conserved from yeast to humans. In higher eukaryotes, mutations in SET-domain proteins are associated with defects in the development and segmentation of embryos, skeletal and muscle development, and diseases, including several leukemias. Since histone methyltransferases are evolutionarily conserved, the mechanisms of gene regulation mediated by these enzymes are also conserved. Budding yeast Saccharomyces cerevisiae is an excellent model system to study the impact of histone 3 lysine 4 (H3K4) methylation on eukaryotic gene regulation. Unlike larger eukaryotes, yeast cells have only one enzyme that catalyzes H3K4 methylation, Set1. In this review, we summarize current knowledge about the impact of Set1-catalyzed H3K4 methylation on gene transcription in S. cerevisiae. We describe the COMPASS complex, factors that influence H3K4 methylation, and the roles of Set1 in gene silencing at telomeres and heterochromatin, as well as repression and activation at euchromatic loci. We also discuss proteins that "read" H3K4 methyl marks to regulate transcription and summarize alternate functions for Set1 beyond H3K4 methylation.
Collapse
Affiliation(s)
- Neha Deshpande
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Mary Bryk
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
4
|
Chou KY, Lee JY, Kim KB, Kim E, Lee HS, Ryu HY. Histone modification in Saccharomyces cerevisiae: A review of the current status. Comput Struct Biotechnol J 2023; 21:1843-1850. [PMID: 36915383 PMCID: PMC10006725 DOI: 10.1016/j.csbj.2023.02.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
The budding yeast Saccharomyces cerevisiae is a well-characterized and popular model system for investigating histone modifications and the inheritance of chromatin states. The data obtained from this model organism have provided essential and critical information for understanding the complexity of epigenetic interactions and regulation in eukaryotes. Recent advances in biotechnology have facilitated the detection and quantitation of protein post-translational modification (PTM), including acetylation, methylation, phosphorylation, ubiquitylation, sumoylation, and acylation, and led to the identification of several novel modification sites in histones. Determining the cellular function of these new histone markers is essential for understanding epigenetic mechanisms and their impact on various biological processes. In this review, we describe recent advances and current views on histone modifications and their effects on chromatin dynamics in S. cerevisiae.
Collapse
Key Words
- AdoMet, S-adenosylmethionine
- CAF-1, chromatin assembly factor-1
- CTD, C-terminal domain
- DSB, double-strand break
- E Glu, glutamic acid
- HAT, histone acetyltransferase
- HDAC, histone deacetylase
- Histone acetylation
- Histone acylation
- Histone methylation
- Histone phosphorylation
- Histone sumoylation
- Histone ubiquitylation
- JMJC, Jumonji C
- K Lys, lysine
- PTM, post-translational modification
- R Arg, arginine
- S, serine
- SAGA, Spt-Ada-Gcn5 acetyltransferase
- STUbL, SUMO-targeted ubiquitin ligase
- SUMO, small ubiquitin-like modifier
- T, threonine
- Y, tyrosine
Collapse
Affiliation(s)
- Kwon Young Chou
- School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jun-Yeong Lee
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kee-Beom Kim
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eunjeong Kim
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyun-Shik Lee
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hong-Yeoul Ryu
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
5
|
Scott V, Dey D, Kuwik J, Hinkelman K, Waldman M, Islam K. Allele-Specific Chemical Rescue of Histone Demethylases Using Abiotic Cofactors. ACS Chem Biol 2022; 17:3321-3330. [PMID: 34496208 DOI: 10.1021/acschembio.1c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Closely related protein families evolved from common ancestral genes present a significant hurdle in developing member- and isoform-specific chemical probes, owing to their similarity in fold and function. In this piece of work, we explore an allele-specific chemical rescue strategy to activate a "dead" variant of a wildtype protein using synthetic cofactors and demonstrate its successful application to the members of the alpha-ketoglutarate (αKG)-dependent histone demethylase 4 (KDM4) family. We show that a mutation at a specific residue in the catalytic site renders the variant inactive toward the natural cosubstrate. In contrast, αKG derivatives bearing appropriate stereoelectronic features endowed the mutant with native-like demethylase activity while remaining refractory to a set of wild type dioxygenases. The orthogonal enzyme-cofactor pairs demonstrated site- and degree-specific lysine demethylation on a full-length chromosomal histone in the cellular milieu. Our work offers a strategy to modulate a specific histone demethylase by identifying and engineering a conserved phenylalanine residue, which acts as a gatekeeper in the KDM4 subfamily, to sensitize the enzyme toward a novel set of αKG derivatives. The orthogonal pairs developed herein will serve as probes to study the role of degree-specific lysine demethylation in mammalian gene expression. Furthermore, this approach to overcome active site degeneracy is expected to have general application among all human αKG-dependent dioxygenases.
Collapse
Affiliation(s)
- Valerie Scott
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Debasis Dey
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Jordan Kuwik
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Kathryn Hinkelman
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Megan Waldman
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Kabirul Islam
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
6
|
Separovich RJ, Wilkins MR. Ready, SET, Go: Post-translational regulation of the histone lysine methylation network in budding yeast. J Biol Chem 2021; 297:100939. [PMID: 34224729 PMCID: PMC8329514 DOI: 10.1016/j.jbc.2021.100939] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 11/21/2022] Open
Abstract
Histone lysine methylation is a key epigenetic modification that regulates eukaryotic transcription. Here, we comprehensively review the function and regulation of the histone methylation network in the budding yeast and model eukaryote, Saccharomyces cerevisiae. First, we outline the lysine methylation sites that are found on histone proteins in yeast (H3K4me1/2/3, H3K36me1/2/3, H3K79me1/2/3, and H4K5/8/12me1) and discuss their biological and cellular roles. Next, we detail the reduced but evolutionarily conserved suite of methyltransferase (Set1p, Set2p, Dot1p, and Set5p) and demethylase (Jhd1p, Jhd2p, Rph1p, and Gis1p) enzymes that are known to control histone lysine methylation in budding yeast cells. Specifically, we illustrate the domain architecture of the methylation enzymes and highlight the structural features that are required for their respective functions and molecular interactions. Finally, we discuss the prevalence of post-translational modifications on yeast histone methylation enzymes and how phosphorylation, acetylation, and ubiquitination in particular are emerging as key regulators of enzyme function. We note that it will be possible to completely connect the histone methylation network to the cell's signaling system, given that all methylation sites and cognate enzymes are known, most phosphosites on the enzymes are known, and the mapping of kinases to phosphosites is tractable owing to the modest set of protein kinases in yeast. Moving forward, we expect that the rich variety of post-translational modifications that decorates the histone methylation machinery will explain many of the unresolved questions surrounding the function and dynamics of this intricate epigenetic network.
Collapse
Affiliation(s)
- Ryan J Separovich
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Marc R Wilkins
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
7
|
Chromatin regulatory genes differentially interact in networks to facilitate distinct GAL1 activity and noise profiles. Curr Genet 2020; 67:267-281. [PMID: 33159551 DOI: 10.1007/s00294-020-01124-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 10/23/2022]
Abstract
Controlling chromatin state constitutes a major regulatory step in gene expression regulation across eukaryotes. While global cellular features or processes are naturally impacted by chromatin state alterations, little is known about how chromatin regulatory genes interact in networks to dictate downstream phenotypes. Using the activity of the canonical galactose network in yeast as a model, here, we measured the impact of the disruption of key chromatin regulatory genes on downstream gene expression, genetic noise and fitness. Using Trichostatin A and nicotinamide, we characterized how drug-based modulation of global histone deacetylase activity affected these phenotypes. Performing epistasis analysis, we discovered phenotype-specific genetic interaction networks of chromatin regulators. Our work provides comprehensive insights into how the galactose network activity is affected by protein interaction networks formed by chromatin regulators.
Collapse
|
8
|
The Regulation of Uterine Function During Parturition: an Update and Recent Advances. Reprod Sci 2020; 27:3-28. [DOI: 10.1007/s43032-019-00001-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/19/2019] [Indexed: 12/13/2022]
|
9
|
Hou J, Feng HQ, Chang HW, Liu Y, Li GH, Yang S, Sun CH, Zhang MZ, Yuan Y, Sun J, Zhu-Salzman K, Zhang H, Qin QM. The H3K4 demethylase Jar1 orchestrates ROS production and expression of pathogenesis-related genes to facilitate Botrytis cinerea virulence. THE NEW PHYTOLOGIST 2020; 225:930-947. [PMID: 31529514 DOI: 10.1111/nph.16200] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Histone 3 Lysine 4 (H3K4) demethylation is ubiquitous in organisms, however the roles of H3K4 demethylase JARID1(Jar1)/KDM5 in fungal development and pathogenesis remain largely unexplored. Here, we demonstrate that Jar1/KDM5 in Botrytis cinerea, the grey mould fungus, plays a crucial role in these processes. The BcJAR1 gene was deleted and its roles in fungal development and pathogenesis were investigated using approaches including genetics, molecular/cell biology, pathogenicity and transcriptomic profiling. BcJar1 regulates H3K4me3 and both H3K4me2 and H3K4me3 methylation levels during vegetative and pathogenic development, respectively. Loss of BcJAR1 impairs conidiation, appressorium formation and stress adaptation; abolishes infection cushion (IC) formation and virulence, but promotes sclerotium production in the ΔBcjar1 mutants. BcJar1 controls reactive oxygen species (ROS) production and proper assembly of Sep4, a core septin protein and virulence determinant, to initiate infection structure (IFS) formation and host penetration. Exogenous cAMP partially restored the mutant appressorium, but not IC, formation. BcJar1 orchestrates global expression of genes for ROS production, stress response, carbohydrate transmembrane transport, secondary metabolites, etc., which may be required for conidiation, IFS formation, host penetration and virulence of the pathogen. Our work systematically elucidates BcJar1 functions and provides novel insights into Jar1/KDM5-mediated H3K4 demethylation in regulating fungal development and pathogenesis.
Collapse
Affiliation(s)
- Jie Hou
- College of Plant Sciences, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
- College of Forestry, BeiHua University, Jilin, 132013, China
| | - Hui-Qiang Feng
- College of Plant Sciences, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Hao-Wu Chang
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Yue Liu
- College of Plant Sciences, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Gui-Hua Li
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Song Yang
- College of Plant Sciences, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Chen-Hao Sun
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Ming-Zhe Zhang
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Ye Yuan
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Jiao Sun
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Hao Zhang
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Qing-Ming Qin
- College of Plant Sciences, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
10
|
Saatchi F, Kirchmaier AL. Tolerance of DNA Replication Stress Is Promoted by Fumarate Through Modulation of Histone Demethylation and Enhancement of Replicative Intermediate Processing in Saccharomyces cerevisiae. Genetics 2019; 212:631-654. [PMID: 31123043 PMCID: PMC6614904 DOI: 10.1534/genetics.119.302238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 05/07/2019] [Indexed: 12/28/2022] Open
Abstract
Fumarase is a well-characterized TCA cycle enzyme that catalyzes the reversible conversion of fumarate to malate. In mammals, fumarase acts as a tumor suppressor, and loss-of-function mutations in the FH gene in hereditary leiomyomatosis and renal cell cancer result in the accumulation of intracellular fumarate-an inhibitor of α-ketoglutarate-dependent dioxygenases. Fumarase promotes DNA repair by nonhomologous end joining in mammalian cells through interaction with the histone variant H2A.Z, and inhibition of KDM2B, a H3 K36-specific histone demethylase. Here, we report that Saccharomyces cerevisiae fumarase, Fum1p, acts as a response factor during DNA replication stress, and fumarate enhances survival of yeast lacking Htz1p (H2A.Z in mammals). We observed that exposure to DNA replication stress led to upregulation as well as nuclear enrichment of Fum1p, and raising levels of fumarate in cells via deletion of FUM1 or addition of exogenous fumarate suppressed the sensitivity to DNA replication stress of htz1Δ mutants. This suppression was independent of modulating nucleotide pool levels. Rather, our results are consistent with fumarate conferring resistance to DNA replication stress in htz1Δ mutants by inhibiting the H3 K4-specific histone demethylase Jhd2p, and increasing H3 K4 methylation. Although the timing of checkpoint activation and deactivation remained largely unaffected by fumarate, sensors and mediators of the DNA replication checkpoint were required for fumarate-dependent resistance to replication stress in the htz1Δ mutants. Together, our findings imply metabolic enzymes and metabolites aid in processing replicative intermediates by affecting chromatin modification states, thereby promoting genome integrity.
Collapse
Affiliation(s)
- Faeze Saatchi
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907
| | - Ann L Kirchmaier
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
11
|
Wagner S, Waldman M, Arora S, Wang S, Scott V, Islam K. Allele-Specific Inhibition of Histone Demethylases. Chembiochem 2019; 20:1133-1138. [PMID: 30618116 DOI: 10.1002/cbic.201800756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Indexed: 12/21/2022]
Abstract
Histone demethylases play a critical role in mammalian gene expression by removing methyl groups from lysine residues in degree- and site-specific manner. To specifically interrogate members and isoforms of this class of enzymes, we have developed demethylase variants with an expanded active site. The mutant enzymes are capable of performing lysine demethylation with wild-type proficiency, but are sensitive to inhibition by cofactor-competitive molecules embellished with a complementary steric "bump". The selected inhibitors show more than 20-fold selectivity over the wild-type demethylase, thus overcoming issues typical to pharmacological and genetic approaches. The mutant-inhibitor pairs are shown to act on a physiologically relevant full-length substrate. By engineering a conserved amino acid to achieve member-specific perturbation, this study provides a general approach for studying histone demethylases in diverse cellular processes.
Collapse
Affiliation(s)
- Shana Wagner
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Megan Waldman
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Simran Arora
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Sinan Wang
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Valerie Scott
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Kabirul Islam
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| |
Collapse
|
12
|
Ilicic M, Zakar T, Paul JW. Epigenetic regulation of progesterone receptors and the onset of labour. Reprod Fertil Dev 2019; 31:1035-1048. [DOI: 10.1071/rd18392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/29/2019] [Indexed: 01/09/2023] Open
Abstract
Progesterone plays a crucial role in maintaining pregnancy by promoting myometrial quiescence. The withdrawal of progesterone action signals the end of pregnancy and, in most mammalian species, this is achieved by a rapid fall in progesterone concentrations. However, in humans circulating progesterone concentrations remain high up to and during labour. Efforts to understand this phenomenon led to the ‘functional progesterone withdrawal’ hypothesis, whereby the pro-gestation actions of progesterone are withdrawn, despite circulating concentrations remaining elevated. The exact mechanism of functional progesterone withdrawal is still unclear and in recent years has been the focus of intense research. Emerging evidence now indicates that epigenetic regulation of progesterone receptor isoform expression may be the crucial mechanism by which functional progesterone withdrawal is achieved, effectively precipitating human labour despite high concentrations of circulating progesterone. This review examines current evidence that epigenetic mechanisms play a role in determining whether the pro-gestation or pro-contractile isoform of the progesterone receptor is expressed in the pregnant human uterus. We explore the mechanism by which these epigenetic modifications are achieved and, importantly, how these underlying epigenetic mechanisms are influenced by known regulators of uterine physiology, such as prostaglandins and oestrogens, in order to phenotypically transform the pregnant uterus and initiate labour.
Collapse
|
13
|
Combinatorial Genetic Control of Rpd3S Through Histone H3K4 and H3K36 Methylation in Budding Yeast. G3-GENES GENOMES GENETICS 2018; 8:3411-3420. [PMID: 30158320 PMCID: PMC6222569 DOI: 10.1534/g3.118.200589] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Much of euchromatin regulation occurs through reversible methylation of histone H3 lysine-4 and lysine-36 (H3K4me and H3K36me). Using the budding yeast Saccharomyces cerevisiae, we previously found that levels of H3K4me modulated temperature sensitive alleles of the transcriptional elongation complex Spt6-Spn1 through an unknown H3K4me effector pathway. Here we identify the Rpd3S histone deacetylase complex as the H3K4me effector underlying these Spt6-Spn1 genetic interactions. Exploiting these Spt6-Spn1 genetic interactions, we show that H3K4me and H3K36me collaboratively impact Rpd3S function in an opposing manner. H3K36me is deposited by the histone methyltransferase Set2 and is known to promote Rpd3S function at RNA PolII transcribed open reading frames. Using genetic epistasis experiments, we find that mutations perturbing the Set2-H3K36me-Rpd3S pathway suppress the growth defects caused by temperature sensitive alleles of SPT6 and SPN1, illuminating that this pathway antagonizes Spt6-Spn1. Using these sensitive genetic assays, we also identify a role for H3K4me in antagonizing Rpd3S that functions through the Rpd3S subunit Rco1, which is known to bind H3 N-terminal tails in a manner that is prevented by H3K4me. Further genetic experiments reveal that the H3K4 and H3K36 demethylases JHD2 and RPH1 mediate this combinatorial control of Rpd3S. Finally, our studies also show that the Rpd3L complex, which acts at promoter-proximal regions of PolII transcribed genes, counters Rpd3S for genetic modulation of Spt6-Spn1, and that these two Rpd3 complexes balance the activities of each other. Our findings present the first evidence that H3K4me and H3K36me act combinatorially to control Rpd3S.
Collapse
|
14
|
Islam K. The Bump-and-Hole Tactic: Expanding the Scope of Chemical Genetics. Cell Chem Biol 2018; 25:1171-1184. [PMID: 30078633 PMCID: PMC6195450 DOI: 10.1016/j.chembiol.2018.07.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/13/2018] [Accepted: 07/02/2018] [Indexed: 12/15/2022]
Abstract
Successful mapping of the human genome has sparked a widespread interest in deciphering functional information encoded in gene sequences. However, because of the high degree of conservation in sequences along with topological and biochemical similarities among members of a protein superfamily, uncovering physiological role of a particular protein has been a challenging task. Chemical genetic approaches have made significant contributions toward understanding protein function. One such effort, dubbed the bump-and-hole approach, has convincingly demonstrated that engineering at the protein-small molecule interface constitutes a powerful method for elucidating the function of a specific gene product. By manipulating the steric component of protein-ligand interactions in a complementary manner, an orthogonal system is developed to probe a specific enzyme-cofactor pair without interference from related members. This article outlines current efforts to expand the approach for diverse protein classes and their applications. Potential future innovations to address contemporary biological problems are highlighted as well.
Collapse
Affiliation(s)
- Kabirul Islam
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
15
|
H3K4 Methylation Dependent and Independent Chromatin Regulation by JHD2 and SET1 in Budding Yeast. G3-GENES GENOMES GENETICS 2018; 8:1829-1839. [PMID: 29599176 PMCID: PMC5940172 DOI: 10.1534/g3.118.200151] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Set1 and Jhd2 regulate the methylation state of histone H3 lysine-4 (H3K4me) through their opposing methyltransferase and demethylase activities in the budding yeast Saccharomyces cerevisiae. H3K4me associates with actively transcribed genes and, like both SET1 and JHD2 themselves, is known to regulate gene expression diversely. It remains unclear, however, if Set1 and Jhd2 act solely through H3K4me. Relevantly, Set1 methylates lysine residues in the kinetochore protein Dam1 while genetic studies of the S. pombe SET1 ortholog suggest the existence of non-H3K4 Set1 targets relevant to gene regulation. We interrogated genetic interactions of JHD2 and SET1 with essential genes involved in varied aspects of the transcription cycle. Our findings implicate JHD2 in genetic inhibition of the histone chaperone complexes Spt16-Pob3 (FACT) and Spt6-Spn1. This targeted screen also revealed that JHD2 inhibits the Nrd1-Nab3-Sen1 (NNS) transcription termination complex. We find that while Jhd2’s impact on these transcription regulatory complexes likely acts via H3K4me, Set1 governs the roles of FACT and NNS through opposing H3K4-dependent and -independent functions. We also identify diametrically opposing consequences for mutation of H3K4 to alanine or arginine, illuminating that caution must be taken in interpreting histone mutation studies. Unlike FACT and NNS, detailed genetic studies suggest an H3K4me-centric mode of Spt6-Spn1 regulation by JHD2 and SET1. Chromatin immunoprecipitation and transcript quantification experiments show that Jhd2 opposes the positioning of a Spt6-deposited nucleosome near the transcription start site of SER3, a Spt6-Spn1 regulated gene, leading to hyper-induction of SER3. In addition to confirming and extending an emerging role for Jhd2 in the control of nucleosome occupancy near transcription start sites, our findings suggest some of the chromatin regulatory functions of Set1 are independent of H3K4 methylation.
Collapse
|
16
|
Mitochondrial control through nutritionally regulated global histone H3 lysine-4 demethylation. Sci Rep 2016; 6:37942. [PMID: 27897198 PMCID: PMC5126570 DOI: 10.1038/srep37942] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/02/2016] [Indexed: 12/13/2022] Open
Abstract
Histone demethylation by Jumonji-family proteins is coupled with the decarboxylation of α-ketoglutarate (αKG) to yield succinate, prompting hypotheses that their activities are responsive to levels of these metabolites in the cell. Consistent with this paradigm we show here that the Saccharomyces cerevisiae Jumonji demethylase Jhd2 opposes the accumulation of H3K4me3 in fermenting cells only when they are nutritionally manipulated to contain an elevated αKG/succinate ratio. We also find that Jhd2 opposes H3K4me3 in respiratory cells that do not exhibit such an elevated αKG/succinate ratio. While jhd2∆ caused only limited gene expression defects in fermenting cells, transcript profiling and physiological measurements show that JHD2 restricts mitochondrial respiratory capacity in cells grown in non-fermentable carbon in an H3K4me-dependent manner. In association with these phenotypes, we find that JHD2 limits yeast proliferative capacity under physiologically challenging conditions as measured by both replicative lifespan and colony growth on non-fermentable carbon. JHD2’s impact on nutrient response may reflect an ancestral role of its gene family in mediating mitochondrial regulation.
Collapse
|
17
|
|
18
|
Freire-Benéitez V, Price RJ, Buscaino A. The Chromatin of Candida albicans Pericentromeres Bears Features of Both Euchromatin and Heterochromatin. Front Microbiol 2016; 7:759. [PMID: 27242771 PMCID: PMC4871872 DOI: 10.3389/fmicb.2016.00759] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/05/2016] [Indexed: 01/06/2023] Open
Abstract
Centromeres, sites of kinetochore assembly, are important for chromosome stability and integrity. Most eukaryotes have regional centromeres epigenetically specified by the presence of the histone H3 variant CENP-A. CENP-A chromatin is often surrounded by pericentromeric regions packaged into transcriptionally silent heterochromatin. Candida albicans, the most common human fungal pathogen, possesses small regional centromeres assembled into CENP-A chromatin. The chromatin state of C. albicans pericentromeric regions is unknown. Here, for the first time, we address this question. We find that C. albicans pericentromeres are assembled into an intermediate chromatin state bearing features of both euchromatin and heterochromatin. Pericentromeric chromatin is associated with nucleosomes that are highly acetylated, as found in euchromatic regions of the genome; and hypomethylated on H3K4, as found in heterochromatin. This intermediate chromatin state is inhibitory to transcription and partially represses expression of proximal genes and inserted marker genes. Our analysis identifies a new chromatin state associated with pericentromeric regions.
Collapse
Affiliation(s)
| | - R Jordan Price
- School of Biosciences Canterbury Kent, University of Kent Canterbury, UK
| | - Alessia Buscaino
- School of Biosciences Canterbury Kent, University of Kent Canterbury, UK
| |
Collapse
|
19
|
Harmeyer KM, South PF, Bishop B, Ogas J, Briggs SD. Immediate chromatin immunoprecipitation and on-bead quantitative PCR analysis: a versatile and rapid ChIP procedure. Nucleic Acids Res 2014; 43:e38. [PMID: 25539918 PMCID: PMC4381045 DOI: 10.1093/nar/gku1347] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/15/2014] [Indexed: 12/12/2022] Open
Abstract
Genome-wide chromatin immunoprecipitation (ChIP) studies have brought significant insight into the genomic localization of chromatin-associated proteins and histone modifications. The large amount of data generated by these analyses, however, require approaches that enable rapid validation and analysis of biological relevance. Furthermore, there are still protein and modification targets that are difficult to detect using standard ChIP methods. To address these issues, we developed an immediate chromatin immunoprecipitation procedure which we call ZipChip. ZipChip significantly reduces the time and increases sensitivity allowing for rapid screening of multiple loci. Here we describe how ZipChIP enables detection of histone modifications (H3K4 mono- and trimethylation) and two yeast histone demethylases, Jhd2 and Rph1, which were previously difficult to detect using standard methods. Furthermore, we demonstrate the versatility of ZipChIP by analyzing the enrichment of the histone deacetylase Sir2 at heterochromatin in yeast and enrichment of the chromatin remodeler, PICKLE, at euchromatin in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Kayla M Harmeyer
- Department of Biochemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Paul F South
- Department of Biochemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Brett Bishop
- Department of Biochemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Joe Ogas
- Department of Biochemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Scott D Briggs
- Department of Biochemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
20
|
Ryu HY, Ahn S. Yeast histone H3 lysine 4 demethylase Jhd2 regulates mitotic rDNA condensation. BMC Biol 2014; 12:75. [PMID: 25248920 PMCID: PMC4201760 DOI: 10.1186/s12915-014-0075-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Indexed: 11/24/2022] Open
Abstract
Background Nucleolar ribosomal DNA is tightly associated with silent heterochromatin, which is important for rDNA stability, nucleolar integration and cellular senescence. Two pathways have been described that lead to rDNA silencing in yeast: 1) the RENT (regulator of nucleolar silencing and telophase exit) complex, which is composed of Net1, Sir2 and Cdc14 and is required for Sir2-dependent rDNA silencing; and 2) the Sir2-independent silencing mechanism, which involves the Tof2 and Tof2-copurified complex, made up of Lrs4 and Csm1. Here, we present evidence that changes in histone H3 lysine methylation levels distinctly regulate rDNA silencing by recruiting different silencing proteins to rDNA, thereby contributing to rDNA silencing and nucleolar organization in yeast. Results We found that Lys4, Lys79 and Lys36 methylation within histone H3 acts as a bivalent marker for the regulation of rDNA recombination and RENT complex-mediated rDNA silencing, both of which are Sir2-dependent pathways. By contrast, we found that Jhd2, an evolutionarily conserved JARID1 family H3 Lys4 demethylase, affects all states of methylated H3K4 within the nontranscribed spacer (NTS) regions of rDNA and that its activity is required for the regulation of rDNA silencing in a Sir2-independent manner. In this context, Jhd2 regulates rDNA recombination through the Tof2/Csm1/Lrs4 pathway and prevents excessive recruitment of Tof2, Csm1/Lrs4 and condensin subunits to the replication fork barrier site within the NTS1 region. Our FISH analyses further demonstrate that the demethylase activity of Jhd2 regulates mitotic rDNA condensation and that JHD2-deficient cells contain the mostly hypercondensed rDNA mislocalized away from the nuclear periphery. Conclusions Our results show that yeast Jhd2, which demethylates histone H3 Lys4 near the rDNA locus, regulates rDNA repeat stability and rDNA silencing in a Sir2-independent manner by maintaining Csm1/Lrs4 and condensin association with rDNA regions during mitosis. These data suggest that Jhd2-mediated alleviation of excessive Csm1/Lrs4 or condensin at the NTS1 region of rDNA is required for the integrity of rDNA repeats and proper rDNA silencing during mitosis. Electronic supplementary material The online version of this article (doi:10.1186/s12915-014-0075-3) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Howe FS, Boubriak I, Sale MJ, Nair A, Clynes D, Grijzenhout A, Murray SC, Woloszczuk R, Mellor J. Lysine acetylation controls local protein conformation by influencing proline isomerization. Mol Cell 2014; 55:733-44. [PMID: 25127513 PMCID: PMC4157579 DOI: 10.1016/j.molcel.2014.07.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 05/15/2014] [Accepted: 07/02/2014] [Indexed: 11/09/2022]
Abstract
Gene transcription responds to stress and metabolic signals to optimize growth and survival. Histone H3 (H3) lysine 4 trimethylation (K4me3) facilitates state changes, but how levels are coordinated with the environment is unclear. Here, we show that isomerization of H3 at the alanine 15-proline 16 (A15-P16) peptide bond is influenced by lysine 14 (K14) and controls gene-specific K4me3 by balancing the actions of Jhd2, the K4me3 demethylase, and Spp1, a subunit of the Set1 K4 methyltransferase complex. Acetylation at K14 favors the A15-P16trans conformation and reduces K4me3. Environmental stress-induced genes are most sensitive to the changes at K14 influencing H3 tail conformation and K4me3. By contrast, ribosomal protein genes maintain K4me3, required for their repression during stress, independently of Spp1, K14, and P16. Thus, the plasticity in control of K4me3, via signaling to K14 and isomerization at P16, informs distinct gene regulatory mechanisms and processes involving K4me3. H3K14 acetylation influences cis-trans isomerization at the H3A15-P16 peptide bond H3A15-P16trans is associated with H3K14ac and reduced global H3K4me3 A15-P16cis-trans isomerization balances K4me3 (Set1/Spp1) and demethylation (Jhd2) K4me3 on RPGs is largely Spp1- and K14/P16-insensitive while ESR genes are dependent
Collapse
Affiliation(s)
- Françoise S Howe
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Ivan Boubriak
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Matthew J Sale
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Anitha Nair
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - David Clynes
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Anne Grijzenhout
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Struan C Murray
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Ronja Woloszczuk
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Jane Mellor
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
22
|
Mannironi C, Proietto M, Bufalieri F, Cundari E, Alagia A, Danovska S, Rinaldi T, Famiglini V, Coluccia A, La Regina G, Silvestri R, Negri R. An high-throughput in vivo screening system to select H3K4-specific histone demethylase inhibitors. PLoS One 2014; 9:e86002. [PMID: 24489688 PMCID: PMC3906020 DOI: 10.1371/journal.pone.0086002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 12/03/2013] [Indexed: 12/15/2022] Open
Abstract
Background Histone demethylases (HDMs) have a prominent role in epigenetic regulation and are emerging as potential therapeutic cancer targets. The search for small molecules able to inhibit HDMs in vivo is very active but at the present few compounds were found to be specific for defined classes of these enzymes. Methodology/Principal Findings In order to discover inhibitors specific for H3K4 histone demethylation we set up a screening system which tests the effects of candidate small molecule inhibitors on a S.cerevisiae strain which requires Jhd2 demethylase activity to efficiently grow in the presence of rapamycin. In order to validate the system we screened a library of 45 structurally different compounds designed as competitive inhibitors of α -ketoglutarate (α-KG) cofactor of the enzyme, and found that one of them inhibited Jhd2 activity in vitro and in vivo. The same compound effectively inhibits human Jumonji AT-Rich Interactive Domain (JARID) 1B and 1D in vitro and increases H3K4 tri-methylation in HeLa cell nuclear extracts (NEs). When added in vivo to HeLa cells, the compound leads to an increase of tri-methyl-H3K4 (H3K4me3) but does not affect H3K9 tri-methylation. We describe the cytostatic and toxic effects of the compound on HeLa cells at concentrations compatible with its inhibitory activity. Conclusions/Significance Our screening system is proved to be very useful in testing putative H3K4-specific HDM inhibitors for the capacity of acting in vivo without significantly altering the activity of other important 2-oxoglutarate oxygenases.
Collapse
Affiliation(s)
- Cecilia Mannironi
- Istituto di Biologia e Patologia Molecolari Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Marco Proietto
- Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Francesca Bufalieri
- Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Enrico Cundari
- Istituto di Biologia e Patologia Molecolari Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Angela Alagia
- Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Svetlana Danovska
- Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Teresa Rinaldi
- Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Valeria Famiglini
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
| | - Antonio Coluccia
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
| | - Giuseppe La Regina
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
| | - Romano Silvestri
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
| | - Rodolfo Negri
- Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
- * E-mail:
| |
Collapse
|
23
|
Schwabe A, Rybakova KN, Bruggeman FJ. Transcription stochasticity of complex gene regulation models. Biophys J 2013; 103:1152-61. [PMID: 22995487 DOI: 10.1016/j.bpj.2012.07.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 07/05/2012] [Indexed: 11/28/2022] Open
Abstract
Transcription is regulated by a multitude of factors that concertedly induce genes to switch between activity states. Eukaryotic transcription involves a multitude of complexes that sequentially assemble on chromatin under the influence of transcription factors and the dynamic state of chromatin. Prokaryotic transcription depends on transcription factors, sigma-factors, and, in some cases, on DNA looping. We present a stochastic model of transcription that considers these complex regulatory mechanisms. We coarse-grain the molecular details in such a way that the model can describe a broad class of gene-regulation mechanisms. We solve this model analytically for various measures of stochastic transcription and compare alternative gene-regulation designs. We find that genes with complex multiprotein regulation can have peaked burst-size distributions in contrast to the geometric distributions found for simple models of transcription regulation. Burst-size distributions are, in addition, shaped by mRNA degradation during transcription bursts. We derive the stochastic properties of genes in the limit of deterministic switch times. These genes typically have reduced transcription noise. Severe timescale separation between gene regulation and transcription initiation enhances noise and leads to bimodal mRNA copy number distributions. In general, complex mechanisms for gene regulation lead to nonexponential waiting-time distributions for gene switching and transcription initiation, which typically reduce noise in mRNA copy numbers and burst size. Finally, we discuss that qualitatively different gene regulation models can often fit the same experimental data on single-cell mRNA abundance even though they have qualitatively different burst-size statistics and regulatory parameters.
Collapse
Affiliation(s)
- Anne Schwabe
- Life Sciences, Centre for Mathematics and Computer Science (Centrum Wiskunde & Informatica), Amsterdam, The Netherlands
| | | | | |
Collapse
|
24
|
Dynamic changes in genomic histone association and modification during activation of the ASNS and ATF3 genes by amino acid limitation. Biochem J 2013; 449:219-29. [PMID: 22978410 DOI: 10.1042/bj20120958] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Amino acid deprivation of mammalian cells triggers several signalling pathways, the AAR (amino acid response), that results in transcriptional activation. For the ASNS (asparagine synthetase) and ATF3 (activating transcription factor 3) genes, increased transcription occurs in conjunction with recruitment of ATF4 to the gene. In HepG2 cells, analysis of the ASNS and ATF3 genes during AAR activation revealed increases in histone H3K4me3 (histone 3 trimethylated Lys4) and H4Ac (acetylated histone 4) levels, marks associated with active transcription, but a concurrent loss of total H3 protein near the promoter. The dynamic nature of AAR-regulated transcription was illustrated by a decline in ASNS transcription activity within minutes after removal of the AAR stress and a return to basal levels by 2 h. Reversal of ASNS transcription occurred in parallel with decreased promoter-associated H4Ac and ATF4 binding. However, the reduction in histone H3 and increase in H3K4me3 were not reversed. In yeast, persistence of H3K4me3 has been proposed to be a 'memory' mark of gene activity that alters the responsiveness of the gene, but the time course and magnitude of ASNS induction was unaffected when cells were challenged with a second round of AAR activation. The results of the present study document changes in gene-associated nucleosome abundance and histone modifications in response to amino-acid-dependent transcription.
Collapse
|
25
|
Timing of transcriptional quiescence during gametogenesis is controlled by global histone H3K4 demethylation. Dev Cell 2012; 23:1059-71. [PMID: 23123093 DOI: 10.1016/j.devcel.2012.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 08/10/2012] [Accepted: 10/01/2012] [Indexed: 11/22/2022]
Abstract
Gametes are among the most highly specialized cells produced during development. Although gametogenesis culminates in transcriptional quiescence in plants and animals, regulatory mechanisms controlling this are unknown. Here, we confirm that gamete differentiation in the single-celled yeast Saccharomyces cerevisiae is accompanied by global transcriptional shutoff following the completion of meiosis. We show that Jhd2, a highly conserved JARID1-family histone H3K4 demethylase, activates protein-coding gene transcription in opposition to this programmed transcriptional shutoff, sustaining the period of productive transcription during spore differentiation. Moreover, using genome-wide nucleosome, H3K4me, and transcript mapping experiments, we demonstrate that JHD2 globally represses intergenic noncoding transcription during this period. The widespread transcriptional defects of JHD2 mutants are associated with precocious differentiation and the production of stress-sensitive spores, demonstrating that Jhd2 regulation of the global postmeiotic transcriptional program is critical for the production of healthy meiotic progeny.
Collapse
|
26
|
Histone H3K4 demethylation is negatively regulated by histone H3 acetylation in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2012; 109:18505-10. [PMID: 23091032 DOI: 10.1073/pnas.1202070109] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histone H3 lysine 4 trimethylation (H3K4me3) is a hallmark of transcription initiation, but how H3K4me3 is demethylated during gene repression is poorly understood. Jhd2, a JmjC domain protein, was recently identified as the major H3K4me3 histone demethylase (HDM) in Saccharomyces cerevisiae. Although JHD2 is required for removal of methylation upon gene repression, deletion of JHD2 does not result in increased levels of H3K4me3 in bulk histones, indicating that this HDM is unable to demethylate histones during steady-state conditions. In this study, we showed that this was due to the negative regulation of Jhd2 activity by histone H3 lysine 14 acetylation (H3K14ac), which colocalizes with H3K4me3 across the yeast genome. We demonstrated that loss of the histone H3-specific acetyltransferases (HATs) resulted in genome-wide depletion of H3K4me3, and this was not due to a transcription defect. Moreover, H3K4me3 levels were reestablished in HAT mutants following loss of JHD2, which suggested that H3-specific HATs and Jhd2 serve opposing functions in regulating H3K4me3 levels. We revealed the molecular basis for this suppression by demonstrating that H3K14ac negatively regulated Jhd2 demethylase activity on an acetylated peptide in vitro. These results revealed the existence of a general mechanism for removal of H3K4me3 following gene repression.
Collapse
|
27
|
Sarkies P, Sale JE. Propagation of histone marks and epigenetic memory during normal and interrupted DNA replication. Cell Mol Life Sci 2012; 69:697-716. [PMID: 21964926 PMCID: PMC11114753 DOI: 10.1007/s00018-011-0824-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/02/2011] [Accepted: 09/12/2011] [Indexed: 11/30/2022]
Abstract
Although all nucleated cells within a multicellular organism contain a complete copy of the genome, cell identity relies on the expression of a specific subset of genes. Therefore, when cells divide they must not only copy their genome to their daughters, but also ensure that the pattern of gene expression present before division is restored. While the carrier of this epigenetic memory has been a topic of much research and debate, post-translational modifications of histone proteins have emerged in the vanguard of candidates. In this paper we examine the mechanisms by which histone post-translational modifications are propagated through DNA replication and cell division, and we critically examine the evidence that they can also act as vectors of epigenetic memory. Finally, we consider ways in which epigenetic memory might be disrupted by interfering with the mechanisms of DNA replication.
Collapse
Affiliation(s)
- Peter Sarkies
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH UK
| | - Julian E. Sale
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH UK
| |
Collapse
|
28
|
Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, Edwards CR, Khanin R, Figueroa ME, Melnick A, Wellen KE, O'Rourke DM, Berger SL, Chan TA, Levine RL, Mellinghoff IK, Thompson CB. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 2012; 483:474-8. [PMID: 22343901 DOI: 10.1038/nature10860] [Citation(s) in RCA: 1556] [Impact Index Per Article: 119.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 01/16/2012] [Indexed: 11/09/2022]
Abstract
Recurrent mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 have been identified in gliomas, acute myeloid leukaemias (AML) and chondrosarcomas, and share a novel enzymatic property of producing 2-hydroxyglutarate (2HG) from α-ketoglutarate. Here we report that 2HG-producing IDH mutants can prevent the histone demethylation that is required for lineage-specific progenitor cells to differentiate into terminally differentiated cells. In tumour samples from glioma patients, IDH mutations were associated with a distinct gene expression profile enriched for genes expressed in neural progenitor cells, and this was associated with increased histone methylation. To test whether the ability of IDH mutants to promote histone methylation contributes to a block in cell differentiation in non-transformed cells, we tested the effect of neomorphic IDH mutants on adipocyte differentiation in vitro. Introduction of either mutant IDH or cell-permeable 2HG was associated with repression of the inducible expression of lineage-specific differentiation genes and a block to differentiation. This correlated with a significant increase in repressive histone methylation marks without observable changes in promoter DNA methylation. Gliomas were found to have elevated levels of similar histone repressive marks. Stable transfection of a 2HG-producing mutant IDH into immortalized astrocytes resulted in progressive accumulation of histone methylation. Of the marks examined, increased H3K9 methylation reproducibly preceded a rise in DNA methylation as cells were passaged in culture. Furthermore, we found that the 2HG-inhibitable H3K9 demethylase KDM4C was induced during adipocyte differentiation, and that RNA-interference suppression of KDM4C was sufficient to block differentiation. Together these data demonstrate that 2HG can inhibit histone demethylation and that inhibition of histone demethylation can be sufficient to block the differentiation of non-transformed cells.
Collapse
Affiliation(s)
- Chao Lu
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chandrasekharan MB, Huang F, Sun ZW. Decoding the trans-histone crosstalk: methods to analyze H2B ubiquitination, H3 methylation and their regulatory factors. Methods 2011; 54:304-14. [PMID: 21392582 PMCID: PMC3118906 DOI: 10.1016/j.ymeth.2011.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 02/18/2011] [Accepted: 02/22/2011] [Indexed: 12/16/2022] Open
Abstract
Regulation of histone H3 lysine 4 and 79 methylation by histone H2B lysine 123 monoubiquitination is an evolutionarily conserved trans-histone crosstalk mechanism, which demonstrates a functional role for histone ubiquitination within the cell. The regulatory enzymes, factors and processes involved in the establishment and dynamic modulation of these modifications and their genome-wide distribution patterns have been determined in many model systems. Rapid progress in understanding this trans-histone crosstalk has been made using the standard experimental tools of chromatin biology in budding yeast (Saccharomyces cerevisiae), a highly tractable model organism. Here, we provide a set of modified and refined experimental procedures that can be used to gain further insights into the underlying mechanisms that govern this crosstalk in budding yeast. Importantly, the improved procedures and their underlying principles can also be applied to other model organisms. Methods presented here provide a rapid and efficient means to prepare enriched protein extracts to better preserve and assess the steady state levels of histones, non-histone proteins and their modifications. Improved chromatin immunoprecipitation and double immunoprecipitation protocols are provided to measure the occupancy and distribution of proteins and their modified forms at specific chromatin regions or loci. A quick and easy method to measure overall protein abundance and changes in protein-protein and protein-DNA interactions on native chromatin is also described.
Collapse
Affiliation(s)
- Mahesh B. Chandrasekharan
- Department of Biochemistry and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Fu Huang
- Department of Biochemistry and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Zu-Wen Sun
- Department of Biochemistry and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
30
|
Bian C, Xu C, Ruan J, Lee KK, Burke TL, Tempel W, Barsyte D, Li J, Wu M, Zhou BO, Fleharty BE, Paulson A, Allali-Hassani A, Zhou JQ, Mer G, Grant PA, Workman JL, Zang J, Min J. Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation. EMBO J 2011; 30:2829-42. [PMID: 21685874 PMCID: PMC3160252 DOI: 10.1038/emboj.2011.193] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 05/26/2011] [Indexed: 12/17/2022] Open
Abstract
The SAGA (Spt-Ada-Gcn5 acetyltransferase) complex is an important chromatin modifying complex that can both acetylate and deubiquitinate histones. Sgf29 is a novel component of the SAGA complex. Here, we report the crystal structures of the tandem Tudor domains of Saccharomyces cerevisiae and human Sgf29 and their complexes with H3K4me2 and H3K4me3 peptides, respectively, and show that Sgf29 selectively binds H3K4me2/3 marks. Our crystal structures reveal that Sgf29 harbours unique tandem Tudor domains in its C-terminus. The tandem Tudor domains in Sgf29 tightly pack against each other face-to-face with each Tudor domain harbouring a negatively charged pocket accommodating the first residue alanine and methylated K4 residue of histone H3, respectively. The H3A1 and K4me3 binding pockets and the limited binding cleft length between these two binding pockets are the structural determinants in conferring the ability of Sgf29 to selectively recognize H3K4me2/3. Our in vitro and in vivo functional assays show that Sgf29 recognizes methylated H3K4 to recruit the SAGA complex to its targets sites and mediates histone H3 acetylation, underscoring the importance of Sgf29 in gene regulation.
Collapse
Affiliation(s)
- Chuanbing Bian
- School of Life Sciences, University of Science and Technology of China, Anhui, People's Republic of China
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Chao Xu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Jianbin Ruan
- School of Life Sciences, University of Science and Technology of China, Anhui, People's Republic of China
| | - Kenneth K Lee
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Tara L Burke
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Wolfram Tempel
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Dalia Barsyte
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Jing Li
- School of Life Sciences, University of Science and Technology of China, Anhui, People's Republic of China
| | - Minhao Wu
- School of Life Sciences, University of Science and Technology of China, Anhui, People's Republic of China
| | - Bo O Zhou
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Graduate School, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | | | - Ariel Paulson
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Jin-Qiu Zhou
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Graduate School, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Georges Mer
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Patrick A Grant
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Jianye Zang
- School of Life Sciences, University of Science and Technology of China, Anhui, People's Republic of China
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Kwon DW, Ahn SH. Role of yeast JmjC-domain containing histone demethylases in actively transcribed regions. Biochem Biophys Res Commun 2011; 410:614-9. [PMID: 21684259 DOI: 10.1016/j.bbrc.2011.06.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 06/06/2011] [Indexed: 11/16/2022]
Abstract
In budding yeast, there are five JmjC domain-containing proteins, Jhd1, Jhd2, Rph1, Ecm5, and Gis1, which have been suggested to directly remove histone lysine methylation via a hydroxylation reaction. Of these demethylases, the ability of Jhd1 or Rph1 to demethylate histone H3 as a substrate has been identified in vivo. However, the overall roles of endogenous JmjC demethylases in the demethylation of histones encompassed by genes that are constitutively transcribed or their specificities towards histone H3 lysine modification at mono-, di-, or trimethylation states are still unclear. Using chromatin immunoprecipitation with nine specific antibodies directed against mono-, di-, or trimethylated histone H3 at lysines 4, 36, or 79, we show the whole patterns of histone H3 lysine methylation and the net changes in methylations that are caused by the deletion of each of the five JmjC demethylases in actively transcribed regions. Our results show that of the JmjC-containing proteins, Rph1 is the demethylase that is specific for histone H3K36 trimethylation during transcription elongation in vivo, and the abilities of other endogenous JmjC demethylasesto demethylate histone H3 are weak toward histone H3in actively transcribed regions.
Collapse
Affiliation(s)
- Dae-Whan Kwon
- Division of Molecular and Life Science, College of Science and Technology, Hanyang University, Ansan, Republic of Korea
| | | |
Collapse
|
32
|
Abstract
Manipulation of chromatin, in which genomic DNA is packaged, is a fundamental requirement for all DNA-based metabolic processes in eukayotic cells. Histone variant incorporation, histone post-translational modifications, and ATP-dependent chromatin remodeling are three major strategies for chromatin manipulation, and are relatively well characterized in transcriptional regulation. Emerging lines of evidence indicate that histone variants (H2AX and H2A.Z), histone post-translational modifications (acetylation, phosphorylation, methylation and ubiquitination) and chromatin-remodeling complexes (INO80, SWR1, SWI/SNF, RSC and NuRD) are important and direct players in the DNA double-strand break (DSB) response as well. New studies also reveal that incorporation of histone variants into nucleosomes, histone modifications and ATP-dependent chromatin remodeling are specifically and intimately connected during the DSB damage response. This article summarizes the recent advances in our understanding of the relationship between chromatin modifications and the DSB damage response.
Collapse
Affiliation(s)
- Yunhe Bao
- MD Anderson Cancer Center, Department of Molecular Carcinogenesis, 1808 Park Road 1-C, Smithville, TX 78957, USA
| |
Collapse
|
33
|
Terrenoire E, McRonald F, Halsall JA, Page P, Illingworth RS, Taylor AMR, Davison V, O'Neill LP, Turner BM. Immunostaining of modified histones defines high-level features of the human metaphase epigenome. Genome Biol 2010; 11:R110. [PMID: 21078160 PMCID: PMC3156949 DOI: 10.1186/gb-2010-11-11-r110] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/04/2010] [Accepted: 11/15/2010] [Indexed: 12/21/2022] Open
Abstract
Background Immunolabeling of metaphase chromosome spreads can map components of the human epigenome at the single cell level. Previously, there has been no systematic attempt to explore the potential of this approach for epigenomic mapping and thereby to complement approaches based on chromatin immunoprecipitation (ChIP) and sequencing technologies. Results By immunostaining and immunofluorescence microscopy, we have defined the distribution of selected histone modifications across metaphase chromosomes from normal human lymphoblastoid cells and constructed immunostained karyotypes. Histone modifications H3K9ac, H3K27ac and H3K4me3 are all located in the same set of sharply defined immunofluorescent bands, corresponding to 10- to 50-Mb genomic segments. Primary fibroblasts gave broadly the same banding pattern. Bands co-localize with regions relatively rich in genes and CpG islands. Staining intensity usually correlates with gene/CpG island content, but occasional exceptions suggest that other factors, such as transcription or SINE density, also contribute. H3K27me3, a mark associated with gene silencing, defines a set of bands that only occasionally overlap with gene-rich regions. Comparison of metaphase bands with histone modification levels across the interphase genome (ENCODE, ChIP-seq) shows a close correspondence for H3K4me3 and H3K27ac, but major differences for H3K27me3. Conclusions At metaphase the human genome is packaged as chromatin in which combinations of histone modifications distinguish distinct regions along the euchromatic chromosome arms. These regions reflect the high-level interphase distributions of some histone modifications, and may be involved in heritability of epigenetic states, but we also find evidence for extensive remodeling of the epigenome at mitosis.
Collapse
Affiliation(s)
- Edith Terrenoire
- Chromatin and Gene Expression Group, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Huang F, Chandrasekharan MB, Chen YC, Bhaskara S, Hiebert SW, Sun ZW. The JmjN domain of Jhd2 is important for its protein stability, and the plant homeodomain (PHD) finger mediates its chromatin association independent of H3K4 methylation. J Biol Chem 2010; 285:24548-61. [PMID: 20538609 DOI: 10.1074/jbc.m110.117333] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Histone lysine methylation is a dynamic process that plays an important role in regulating chromatin structure and gene expression. Recent studies have identified Jhd2, a JmjC domain-containing protein, as an H3K4-specific demethylase in budding yeast. However, important questions regarding the regulation and functions of Jhd2 remain unanswered. In this study, we show that Jhd2 has intrinsic activity to remove all three states of H3K4 methylation in vivo and can dynamically associate with chromatin to modulate H3K4 methylation levels on both active and repressed genes and at the telomeric regions. We found that the plant homeodomain (PHD) finger of Jhd2 is important for its chromatin association in vivo. However, this association is not dependent on H3K4 methylation and the H3 N-terminal tail, suggesting the presence of an alternative mechanism by which Jhd2 binds nucleosomes. We also provide evidence that the JmjN domain and its interaction with the JmjC catalytic domain are important for Jhd2 function and that Not4 (an E3 ligase) monitors the structural integrity of this interdomain interaction to maintain the overall protein levels of Jhd2. We show that the S451R mutation in human SMCX (a homolog of Jhd2), which has been linked to mental retardation, and the homologous T359R mutation in Jhd2 affect the protein stability of both of these proteins. Therefore, our findings provide a mechanistic explanation for the observed defects in patients harboring this SMCX mutant and suggest the presence of a conserved pathway involving Not4 that modulates the protein stability of both yeast Jhd2 and human SMCX.
Collapse
Affiliation(s)
- Fu Huang
- Department of Biochemistry and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
35
|
Radman-Livaja M, Liu CL, Friedman N, Schreiber SL, Rando OJ. Replication and active demethylation represent partially overlapping mechanisms for erasure of H3K4me3 in budding yeast. PLoS Genet 2010; 6:e1000837. [PMID: 20140185 PMCID: PMC2816684 DOI: 10.1371/journal.pgen.1000837] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 01/04/2010] [Indexed: 12/04/2022] Open
Abstract
Histone modifications affect DNA-templated processes ranging from transcription to genomic replication. In this study, we examine the cell cycle dynamics of the trimethylated form of histone H3 lysine 4 (H3K4me3), a mark of active chromatin that is viewed as "long-lived" and that is involved in memory during cell state inheritance in metazoans. We synchronized yeast using two different protocols, then followed H3K4me3 patterns as yeast passed through subsequent cell cycles. While most H3K4me3 patterns were conserved from one generation to the next, we found that methylation patterns induced by alpha factor or high temperature were erased within one cell cycle, during S phase. Early-replicating regions were erased before late-replicating regions, implicating replication in H3K4me3 loss. However, nearly complete H3K4me3 erasure occurred at the majority of loci even when replication was prevented, suggesting that most erasure results from an active process. Indeed, deletion of the demethylase Jhd2 slowed erasure at most loci. Together, these results indicate overlapping roles for passive dilution and active enzymatic demethylation in erasing ancestral histone methylation states in yeast.
Collapse
Affiliation(s)
- Marta Radman-Livaja
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Chih Long Liu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Nir Friedman
- School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel
- The Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Stuart L. Schreiber
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Oliver J. Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
36
|
Cichewicz RH. Epigenome manipulation as a pathway to new natural product scaffolds and their congeners. Nat Prod Rep 2009; 27:11-22. [PMID: 20024091 DOI: 10.1039/b920860g] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The covalent modification of chromatin is an important control mechanism used by fungi to modulate the transcription of genes involved in secondary metabolite production. To date, both molecular-based and chemical approaches targeting histone and DNA posttranslational processes have shown great potential for rationally directing the activation and/or suppression of natural-product-encoding gene clusters. In this Highlight, the organization of the fungal epigenome is summarized and strategies for manipulating chromatin-related targets are presented. Applications of these techniques are illustrated using several recently published accounts in which chemical-epigenetic methods and mutant studies were successfully employed for the de novo or enhanced production of structurally diverse fungal natural products (e.g., anthraquinones, cladochromes, lunalides, mycotoxins, and nygerones).
Collapse
Affiliation(s)
- Robert H Cichewicz
- Natural Products Discovery Group and Graduate Program in Ecology and Evolutionary Biology, Department of Chemistry and Biochemistry, 620 Parrington Oval, Room 208, University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
37
|
Osborne EA, Dudoit S, Rine J. The establishment of gene silencing at single-cell resolution. Nat Genet 2009; 41:800-6. [PMID: 19543267 PMCID: PMC2739733 DOI: 10.1038/ng.402] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 05/20/2009] [Indexed: 12/14/2022]
Abstract
The establishment of silencing in Saccharomyces cerevisiae is similar to heterochromatin formation in multicellular eukaryotes. Previous batch culture studies determined that the de novo establishment of silencing initiates during S phase and continues for up to five cell divisions for completion. To track silencing phenotypically, we developed an assay that introduces Sir3 protein into individual sir3Delta mutant cells synchronously and then detects the onset of silencing with single-cell resolution. Silencing was completed within the first one to two cell divisions in most cells queried. Moreover, we uncovered unexpected complexity in the contributions of a histone acetyltransferase (Sas2), two histone methytransferases (Dot1 and Set1) and one histone demethylase (Jhd2) to the dynamics of silencing. Our findings showed that removal of methyl modifications at H3K4 and H3K79 were important steps in silent chromatin formation and that Jhd2 and Set1 had competing roles in the process.
Collapse
Affiliation(s)
- Erin A. Osborne
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3220 USA
| | - Sandrine Dudoit
- Division of Biostatistics at the School of Public Health, University of California, Berkeley, CA 94720-3220 USA, California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720-3220 USA
| | - Jasper Rine
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3220 USA, California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720-3220 USA
| |
Collapse
|
38
|
Mersman DP, Du HN, Fingerman IM, South PF, Briggs SD. Polyubiquitination of the demethylase Jhd2 controls histone methylation and gene expression. Genes Dev 2009; 23:951-62. [PMID: 19346402 DOI: 10.1101/gad.1769209] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The identification of histone methyltransferases and demethylases has uncovered a dynamic methylation system needed to modulate appropriate levels of gene expression. Gene expression levels of various histone demethylases, such as the JARID1 family, show distinct patterns of embryonic and adult expression and respond to different environmental cues, suggesting that histone demethylase protein levels must be tightly regulated for proper development. In our study, we show that the protein level of the yeast histone H3 Lys 4 (H3 K4) demethylase Jhd2/Kdm5 is modulated through polyubiquitination by the E3 ubiquitin ligase Not4 and turnover by the proteasome. We determine that polyubiquitin-mediated degradation of Jhd2 controls in vivo H3 K4 trimethylation and gene expression levels. Finally, we show that human NOT4 can polyubiquitinate human JARID1C/SMCX, a homolog of Jhd2, suggesting that this is likely a conserved mechanism. We propose that Not4 is an E3 ubiquitin ligase that monitors and controls a precise amount of Jhd2 protein so that the proper balance between histone demethylase and histone methyltransferase activities occur in the cell, ensuring appropriate levels of H3 K4 trimethylation and gene expression.
Collapse
Affiliation(s)
- Douglas P Mersman
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
39
|
Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|