1
|
Forino NM, Woo JZ, Zaug AJ, Jimenez AG, Edelson E, Cech TR, Rouskin S, Stone MD. Telomerase RNA structural heterogeneity in living human cells detected by DMS-MaPseq. Nat Commun 2025; 16:925. [PMID: 39843442 PMCID: PMC11754830 DOI: 10.1038/s41467-025-56149-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/10/2025] [Indexed: 01/24/2025] Open
Abstract
Biogenesis of human telomerase requires its RNA subunit (hTR) to fold into a multi-domain architecture that includes the template-pseudoknot (t/PK) and the three-way junction (CR4/5). These hTR domains bind the telomerase reverse transcriptase (hTERT) protein and are essential for telomerase activity. Here, we probe hTR structure in living cells using dimethyl sulfate mutational profiling with sequencing (DMS-MaPseq) and ensemble deconvolution analysis. Approximately 15% of the steady state population of hTR has a CR4/5 conformation lacking features required for hTERT binding. The proportion of hTR CR4/5 folded into the primary functional conformation is independent of hTERT expression levels. Mutations that stabilize the alternative CR4/5 conformation are detrimental to telomerase assembly and activity. Moreover, the alternative CR4/5 conformation is not found in purified telomerase RNP complexes, supporting the hypothesis that only the primary CR4/5 conformer is active. We propose that this misfolded portion of the cellular hTR pool is either slowly refolded or degraded, suggesting that kinetic RNA folding traps studied in vitro may also hinder ribonucleoprotein assembly in vivo.
Collapse
Affiliation(s)
- Nicholas M Forino
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, USA
| | - Jia Zheng Woo
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Arthur J Zaug
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO, USA
| | | | - Eva Edelson
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Thomas R Cech
- Department of Biochemistry, University of Colorado, Boulder, CO, USA.
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO, USA.
| | - Silvi Rouskin
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| | - Michael D Stone
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA.
| |
Collapse
|
2
|
Forino NM, Woo JZ, Zaug AJ, Jimenez AG, Edelson E, Cech TR, Rouskin S, Stone MD. Telomerase RNA structural heterogeneity in living human cells detected by DMS-MaPseq. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.04.560962. [PMID: 37873413 PMCID: PMC10592977 DOI: 10.1101/2023.10.04.560962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Telomerase is a specialized reverse transcriptase that uses an intrinsic RNA subunit as the template for telomeric DNA synthesis. Biogenesis of human telomerase requires its RNA subunit (hTR) to fold into a multi-domain architecture that includes the template-containing pseudoknot (t/PK) and the three-way junction (CR4/5). These two hTR domains bind the telomerase reverse transcriptase (hTERT) protein and are thus essential for telomerase catalytic activity. Here, we probe the structure of hTR in living cells using dimethyl sulfate mutational profiling with sequencing (DMS-MaPseq) and ensemble deconvolution analysis. Unexpectedly, approximately 15% of the steady state population of hTR has a CR4/5 conformation lacking features thought to be required for hTERT binding. The proportion of hTR CR4/5 that is folded into the primary functional conformation does not require hTERT expression and the fraction of hTR that assumes a misfolded CR4/5 domain is not refolded by overexpression of its hTERT binding partner. This result suggests a functional role for an RNA folding cofactor other than hTERT during telomerase biogenesis. Mutagenesis demonstrates that stabilization of the alternative CR4/5 conformation is detrimental to telomerase assembly and activity. Moreover, the alternative CR4/5 conformation is not found in telomerase RNP complexes purified from cells via an epitope tag on hTERT, supporting the hypothesis that only the major CR4/5 conformer is active. We propose that this misfolded portion of the cellular hTR pool is either slowly refolded or degraded. Thus, kinetic traps for RNA folding that have been so well-studied in vitro may also present barriers for assembly of ribonucleoprotein complexes in vivo.
Collapse
Affiliation(s)
- Nicholas M Forino
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, USA
| | - Jia Zheng Woo
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Arthur J Zaug
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO, USA
| | | | - Eva Edelson
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Thomas R Cech
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO, USA
| | - Silvi Rouskin
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Michael D Stone
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| |
Collapse
|
3
|
Davis JA, Chakrabarti K. Molecular and Evolutionary Analysis of RNA-Protein Interactions in Telomerase Regulation. Noncoding RNA 2024; 10:36. [PMID: 38921833 PMCID: PMC11206666 DOI: 10.3390/ncrna10030036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Telomerase is an enzyme involved in the maintenance of telomeres. Telomere shortening due to the end-replication problem is a threat to the genome integrity of all eukaryotes. Telomerase inside cells depends on a myriad of protein-protein and RNA-protein interactions to properly assemble and regulate the function of the telomerase holoenzyme. These interactions are well studied in model eukaryotes, like humans, yeast, and the ciliated protozoan known as Tetrahymena thermophila. Emerging evidence also suggests that deep-branching eukaryotes, such as the parasitic protist Trypanosoma brucei require conserved and novel RNA-binding proteins for the assembly and function of their telomerase. In this review, we will discuss telomerase regulatory pathways in the context of telomerase-interacting proteins, with special attention paid to RNA-binding proteins. We will discuss these interactors on an evolutionary scale, from parasitic protists to humans, to provide a broader perspective on the extensive role that protein-protein and RNA-protein interactions play in regulating telomerase activity in eukaryotes.
Collapse
Affiliation(s)
| | - Kausik Chakrabarti
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA;
| |
Collapse
|
4
|
Thompson VF, Wieland DR, Mendoza-Leon V, Janis HI, Lay MA, Harrell LM, Schwartz JC. Binding of the nuclear ribonucleoprotein family member FUS to RNA prevents R-loop RNA:DNA hybrid structures. J Biol Chem 2023; 299:105237. [PMID: 37690693 PMCID: PMC10556777 DOI: 10.1016/j.jbc.2023.105237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023] Open
Abstract
The protein FUS (FUSed in sarcoma) is a metazoan RNA-binding protein that influences RNA production by all three nuclear polymerases. FUS also binds nascent transcripts, RNA processing factors, RNA polymerases, and transcription machinery. Here, we explored the role of FUS binding interactions for activity during transcription. In vitro run-off transcription assays revealed FUS-enhanced RNA produced by a non-eukaryote polymerase. The activity also reduced the formation of R-loops between RNA products and their DNA template. Analysis by domain mutation and deletion indicated RNA-binding was required for activity. We interpret that FUS binds and sequesters nascent transcripts to prevent R-loops from forming with nearby DNA. DRIP-seq analysis showed that a knockdown of FUS increased R-loop enrichment near expressed genes. Prevention of R-loops by FUS binding to nascent transcripts has the potential to affect transcription by any RNA polymerase, highlighting the broad impact FUS can have on RNA metabolism in cells and disease.
Collapse
Affiliation(s)
- Valery F Thompson
- Department of Pharmacology, University of Arizona, Tucson, Arizona, USA; University of Arizona Cancer Center, Tucson, Arizona, USA
| | - Daniel R Wieland
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Vivian Mendoza-Leon
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Helen I Janis
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Michelle A Lay
- Department of Pharmacology, University of Arizona, Tucson, Arizona, USA; University of Arizona Cancer Center, Tucson, Arizona, USA; Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Lucas M Harrell
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Jacob C Schwartz
- Department of Pharmacology, University of Arizona, Tucson, Arizona, USA; University of Arizona Cancer Center, Tucson, Arizona, USA.
| |
Collapse
|
5
|
Wang Y, He Y, Wang Y, Yang Y, Singh M, Eichhorn CD, Cheng X, Jiang YX, Zhou ZH, Feigon J. Structure of LARP7 Protein p65-telomerase RNA Complex in Telomerase Revealed by Cryo-EM and NMR. J Mol Biol 2023; 435:168044. [PMID: 37330293 PMCID: PMC10988774 DOI: 10.1016/j.jmb.2023.168044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
La-related protein 7 (LARP7) are a family of RNA chaperones that protect the 3'-end of RNA and are components of specific ribonucleoprotein complexes (RNP). In Tetrahymena thermophila telomerase, LARP7 protein p65 together with telomerase reverse transcriptase (TERT) and telomerase RNA (TER) form the core RNP. p65 has four known domains-N-terminal domain (NTD), La motif (LaM), RNA recognition motif 1 (RRM1), and C-terminal xRRM2. To date, only the xRRM2 and LaM and their interactions with TER have been structurally characterized. Conformational dynamics leading to low resolution in cryo-EM density maps have limited our understanding of how full-length p65 specifically recognizes and remodels TER for telomerase assembly. Here, we combined focused classification of Tetrahymena telomerase cryo-EM maps with NMR spectroscopy to determine the structure of p65-TER. Three previously unknown helices are identified, one in the otherwise intrinsically disordered NTD that binds the La module, one that extends RRM1, and another preceding xRRM2, that stabilize p65-TER interactions. The extended La module (αN, LaM and RRM1) interacts with the four 3' terminal U nucleotides, while LaM and αN additionally interact with TER pseudoknot, and LaM with stem 1 and 5' end. Our results reveal the extensive p65-TER interactions that promote TER 3'-end protection, TER folding, and core RNP assembly and stabilization. The structure of full-length p65 with TER also sheds light on the biological roles of genuine La and LARP7 proteins as RNA chaperones and core RNP components.
Collapse
Affiliation(s)
- Yaqiang Wang
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Yao He
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095-1569, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yanjiao Wang
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Yuan Yang
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Mahavir Singh
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Catherine D Eichhorn
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Xinyi Cheng
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Yi Xiao Jiang
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095-1569, USA.
| |
Collapse
|
6
|
Davis JA, Reyes AV, Nitika, Saha A, Wolfgeher DJ, Xu SL, Truman AW, Li B, Chakrabarti K. Proteomic analysis defines the interactome of telomerase in the protozoan parasite, Trypanosoma brucei. Front Cell Dev Biol 2023; 11:1110423. [PMID: 37009488 PMCID: PMC10061497 DOI: 10.3389/fcell.2023.1110423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
Telomerase is a ribonucleoprotein enzyme responsible for maintaining the telomeric end of the chromosome. The telomerase enzyme requires two main components to function: the telomerase reverse transcriptase (TERT) and the telomerase RNA (TR), which provides the template for telomeric DNA synthesis. TR is a long non-coding RNA, which forms the basis of a large structural scaffold upon which many accessory proteins can bind and form the complete telomerase holoenzyme. These accessory protein interactions are required for telomerase activity and regulation inside cells. The interacting partners of TERT have been well studied in yeast, human, and Tetrahymena models, but not in parasitic protozoa, including clinically relevant human parasites. Here, using the protozoan parasite, Trypanosoma brucei (T. brucei) as a model, we have identified the interactome of T. brucei TERT (TbTERT) using a mass spectrometry-based approach. We identified previously known and unknown interacting factors of TbTERT, highlighting unique features of T. brucei telomerase biology. These unique interactions with TbTERT, suggest mechanistic differences in telomere maintenance between T. brucei and other eukaryotes.
Collapse
Affiliation(s)
- Justin A. Davis
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, United States
| | - Andres V. Reyes
- Department of Plant Biology and Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, CA, United States
| | - Nitika
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, United States
| | - Arpita Saha
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Arts and Sciences, Cleveland State University, Cleveland, OH, United States
| | - Donald J. Wolfgeher
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
| | - Shou-Ling Xu
- Department of Plant Biology and Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, CA, United States
| | - Andrew W. Truman
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, United States
| | - Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Arts and Sciences, Cleveland State University, Cleveland, OH, United States
| | - Kausik Chakrabarti
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, United States
| |
Collapse
|
7
|
Song J, Castillo-González C, Ma Z, Shippen DE. Arabidopsis retains vertebrate-type telomerase accessory proteins via a plant-specific assembly. Nucleic Acids Res 2021; 49:9496-9507. [PMID: 34403479 PMCID: PMC8450087 DOI: 10.1093/nar/gkab699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/08/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
The recent discovery of the bona-fide telomerase RNA (TR) from plants reveals conserved and unique secondary structure elements and the opportunity for new insight into the telomerase RNP. Here we examine how two highly conserved proteins previously implicated in Arabidopsis telomere maintenance, AtPOT1a and AtNAP57 (dyskerin), engage plant telomerase. We report that AtPOT1a associates with Arabidopsis telomerase via interaction with TERT. While loss of AtPOT1a does not impact AtTR stability, the templating domain is more accessible in pot1a mutants, supporting the conclusion that AtPOT1a stimulates telomerase activity but does not facilitate telomerase RNP assembly. We also show, that despite the absence of a canonical H/ACA binding motif within AtTR, dyskerin binds AtTR with high affinity and specificity in vitro via a plant specific three-way junction (TWJ). A core element of the TWJ is the P1a stem, which unites the 5′ and 3′ ends of AtTR. P1a is required for dyskerin-mediated stimulation of telomerase repeat addition processivity in vitro, and for AtTR accumulation and telomerase activity in vivo. The deployment of vertebrate-like accessory proteins and unique RNA structural elements by Arabidopsis telomerase provides a new platform for exploring telomerase biogenesis and evolution.
Collapse
Affiliation(s)
- Jiarui Song
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
| | - Claudia Castillo-González
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
| | - Zeyang Ma
- National Maize Improvement Center of China, China Agricultural University, 100193 Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, 100193 Beijing, China
| | - Dorothy E Shippen
- To whom correspondence should be addressed. Tel: +1 979 862 2342; Fax: +1 979 862 7638;
| |
Collapse
|
8
|
A structurally conserved human and Tetrahymena telomerase catalytic core. Proc Natl Acad Sci U S A 2020; 117:31078-31087. [PMID: 33229538 DOI: 10.1073/pnas.2011684117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Telomerase is a ribonucleoprotein complex that counteracts the shortening of chromosome ends due to incomplete replication. Telomerase contains a catalytic core of telomerase reverse transcriptase (TERT) and telomerase RNA (TER). However, what defines TERT and separates it from other reverse transcriptases remains a subject of debate. A recent cryoelectron microscopy map of Tetrahymena telomerase revealed the structure of a previously uncharacterized TERT domain (TRAP) with unanticipated interactions with the telomerase essential N-terminal (TEN) domain and roles in telomerase activity. Both TEN and TRAP are absent in the putative Tribolium TERT that has been used as a model for telomerase for over a decade. To investigate the conservation of TRAP and TEN across species, we performed multiple sequence alignments and statistical coupling analysis on all identified TERTs and find that TEN and TRAP have coevolved as telomerase-specific domains. Integrating the data from bioinformatic analysis and the structure of Tetrahymena telomerase, we built a pseudoatomic model of human telomerase catalytic core that accounts for almost all of the cryoelectron microscopy density in a published map, including TRAP in previously unassigned density as well as telomerase RNA domains essential for activity. This more complete model of the human telomerase catalytic core illustrates how domains of TER and TERT, including the TEN-TRAP complex, can interact in a conserved manner to regulate telomere synthesis.
Collapse
|
9
|
Hasler D, Meister G, Fischer U. Stabilize and connect: the role of LARP7 in nuclear non-coding RNA metabolism. RNA Biol 2020; 18:290-303. [PMID: 32401147 DOI: 10.1080/15476286.2020.1767952] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
La and La-related proteins (LARPs) are characterized by a common RNA interaction platform termed the La module. This structural hallmark allows LARPs to pervade various aspects of RNA biology. The metazoan LARP7 protein binds to the 7SK RNA as part of a 7SK small nuclear ribonucleoprotein (7SK snRNP), which inhibits the transcriptional activity of RNA polymerase II (Pol II). Additionally, recent findings revealed unanticipated roles of LARP7 in the assembly of other RNPs, as well as in the modification, processing and cellular transport of RNA molecules. Reduced levels of functional LARP7 have been linked to cancer and Alazami syndrome, two seemingly unrelated human diseases characterized either by hyperproliferation or growth retardation. Here, we review the intricate regulatory networks centered on LARP7 and assess how malfunction of these networks may relate to the etiology of LARP7-linked diseases.
Collapse
Affiliation(s)
- Daniele Hasler
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Gunter Meister
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Utz Fischer
- Department of Biochemistry, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| |
Collapse
|
10
|
Wang Y, Sušac L, Feigon J. Structural Biology of Telomerase. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032383. [PMID: 31451513 DOI: 10.1101/cshperspect.a032383] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Telomerase is a DNA polymerase that extends the 3' ends of chromosomes by processively synthesizing multiple telomeric repeats. It is a unique ribonucleoprotein (RNP) containing a specialized telomerase reverse transcriptase (TERT) and telomerase RNA (TER) with its own template and other elements required with TERT for activity (catalytic core), as well as species-specific TER-binding proteins important for biogenesis and assembly (core RNP); other proteins bind telomerase transiently or constitutively to allow association of telomerase and other proteins with telomere ends for regulation of DNA synthesis. Here we describe how nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography of TER and protein domains helped define the structure and function of the core RNP, laying the groundwork for interpreting negative-stain and cryo electron microscopy (cryo-EM) density maps of Tetrahymena thermophila and human telomerase holoenzymes. As the resolution has improved from ∼30 Å to ∼5 Å, these studies have provided increasingly detailed information on telomerase architecture and mechanism.
Collapse
Affiliation(s)
- Yaqiang Wang
- Department of Chemistry and Biochemistry, University of California Los Angeles (UCLA), Los Angeles, California 90095-1569
| | - Lukas Sušac
- Department of Chemistry and Biochemistry, University of California Los Angeles (UCLA), Los Angeles, California 90095-1569
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California Los Angeles (UCLA), Los Angeles, California 90095-1569
| |
Collapse
|
11
|
Torgerson CD, Hiller DA, Stav S, Strobel SA. Gene regulation by a glycine riboswitch singlet uses a finely tuned energetic landscape for helical switching. RNA (NEW YORK, N.Y.) 2018; 24:1813-1827. [PMID: 30237163 PMCID: PMC6239177 DOI: 10.1261/rna.067884.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/18/2018] [Indexed: 05/09/2023]
Abstract
Riboswitches contain structured aptamer domains that, upon ligand binding, facilitate helical switching in their downstream expression platforms to alter gene expression. To fully dissect how riboswitches function requires a better understanding of the energetic landscape for helical switching. Here, we report a sequencing-based high-throughput assay for monitoring in vitro transcription termination and use it to simultaneously characterize the functional effects of all 522 single point mutants of a glycine riboswitch type-1 singlet. Mutations throughout the riboswitch cause ligand-dependent defects, but only mutations within the terminator hairpin alter readthrough efficiencies in the absence of ligand. A comprehensive analysis of the expression platform reveals that ligand binding stabilizes the antiterminator by just 2-3 kcal/mol, indicating that the competing expression platform helices must be extremely close in energy to elicit a significant ligand-dependent response. These results demonstrate that gene regulation by this riboswitch is highly constrained by the energetics of ligand binding and conformational switching. These findings exemplify the energetic parameters of RNA conformational rearrangements driven by binding events.
Collapse
Affiliation(s)
- Chad D Torgerson
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, USA
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - David A Hiller
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Shira Stav
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Scott A Strobel
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, USA
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
12
|
An Activity Switch in Human Telomerase Based on RNA Conformation and Shaped by TCAB1. Cell 2018; 174:218-230.e13. [PMID: 29804836 DOI: 10.1016/j.cell.2018.04.039] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/22/2018] [Accepted: 04/27/2018] [Indexed: 12/24/2022]
Abstract
Ribonucleoprotein enzymes require dynamic conformations of their RNA constituents for regulated catalysis. Human telomerase employs a non-coding RNA (hTR) with a bipartite arrangement of domains-a template-containing core and a distal three-way junction (CR4/5) that stimulates catalysis through unknown means. Here, we show that telomerase activity unexpectedly depends upon the holoenzyme protein TCAB1, which in turn controls conformation of CR4/5. Cells lacking TCAB1 exhibit a marked reduction in telomerase catalysis without affecting enzyme assembly. Instead, TCAB1 inactivation causes unfolding of CR4/5 helices that are required for catalysis and for association with the telomerase reverse-transcriptase (TERT). CR4/5 mutations derived from patients with telomere biology disorders provoke defects in catalysis and TERT binding similar to TCAB1 inactivation. These findings reveal a conformational "activity switch" in human telomerase RNA controlling catalysis and TERT engagement. The identification of two discrete catalytic states for telomerase suggests an intramolecular means for controlling telomerase in cancers and progenitor cells.
Collapse
|
13
|
Páez-Moscoso DJ, Pan L, Sigauke RF, Schroeder MR, Tang W, Baumann P. Pof8 is a La-related protein and a constitutive component of telomerase in fission yeast. Nat Commun 2018; 9:587. [PMID: 29422664 PMCID: PMC5805746 DOI: 10.1038/s41467-017-02284-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/17/2017] [Indexed: 01/06/2023] Open
Abstract
Telomerase reverse transcriptase (TERT) and the non-coding telomerase RNA subunit (TR) constitute the core of telomerase. Here we now report that the putative F-box protein Pof8 is also a constitutive component of active telomerase in fission yeast. Pof8 functions in a hierarchical assembly pathway by promoting the binding of the Lsm2-8 complex to telomerase RNA, which in turn promotes binding of the catalytic subunit. Loss of Pof8 reduces TER1 stability, causes a severe assembly defect, and results in critically short telomeres. Structure profile searches identified similarities between Pof8 and telomerase subunits from ciliated protozoa, making Pof8 next to TERT the most widely conserved telomerase subunits identified to date.
Collapse
Affiliation(s)
| | - Lili Pan
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | | | | | - Wen Tang
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA.,RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Peter Baumann
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA. .,Howard Hughes Medical Institute, Kansas City, MO, 64110, USA. .,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, MO, 66160, USA. .,Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, 55099, Mainz, Germany.
| |
Collapse
|
14
|
Current Perspectives of Telomerase Structure and Function in Eukaryotes with Emerging Views on Telomerase in Human Parasites. Int J Mol Sci 2018; 19:ijms19020333. [PMID: 29364142 PMCID: PMC5855555 DOI: 10.3390/ijms19020333] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 12/11/2022] Open
Abstract
Replicative capacity of a cell is strongly correlated with telomere length regulation. Aberrant lengthening or reduction in the length of telomeres can lead to health anomalies, such as cancer or premature aging. Telomerase is a master regulator for maintaining replicative potential in most eukaryotic cells. It does so by controlling telomere length at chromosome ends. Akin to cancer cells, most single-cell eukaryotic pathogens are highly proliferative and require persistent telomerase activity to maintain constant length of telomere and propagation within their host. Although telomerase is key to unlimited cellular proliferation in both cases, not much was known about the role of telomerase in human parasites (malaria, Trypanosoma, etc.) until recently. Since telomerase regulation is mediated via its own structural components, interactions with catalytic reverse transcriptase and several factors that can recruit and assemble telomerase to telomeres in a cell cycle-dependent manner, we compare and discuss here recent findings in telomerase biology in cancer, aging and parasitic diseases to give a broader perspective of telomerase function in human diseases.
Collapse
|
15
|
Cash DD, Feigon J. Structure and folding of the Tetrahymena telomerase RNA pseudoknot. Nucleic Acids Res 2016; 45:482-495. [PMID: 27899638 PMCID: PMC5224487 DOI: 10.1093/nar/gkw1153] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/26/2016] [Accepted: 11/03/2016] [Indexed: 12/21/2022] Open
Abstract
Telomerase maintains telomere length at the ends of linear chromosomes using an integral telomerase RNA (TER) and telomerase reverse transcriptase (TERT). An essential part of TER is the template/pseudoknot domain (t/PK) which includes the template, for adding telomeric repeats, template boundary element (TBE), and pseudoknot, enclosed in a circle by stem 1. The Tetrahymena telomerase holoenzyme catalytic core (p65-TER-TERT) was recently modeled in our 9 Å resolution cryo-electron microscopy map by fitting protein and TER domains, including a solution NMR structure of the Tetrahymena pseudoknot. Here, we describe in detail the structure and folding of the isolated pseudoknot, which forms a compact structure with major groove U•A-U and novel C•G-A+ base triples. Base substitutions that disrupt the base triples reduce telomerase activity in vitro. NMR studies also reveal that the pseudoknot does not form in the context of full-length TER in the absence of TERT, due to formation of a competing structure that sequesters pseudoknot residues. The residues around the TBE remain unpaired, potentially providing access by TERT to this high affinity binding site during an early step in TERT-TER assembly. A model for the assembly pathway of the catalytic core is proposed.
Collapse
Affiliation(s)
- Darian D Cash
- Department of Chemistry and Biochemistry, and Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| | - Juli Feigon
- Department of Chemistry and Biochemistry, and Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| |
Collapse
|
16
|
Jiang J, Chan H, Cash DD, Miracco EJ, Ogorzalek Loo RR, Upton HE, Cascio D, O'Brien Johnson R, Collins K, Loo JA, Zhou ZH, Feigon J. Structure of Tetrahymena telomerase reveals previously unknown subunits, functions, and interactions. Science 2015; 350:aab4070. [PMID: 26472759 DOI: 10.1126/science.aab4070] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/01/2015] [Indexed: 12/17/2022]
Abstract
Telomerase helps maintain telomeres by processive synthesis of telomere repeat DNA at their 3'-ends, using an integral telomerase RNA (TER) and telomerase reverse transcriptase (TERT). We report the cryo-electron microscopy structure of Tetrahymena telomerase at ~9 angstrom resolution. In addition to seven known holoenzyme proteins, we identify two additional proteins that form a complex (TEB) with single-stranded telomere DNA-binding protein Teb1, paralogous to heterotrimeric replication protein A (RPA). The p75-p45-p19 subcomplex is identified as another RPA-related complex, CST (CTC1-STN1-TEN1). This study reveals the paths of TER in the TERT-TER-p65 catalytic core and single-stranded DNA exit; extensive subunit interactions of the TERT essential N-terminal domain, p50, and TEB; and other subunit identities and structures, including p19 and p45C crystal structures. Our findings provide structural and mechanistic insights into telomerase holoenzyme function.
Collapse
Affiliation(s)
- Jiansen Jiang
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA. Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA. California Nanosystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Henry Chan
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Darian D Cash
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Edward J Miracco
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | | | - Heather E Upton
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Duilio Cascio
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA. UCLA-U.S. Department of Energy (DOE) Institute of Genomics and Proteomics, UCLA, Los Angeles, CA 90095, USA
| | - Reid O'Brien Johnson
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA. Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA. UCLA-U.S. Department of Energy (DOE) Institute of Genomics and Proteomics, UCLA, Los Angeles, CA 90095, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA. California Nanosystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA. California Nanosystems Institute, UCLA, Los Angeles, CA 90095, USA. UCLA-U.S. Department of Energy (DOE) Institute of Genomics and Proteomics, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
17
|
Xue W, Song BA, Zhao HJ, Qi XB, Huang YJ, Liu XH. Novel myricetin derivatives: Design, synthesis and anticancer activity. Eur J Med Chem 2015; 97:155-63. [PMID: 25965778 DOI: 10.1016/j.ejmech.2015.04.063] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 10/23/2022]
Abstract
Telomere and telomerase were closely related to occurrence and development of some cancers. To enhance ability of myricetin moiety for inhibiting telomerase, we designed a series of novel myricetin derivatives based on reasonable analysis. The telomerase inhibition assay showed that compound 6d displayed the most potent inhibitory activity with IC50 value of 0.91 μM. The anticancer activity assay showed that 6d exhibited high activity against human breast cells MDA-MB-231. The docking simulation of compound 6d was performed to get the probable binding model, the results demonstrated that the furan ring inserted into the active site deeply and had hydrophobic interactions with residues of Phe 568, Pro 627, four methoxy groups had hydrophobic interactions with residues of Phe 568, Pro 627, Lys 902, Val 904 and Pro 929. Western blot results showed that expression of p65 and TERT protein was clearly down-regulated by compound 6d. These data support further studies for the rational design of more efficient p65 and TERT modulators.
Collapse
Affiliation(s)
- Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang 55002, PR China
| | - Bao-An Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang 55002, PR China.
| | - Hong Ju Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang 55002, PR China
| | - Xing Bao Qi
- School of Pharmacy, Anhui Medical University, Hefei, 230032, PR China
| | - Yin Jiu Huang
- Department of Bioscience, Bengbu Medical College, Bengbu, 233030, PR China
| | - Xin Hua Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang 55002, PR China; School of Pharmacy, Anhui Medical University, Hefei, 230032, PR China.
| |
Collapse
|
18
|
Tang WJ, Yang YA, Xu H, Shi JB, Liu XH. Synthesis and discovery of 18α-GAMG as anticancer agent in vitro and in vivo via down expression of protein p65. Sci Rep 2014; 4:7106. [PMID: 25407586 PMCID: PMC4236752 DOI: 10.1038/srep07106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/28/2014] [Indexed: 01/13/2023] Open
Abstract
Glycyrrhizic acid (GA) is a natural product with favorable antitumor activity. But, glycyrrhetinic acid monoglucuronide (GAMG) showed stronger antitumor activity than GA. It is of our interest to generate and identify novel compounds with regulation telomerase for cancer therapy. So, in this study, 18α-GAMG was synthesized via biotransformation. In vitro studies showed that it displayed potent anticancer activity and high selectivity on tumor liver cell SMMC-7721 versus human normal liver cell L-02. The further results in vivo confirmed that it could significantly improve pathological changes of N,N-diethylnitrosamine (DEN)-induced rat hepatic tumor. Western blot and immunofluorescence results indicated that the expression of p65-telomerase reverse transcriptase (TERT) was clearly down-regulated treated with it. Taken together, this study for the first time identified an active compound with high selectivity on tumor liver cell in mice. Furthermore, the title compound could inhibit the expression of protein p65 and TERT. These data support further studies to assess the rational design of more efficient p65 modulators in the future.
Collapse
Affiliation(s)
- Wen-jian Tang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Yong-an Yang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - He Xu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Jing-bo Shi
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Xin-hua Liu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| |
Collapse
|
19
|
Progress in structural studies of telomerase. Curr Opin Struct Biol 2014; 24:115-24. [PMID: 24508601 DOI: 10.1016/j.sbi.2014.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/01/2014] [Accepted: 01/08/2014] [Indexed: 02/01/2023]
Abstract
Telomerase is the ribonucleoprotein (RNP) reverse transcriptase responsible for synthesizing the 3' ends of linear chromosomes. It plays critical roles in tumorigenesis, cellular aging, and stem cell renewal. The past two years have seen exciting progress in determining telomerase holoenzyme architecture and the structural basis of telomerase activity. Notably, the first electron microscopy structures of telomerase were reported, of the Tetrahymena thermophila telomerase holoenzyme and a human telomerase dimer. In addition to new structures of TERT and TER domains, the first structures of telomerase protein domains beyond TERT, and their complexes with TER or telomeric single-stranded DNA, were reported. Together these studies provide the first glimpse into the organization of the proteins and RNA in the telomerase RNP.
Collapse
|
20
|
The 3' overhangs at Tetrahymena thermophila telomeres are packaged by four proteins, Pot1a, Tpt1, Pat1, and Pat2. EUKARYOTIC CELL 2013; 13:240-5. [PMID: 24297442 DOI: 10.1128/ec.00275-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although studies with the ciliate Tetrahymena thermophila have played a central role in advancing our understanding of telomere biology and telomerase mechanisms and composition, the full complement of Tetrahymena telomere proteins has not yet been identified. Previously, we demonstrated that in Tetrahymena, the telomeric 3' overhang is protected by a three-protein complex composed of Pot1a, Tpt1, and Pat1. Here we show that Tpt1 and Pat1 associate with a fourth protein, Pat2 (Pot1 associated Tetrahymena 2). Mass spectrometry of proteins copurifying with Pat1 or Tpt1 identified peptides from Pat2, Pot1a, Tpt1, and Pat1. The lack of other proteins copurifying with Pat1 or Tpt1 implies that the overhang is protected by a four-protein Pot1a-Tpt1-Pat1-Pat2 complex. We verified that Pat2 localizes to telomeres, but we were unable to detect direct binding to telomeric DNA. Cells depleted of Pat2 continue to divide, but the telomeres exhibit gradual shortening. The lack of growth arrest indicates that, in contrast to Pot1a and Tpt1, Pat2 is not required for the sequestration of the telomere from the DNA repair machinery. Instead, Pat2 is needed to regulate telomere length, most likely by acting in conjunction with Pat1 to allow telomerase access to the telomere.
Collapse
|
21
|
Laterreur N, Eschbach SH, Lafontaine DA, Wellinger RJ. A new telomerase RNA element that is critical for telomere elongation. Nucleic Acids Res 2013; 41:7713-24. [PMID: 23783570 PMCID: PMC3763530 DOI: 10.1093/nar/gkt514] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The stability of chromosome ends, the telomeres, is dependent on the ribonucleoprotein telomerase. In vitro, telomerase requires at least one RNA molecule and a reverse transcriptase-like protein. However, for telomere homeostasis in vivo, additional proteins are required. Telomerase RNAs of different species vary in size and sequence and only few features common to all telomerases are known. Here we show that stem-loop IVc of the Saccharomyces cerevisiae telomerase RNA contains a structural element that is required for telomerase function in vivo. Indeed, the distal portion of stem-loop IVc stimulates telomerase activity in vitro in a way that is independent of Est1 binding on more proximal portions of this stem-loop. Functional analyses of the RNA in vivo reveal that this distal element we call telomerase-stimulating structure (TeSS) must contain a bulged area in single stranded form and also show that Est1-dependent functions such as telomerase import or recruitment are not affected by TeSS. This study thus uncovers a new structural telomerase RNA element implicated in catalytic activity. Given previous evidence for TeSS elements in ciliate and mammalian RNAs, we speculate that this substructure is a conserved feature that is required for optimal telomerase holoenzyme function.
Collapse
Affiliation(s)
- Nancy Laterreur
- Department of Microbiology and Infectious Diseases and Department of Biology, RNA Group, Université de Sherbrooke, 3201, rue Jean-Mignault, Sherbrooke J1E 4K8, Canada
| | | | | | | |
Collapse
|
22
|
Akiyama BM, Gomez A, Stone MD. A conserved motif in Tetrahymena thermophila telomerase reverse transcriptase is proximal to the RNA template and is essential for boundary definition. J Biol Chem 2013; 288:22141-9. [PMID: 23760279 DOI: 10.1074/jbc.m113.452425] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The ends of linear chromosomes are extended by telomerase, a ribonucleoprotein complex minimally consisting of a protein subunit called telomerase reverse transcriptase (TERT) and the telomerase RNA (TER). TERT functions by reverse transcribing a short template region of TER into telomeric DNA. Proper assembly of TERT and TER is essential for telomerase activity; however, a detailed understanding of how TERT interacts with TER is lacking. Previous studies have identified an RNA binding domain (RBD) within TERT, which includes three evolutionarily conserved sequence motifs: CP2, CP, and T. Here, we used site-directed hydroxyl radical probing to directly identify sites of interaction between the TERT RBD and TER, revealing that the CP2 motif is in close proximity to a conserved region of TER known as the template boundary element (TBE). Gel shift assays on CP2 mutants confirmed that the CP2 motif is an RNA binding determinant. Our results explain previous work that established that mutations to the CP2 motif of TERT and to the TBE of TER both permit misincorporation of nucleotides into the growing DNA strand beyond the canonical template. Taken together, these results suggest a model in which the CP2 motif binds the TBE to strictly define which TER nucleotides can be reverse transcribed.
Collapse
Affiliation(s)
- Benjamin M Akiyama
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | | | | |
Collapse
|
23
|
Singh M, Choi CP, Feigon J. xRRM: a new class of RRM found in the telomerase La family protein p65. RNA Biol 2013; 10:353-9. [PMID: 23328630 DOI: 10.4161/rna.23608] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Genuine La and La-related proteins group 7 (LARP7) bind to the non-coding RNAs transcribed by RNA polymerase III (RNAPIII), which end in UUU-3'OH. The La motif and RRM1 of these proteins (the La module) cooperate to bind the UUU-3'OH, protecting the RNA from degradation, while other domains may be important for RNA folding or other functions. Among the RNAPIII transcripts is ciliate telomerase RNA (TER). p65, a member of the LARP7 family, is an integral Tetrahymena thermophila telomerase holoenzyme protein required for TER biogenesis and telomerase RNP assembly. p65, together with TER and telomerase reverse transcriptase (TERT), form the Tetrahymena telomerase RNP catalytic core. p65 has an N-terminal domain followed by a La module and a C-terminal domain, which binds to the TER stem 4. We recently showed that the p65 C-terminal domain harbors a cryptic, atypical RRM, which uses a unique mode of single- and double-strand RNA binding and is required for telomerase RNP catalytic core assembly. This domain, which we named xRRM, appears to be present in and unique to genuine La and LARP7 proteins. Here we review the structure of the xRRM, discuss how this domain could recognize diverse substrates of La and LARP7 proteins and discuss the functional implications of the xRRM as an RNP chaperone.
Collapse
Affiliation(s)
- Mahavir Singh
- Department of Chemistry and Biochemistry and the Molecular Biology Institute; University of California; Los Angeles, CA USA
| | | | | |
Collapse
|
24
|
Cole DI, Legassie JD, Bonifacio LN, Sekaran VG, Ding F, Dokholyan NV, Jarstfer MB. New models of Tetrahymena telomerase RNA from experimentally derived constraints and modeling. J Am Chem Soc 2012; 134:20070-80. [PMID: 23163801 DOI: 10.1021/ja305636u] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The telomerase ribonucleoprotein complex ensures complete replication of eukaryotic chromosomes. Telomerase RNA (TER) provides the template for replicating the G-rich strand of telomeric DNA, provides an anchor site for telomerase-associated proteins, and participates in catalysis through several incompletely characterized mechanisms. A major impediment toward understanding its nontemplating roles is the absence of high content structural information for TER within the telomerase complex. Here, we used selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) to examine the structure of Tetrahymena TER free in solution and bound to tTERT in the minimal telomerase RNP. We discovered a striking difference in the two conformations and established direct evidence for base triples in the tTER pseudoknot. We then used SHAPE data, previously published FRET data, and biochemical inference to model the structure of tTER using discrete molecular dynamics simulations. The resulting tTER structure was docked with a homology model of the Tetrahymena telomerase reverse transcriptase (tTERT) to characterize the conformational changes of tTER telomerase assembly. Free in solution, tTER appears to contain four pairing regions: stems I, II, and IV, which are present in the commonly accepted structure, and stem III, a large paired region that encompasses the template and pseudoknot domains. Our interpretation of the data and subsequent modeling affords a molecular model for telomerase assemblage in which a large stem III of tTER unwinds to allow proper association of the template with the tTERT active site and formation of the pseudoknot. Additionally, analysis of our SHAPE data and previous enzymatic footprinting allow us to propose a model for stem-loop IV function in which tTERT is activated by binding stem IV in the major groove of the helix-capping loop.
Collapse
Affiliation(s)
- Daud I Cole
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Telomerase adds simple-sequence repeats to the ends of linear chromosomes to counteract the loss of end sequence inherent in conventional DNA replication. Catalytic activity for repeat synthesis results from the cooperation of the telomerase reverse transcriptase protein (TERT) and the template-containing telomerase RNA (TER). TERs vary widely in sequence and structure but share a set of motifs required for TERT binding and catalytic activity. Species-specific TER motifs play essential roles in RNP biogenesis, stability, trafficking, and regulation. Remarkably, the biogenesis pathways that generate mature TER differ across eukaryotes. Furthermore, the cellular processes that direct the assembly of a biologically functional telomerase holoenzyme and its engagement with telomeres are evolutionarily varied and regulated. This review highlights the diversity of strategies for telomerase RNP biogenesis, RNP assembly, and telomere recruitment among ciliates, yeasts, and vertebrates and suggests common themes in these pathways and their regulation.
Collapse
Affiliation(s)
- Emily D. Egan
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3200, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3200, USA
- Corresponding authorE-mail
| |
Collapse
|
26
|
Singh M, Wang Z, Koo BK, Patel A, Cascio D, Collins K, Feigon J. Structural basis for telomerase RNA recognition and RNP assembly by the holoenzyme La family protein p65. Mol Cell 2012; 47:16-26. [PMID: 22705372 PMCID: PMC3398246 DOI: 10.1016/j.molcel.2012.05.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 03/02/2012] [Accepted: 05/10/2012] [Indexed: 02/07/2023]
Abstract
Telomerase is a ribonucleoprotein complex essential for maintenance of telomere DNA at linear chromosome ends. The catalytic core of Tetrahymena telomerase comprises a ternary complex of telomerase RNA (TER), telomerase reverse transcriptase (TERT), and the essential La family protein p65. NMR and crystal structures of p65 C-terminal domain and its complex with stem IV of TER reveal that RNA recognition is achieved by a combination of single- and double-stranded RNA binding, which induces a 105° bend in TER. The domain is a cryptic, atypical RNA recognition motif with a disordered C-terminal extension that forms an α helix in the complex necessary for hierarchical assembly of TERT with p65-TER. This work provides the first structural insight into biogenesis and assembly of TER with a telomerase-specific protein. Additionally, our studies define a structurally homologous domain (xRRM) in genuine La and LARP7 proteins and suggest a general mode of RNA binding for biogenesis of their diverse RNA targets.
Collapse
Affiliation(s)
- Mahavir Singh
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| | - Zhonghua Wang
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| | - Bon-Kyung Koo
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| | - Anooj Patel
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| | - Duilio Cascio
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720-3200, USA
| | - Juli Feigon
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| |
Collapse
|
27
|
Akiyama BM, Loper J, Najarro K, Stone MD. The C-terminal domain of Tetrahymena thermophila telomerase holoenzyme protein p65 induces multiple structural changes in telomerase RNA. RNA (NEW YORK, N.Y.) 2012; 18:653-60. [PMID: 22315458 PMCID: PMC3312553 DOI: 10.1261/rna.031377.111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The unique cellular activity of the telomerase reverse transcriptase ribonucleoprotein (RNP) requires proper assembly of protein and RNA components into a functional complex. In the ciliate model organism Tetrahymena thermophila, the La-domain protein p65 is required for in vivo assembly of telomerase. Single-molecule and biochemical studies have shown that p65 promotes efficient RNA assembly with the telomerase reverse transcriptase (TERT) protein, in part by inducing a bend in the conserved stem IV region of telomerase RNA (TER). The domain architecture of p65 consists of an N-terminal domain, a La-RRM motif, and a C-terminal domain (CTD). Using single-molecule Förster resonance energy transfer (smFRET), we demonstrate the p65(CTD) is necessary for the RNA remodeling activity of the protein and is sufficient to induce a substantial conformational change in stem IV of TER. Moreover, nuclease protection assays directly map the site of p65(CTD) interaction to stem IV and reveal that, in addition to bending stem IV, p65 binding reorganizes nucleotides that comprise the low-affinity TERT binding site within stem-loop IV.
Collapse
Affiliation(s)
| | - John Loper
- Department of Chemistry and Biochemistry
| | | | - Michael D. Stone
- Department of Chemistry and Biochemistry
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA
- Corresponding author.E-mail .
| |
Collapse
|
28
|
Telomerase RNA biogenesis involves sequential binding by Sm and Lsm complexes. Nature 2012; 484:260-4. [PMID: 22446625 PMCID: PMC3326189 DOI: 10.1038/nature10924] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 02/07/2012] [Indexed: 12/03/2022]
Abstract
In most eukaryotes, the progressive loss of chromosome-terminal DNA sequences is counteracted by the enzyme telomerase, a reverse transcriptase that uses part of an RNA subunit as template to synthesize telomeric repeats. Many cancer cells express high telomerase activity and mutations in telomerase subunits are associated with degenerative syndromes including dyskeratosis congenita and aplastic anaemia. The therapeutic value of altering telomerase activity thus provides ample impetus to study the biogenesis and regulation of this enzyme in human cells and model systems. We have previously identified a precursor of the fission yeast telomerase RNA subunit (TER1)1 and have demonstrated that the mature 3′ end is generated by the spliceosome in a single cleavage reaction akin to the first step of splicing2. Directly upstream and partially overlapping with the spliceosomal cleavage site is a putative Sm protein binding site. Sm and Like-Sm (LSm) proteins belong to an ancient family of RNA binding proteins represented in all three domains of life3. Members of this family form ring complexes on specific sets of target RNAs and play critical roles in their biogenesis, function and turnover. We now demonstrate that the canonical Sm ring and the Lsm2-8 complex sequentially associate with fission yeast TER1. The Sm ring binds to the TER1 precursor, stimulates spliceosomal cleavage and promotes the hypermethylation of the 5′ cap by Tgs1. Sm proteins are then replaced by the Lsm2-8 complex, which promotes the association with the catalytic subunit and protects the mature 3′ end of TER1 from exonucleolytic degradation. Our findings define the sequence of events that occur during telomerase biogenesis and characterize roles for Sm and Lsm complexes as well as for the methylase Tgs1.
Collapse
|
29
|
Berman AJ, Akiyama BM, Stone MD, Cech TR. The RNA accordion model for template positioning by telomerase RNA during telomeric DNA synthesis. Nat Struct Mol Biol 2011; 18:1371-5. [PMID: 22101935 PMCID: PMC3230705 DOI: 10.1038/nsmb.2174] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/07/2011] [Indexed: 12/27/2022]
Abstract
Telomerase is a ribonucleoprotein (RNP) enzyme that maintains the ends of linear eukaryotic chromosomes and whose activation is a hallmark of 90% of all cancers. This RNP minimally contains a reverse transcriptase protein subunit (TERT) that catalyzes telomeric DNA synthesis and an RNA subunit (TER) that has templating, architectural and protein-scaffolding roles. Telomerase is unique among polymerases in that it synthesizes multiple copies of the template on the 3′ end of a primer following a single binding event, a process known as repeat addition processivity (RAP). Using biochemical assays and single-molecule Förster resonance energy transfer (smFRET) experiments on Tetrahymena thermophila telomerase, we now directly demonstrate that TER contributes to template positioning within the active site and to the template translocation required for RAP. We propose that the single-stranded RNA elements flanking the template act as a molecular accordion, undergoing reciprocal extension and compaction during telomerase translocation.
Collapse
Affiliation(s)
- Andrea J Berman
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado, USA
| | | | | | | |
Collapse
|
30
|
Linger BR, Morin GB, Price CM. The Pot1a-associated proteins Tpt1 and Pat1 coordinate telomere protection and length regulation in Tetrahymena. Mol Biol Cell 2011; 22:4161-70. [PMID: 21900503 PMCID: PMC3204076 DOI: 10.1091/mbc.e11-06-0551] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We have identified two new Pot1a-associated telomere proteins, Pat1 and Tpt1, from Tetrahymena. Tpt1 is required to prevent telomere elongation and appears to be the Tetrahymena equivalent of vertebrate TPP1. Pat1 depletion causes gradual telomere shortening, indicating that it is needed for telomerase to gain access to the DNA terminus. We have identified two new telomere proteins, Tpt1 and Pat1, from the ciliate Tetrahymena thermophila. Although Tetrahymena telomerase is well characterized, only one telomere protein had previously been identified. This was the G-overhang binding-protein Pot1a. Tpt1 and Pat1 were isolated as Pot1a binding partners and shown to localize to telomeres. As Tpt1 and Pat1 were both found to be essential, conditional cell lines were generated to explore their function. Tpt1 depletion caused a rapid growth arrest and telomere elongation in the absence of cell division. The phenotype was similar to that seen after Pot1a depletion suggesting that Tpt1 and Pot1a function together to regulate telomere length and prevent telomere deprotection. In contrast, Pat1 depletion had a modest effect on cell growth but caused progressive telomere shortening similar to that observed upon TERT depletion. Thus Pat1 appears to be needed for telomerase to maintain the chromosome terminus. Analysis of Pot1a-Tpt1-Pat1 complex formation using purified proteins indicated that Tpt1 interacts directly with Pot1a while Pat1 interacts with Tpt1. Our results indicate that Tpt1 is the Tetrahymena equivalent of mammalian TPP1, Schizosaccharomyces pombe Tpz1, and Oxytricha nova TEBPβ.
Collapse
Affiliation(s)
- Benjamin R Linger
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | |
Collapse
|
31
|
Functional importance of telomerase pseudoknot revealed by single-molecule analysis. Proc Natl Acad Sci U S A 2011; 108:20339-44. [PMID: 21571642 DOI: 10.1073/pnas.1017686108] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Telomerase ribonucleoprotein (RNP) employs an RNA subunit to template the addition of telomeric repeats onto chromosome ends. Previous studies have suggested that a region of the RNA downstream of the template may be important for telomerase activity and that the region could fold into a pseudoknot. Whether the pseudoknot motif is formed in the active telomerase RNP and what its functional role is have not yet been conclusively established. Using single-molecule FRET, we show that the isolated pseudoknot sequence stably folds into a pseudoknot. However, in the context of the full-length telomerase RNA, interference by other parts of the RNA prevents the formation of the pseudoknot. The protein subunits of the telomerase holoenzyme counteract RNA-induced misfolding and allow a significant fraction of the RNPs to form the pseudoknot structure. Only those RNP complexes containing a properly folded pseudoknot are catalytically active. These results not only demonstrate the functional importance of the pseudoknot but also reveal the critical role played by telomerase proteins in pseudoknot folding.
Collapse
|