1
|
Zhang J, Wang QH, Miao BB, Wu RX, Li QQ, Tang BG, Liang ZB, Niu SF. Liver transcriptome analysis reveal the metabolic and apoptotic responses of Trachinotus ovatus under acute cold stress. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109476. [PMID: 38447780 DOI: 10.1016/j.fsi.2024.109476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/07/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
Trachinotus ovatus is an economically important fish and has been recommended as a high-quality aquaculture fish breed for the high-quality development of sea ranches in the South China Sea. However, T. ovatus shows intolerance to low temperature, greatly limiting the extension of farming scale, reducing production efficiency in winter, and increasing farming risks. In this study, liver transcriptome analysis was investigated in T. ovatus under acute low temperature conditions (20 and 15 °C) using RNA sequencing (RNA-Seq) technology. Inter-groups differential expression analysis and trend analysis screened 1219 DEGs and four significant profiles (profiles 0, 3, 4, and 7), respectively. GO enrichment analysis showed that these DEGs were mainly related to metabolic process and cell growth and death process. KEGG enrichment analysis found that DEGs were mainly associated with lipid metabolism, carbohydrate metabolism, and cell growth and death, such as gluconeogenesis, glycolysis, fatty acid oxidation, cholesterol biosynthesis, p53 signaling pathway, cell cycle arrest, and apoptotic cell death. Moreover, protein-protein interaction networks identified two hub genes (FOS and JUNB) and some important genes related to metabolic process and cell growth and death process, that corresponding to enrichment analysis. Overall, gluconeogenesis, lipid mobilization, and fatty acid oxidation in metabolic process and cell cycle arrest and apoptotic cell death in cell growth and death process were enhanced, while glycolysis, liver glycogen synthesis and cholesterol biosynthesis in metabolic process were inhibited. The enhancement or attenuatment of metabolic process and cell growth and death process is conducive to maintain energy balance, normal fluidity of cell membrane, normal physiological functions of liver cell, enhancing the tolerance of T. ovatus to cold stress. These results suggested that metabolic process and cell growth and death process play important roles in response to acute cold stress in the liver of T. ovatus. Gene expreesion level analysis showed that acute cold stress at 15 °C was identified as a critical temperature point for T. ovatus in term of cellular metabolism alteration and apoptosis inducement, and rewarming intervention should be timely implemented above 15 °C. Our study can provide theoretical support for breeding cold-tolerant cultivars of T. ovatus, which is contributed to high-quality productions fish production.
Collapse
Affiliation(s)
- Jing Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China
| | - Qing-Hua Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ben-Ben Miao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ren-Xie Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China
| | - Qian-Qian Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Bao-Gui Tang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China
| | - Zhen-Bang Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Su-Fang Niu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China.
| |
Collapse
|
2
|
Moise AC, Kay JE, Engelward BP. Transgenic mice harboring direct repeat substrates reveal key underlying causes of homologous recombination in vivo. DNA Repair (Amst) 2022; 120:103419. [DOI: 10.1016/j.dnarep.2022.103419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2022]
|
3
|
BRCA2 Promotes Spontaneous Homologous Recombination In Vivo. Cancers (Basel) 2021; 13:cancers13153663. [PMID: 34359565 PMCID: PMC8345144 DOI: 10.3390/cancers13153663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND BRCA2 is known to be a tumor suppressor involved in homologous recombination repair and presumed to prevent genome instability in normal tissues prior to the development of tumors. Typical assessment of BRCA2 deficiency on the genome involves cell-based models using cancer cells with mixed genetic contexts, but the role in normal tissue in vivo has not been clearly demonstrated. METHODS Using conditional deletion of Brca2 exon 11, the region containing all eight BRC repeats, in the retinal pigment epithelium and the pink-eyed unstable mouse model, we evaluate the frequency of DNA deletion events. RESULTS In the current study, we show that conditional loss of Brca2 exon 11 results in a decreased frequency of spontaneous homologous recombination compared to wild-type mice. Of note, we observe no apparent concomitant increase in events that indicate single-strand annealing by the pink-eyed unstable mouse model. CONCLUSIONS Therefore, our results demonstrate that BRCA2, as expected, is required for high-fidelity homologous recombination DNA repair in normal tissues, here in a tissue undergoing normal proliferation through normal development.
Collapse
|
4
|
Kass EM, Lim PX, Helgadottir HR, Moynahan ME, Jasin M. Robust homology-directed repair within mouse mammary tissue is not specifically affected by Brca2 mutation. Nat Commun 2016; 7:13241. [PMID: 27779185 PMCID: PMC5093336 DOI: 10.1038/ncomms13241] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/15/2016] [Indexed: 01/07/2023] Open
Abstract
The mammary gland undergoes significant proliferative stages after birth, but little is known about how the developmental changes impact DNA double-strand break (DSB) repair. Mutations in multiple genes involved in homology-directed repair (HDR), considered a particularly accurate pathway for repairing DSBs, are linked to breast cancer susceptibility, including BRCA2. Using reporter mice that express an inducible endonuclease, we find that HDR is particularly robust in mammary tissue during puberty and pregnancy, accounting for 34-40% of detected repair events, more than in other tissues examined. Brca2 hypomorphic mutation leads to HDR defects in mammary epithelium during puberty and pregnancy, including in different epithelial lineages. Notably, a similar dependence on Brca2 is observed in other proliferative tissues, including small intestine epithelium. Our results suggest that the greater reliance on HDR in the proliferating mammary gland, rather than a specific dependence on BRCA2, may increase its susceptibility to tumorigenesis incurred by BRCA2 mutation.
Collapse
Affiliation(s)
- Elizabeth M Kass
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Pei Xin Lim
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Hildur R Helgadottir
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Mary Ellen Moynahan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| |
Collapse
|
5
|
Mcilhatton MA, Boivin GP, Groden J. Manipulation of DNA Repair Proficiency in Mouse Models of Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1414383. [PMID: 27413734 PMCID: PMC4931062 DOI: 10.1155/2016/1414383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/09/2016] [Indexed: 12/20/2022]
Abstract
Technical and biological innovations have enabled the development of more sophisticated and focused murine models that increasingly recapitulate the complex pathologies of human diseases, in particular cancer. Mouse models provide excellent in vivo systems for deciphering the intricacies of cancer biology within the context of precise experimental settings. They present biologically relevant, adaptable platforms that are amenable to continual improvement and refinement. We discuss how recent advances in our understanding of tumorigenesis and the underlying deficiencies of DNA repair mechanisms that drive it have been informed by using genetically engineered mice to create defined, well-characterized models of human colorectal cancer. In particular, we focus on how mechanisms of DNA repair can be manipulated precisely to create in vivo models whereby the underlying processes of tumorigenesis are accelerated or attenuated, dependent on the composite alleles carried by the mouse model. Such models have evolved to the stage where they now reflect the initiation and progression of sporadic cancers. The review is focused on mouse models of colorectal cancer and how insights from these models have been instrumental in shaping our understanding of the processes and potential therapies for this disease.
Collapse
Affiliation(s)
- Michael A. Mcilhatton
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
| | - Gregory P. Boivin
- Department of Pathology, Boonshoft School of Medicine, Wright State University, Health Sciences Building 053, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA
| | - Joanna Groden
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
6
|
McIlhatton MA, Murnan K, Carson D, Boivin GP, Croce CM, Groden J. Genetic Manipulation of Homologous Recombination In Vivo Attenuates Intestinal Tumorigenesis. Cancer Prev Res (Phila) 2015; 8:650-6. [PMID: 25908507 DOI: 10.1158/1940-6207.capr-15-0001-t] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/07/2015] [Indexed: 11/16/2022]
Abstract
Although disruption of DNA repair capacity is unquestionably associated with cancer susceptibility in humans and model organisms, it remains unclear if the inherent tumor phenotypes of DNA repair deficiency syndromes can be regulated by manipulating DNA repair pathways. Loss-of-function mutations in BLM, a member of the RecQ helicase family, cause Bloom's syndrome (BS), a rare, recessive genetic disorder that predisposes to many types of cancer. BLM functions in many aspects of DNA homeostasis, including the suppression of homologous recombination (HR) in somatic cells. We investigated whether BLM overexpression, in contrast with loss-of-function mutations, attenuated the intestinal tumor phenotypes of Apc(Min/+) and Apc(Min/+);Msh2(-/-) mice, animal models of familial adenomatous polyposis coli (FAP). We constructed a transgenic mouse line expressing human BLM (BLM-Tg) and crossed it onto both backgrounds. BLM-Tg decreased adenoma incidence in a dose-dependent manner in our Apc(Min/) (+) model of FAP, although levels of GIN were unaffected and concomitantly increased animal survival over 50%. It did not reduce intestinal tumorigenesis in Apc(Min/) (+);Msh2(-/-) mice. We used the pink-eyed unstable (p(un)) mouse model to demonstrate that increasing BLM dosage in vivo lowered endogenous levels of HR by 2-fold. Our data suggest that attenuation of the Min phenotype is achieved through a direct effect of BLM-Tg on the HR repair pathway. These findings demonstrate that HR can be manipulated in vivo to modulate tumor formation at the organismal level. Our data suggest that lowering HR frequencies may have positive therapeutic outcomes in the context of specific hereditary cancer predisposition syndromes, exemplified by FAP.
Collapse
Affiliation(s)
- Michael A McIlhatton
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio.
| | - Kevin Murnan
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio
| | - Daniel Carson
- Clermont College, University of Cincinnati, Batavia, Ohio
| | - Gregory P Boivin
- Department of Pathology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio
| | - Carlo M Croce
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio
| | - Joanna Groden
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
7
|
Ben Salah G, Hadj Salem I, Masmoudi A, Kallabi F, Turki H, Fakhfakh F, Ayadi H, Kamoun H. A novel frameshift mutation in BLM gene associated with high sister chromatid exchanges (SCE) in heterozygous family members. Mol Biol Rep 2014; 41:7373-80. [PMID: 25129257 DOI: 10.1007/s11033-014-3624-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/19/2014] [Indexed: 12/01/2022]
Abstract
The Bloom syndrome (BS) is an autosomic recessive disorder comprising a wide range of abnormalities, including stunted growth, immunodeficiency, sun sensitivity and increased frequency of various types of cancer. Bloom syndrome cells display a high level of genetic instability, including a 10-fold increase in the sister chromatid exchanges (SCE) level. Bloom syndrome arises through mutations in both alleles of the BLM gene, which was identified as a member of the RecQ helicase family. In this study, we screened a Tunisian family with three BS patients. Cytogenetic analysis showed several chromosomal aberrations, and an approximately 14-fold elevated SCE frequency in BS cells. A significant increase in SCE frequency was observed in some family members but not reaching the BS patients values, leading to suggest that this could be due to the heterozygous profile. Microsatellite genotyping using four fluorescent dye-labeled microsatellite markers revealed evidence of linkage to BLM locus and the healthy members, sharing higher SCE frequency, showed heterozygous haplotypes as expected. Additionally, the direct BLM gene sequencing identified a novel homozygous frameshift mutation c.3617-3619delAA (p.K1207fsX9) in BS patients and a heterozygous BLM mutation in the family members with higher SCE frequency. Our findings suggest that this latter mutation likely leads to a reduced BLM activity explaining the homologous recombination repair defect and, therefore, the increase in SCE. Based on the present data, the screening of this mutation could contribute to the rapid diagnosis of BS. The genetic confirmation of the mutation in BLM gene provides crucial information for genetic counseling and prenatal diagnosis.
Collapse
Affiliation(s)
- Ghada Ben Salah
- Laboratory of Human Molecular Genetics, Faculty of Medicine, University of Sfax, Av. Majida Boulila, 3029, Sfax, Tunisia,
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Brown AD, Sager BW, Gorthi A, Tonapi SS, Brown EJ, Bishop AJR. ATR suppresses endogenous DNA damage and allows completion of homologous recombination repair. PLoS One 2014; 9:e91222. [PMID: 24675793 PMCID: PMC3968013 DOI: 10.1371/journal.pone.0091222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/10/2014] [Indexed: 11/28/2022] Open
Abstract
DNA replication fork stalling or collapse that arises from endogenous damage poses a serious threat to genome stability, but cells invoke an intricate signaling cascade referred to as the DNA damage response (DDR) to prevent such damage. The gene product ataxia telangiectasia and Rad3-related (ATR) responds primarily to replication stress by regulating cell cycle checkpoint control, yet it’s role in DNA repair, particularly homologous recombination (HR), remains unclear. This is of particular interest since HR is one way in which replication restart can occur in the presence of a stalled or collapsed fork. Hypomorphic mutations in human ATR cause the rare autosomal-recessive disease Seckel syndrome, and complete loss of Atr in mice leads to embryonic lethality. We recently adapted the in vivo murine pink-eyed unstable (pun) assay for measuring HR frequency to be able to investigate the role of essential genes on HR using a conditional Cre/loxP system. Our system allows for the unique opportunity to test the effect of ATR loss on HR in somatic cells under physiological conditions. Using this system, we provide evidence that retinal pigment epithelium (RPE) cells lacking ATR have decreased density with abnormal morphology, a decreased frequency of HR and an increased level of chromosomal damage.
Collapse
Affiliation(s)
- Adam D. Brown
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Brian W. Sager
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Aparna Gorthi
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Sonal S. Tonapi
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Eric J. Brown
- Abramson Family Cancer Research Institute, Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Alexander J. R. Bishop
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Cancer Therapy and Research Center, University of Texas Health Science Center, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
9
|
White RR, Sung P, Vestal CG, Benedetto G, Cornelio N, Richardson C. Double-strand break repair by interchromosomal recombination: an in vivo repair mechanism utilized by multiple somatic tissues in mammals. PLoS One 2013; 8:e84379. [PMID: 24349572 PMCID: PMC3862804 DOI: 10.1371/journal.pone.0084379] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 11/22/2013] [Indexed: 01/22/2023] Open
Abstract
Homologous recombination (HR) is essential for accurate genome duplication and maintenance of genome stability. In eukaryotes, chromosomal double strand breaks (DSBs) are central to HR during specialized developmental programs of meiosis and antigen receptor gene rearrangements, and form at unusual DNA structures and stalled replication forks. DSBs also result from exposure to ionizing radiation, reactive oxygen species, some anti-cancer agents, or inhibitors of topoisomerase II. Literature predicts that repair of such breaks normally will occur by non-homologous end-joining (in G1), intrachromosomal HR (all phases), or sister chromatid HR (in S/G2). However, no in vivo model is in place to directly determine the potential for DSB repair in somatic cells of mammals to occur by HR between repeated sequences on heterologs (i.e., interchromosomal HR). To test this, we developed a mouse model with three transgenes—two nonfunctional green fluorescent protein (GFP) transgenes each containing a recognition site for the I-SceI endonuclease, and a tetracycline-inducible I-SceI endonuclease transgene. If interchromosomal HR can be utilized for DSB repair in somatic cells, then I-SceI expression and induction of DSBs within the GFP reporters may result in a functional GFP+ gene. Strikingly, GFP+ recombinant cells were observed in multiple organs with highest numbers in thymus, kidney, and lung. Additionally, bone marrow cultures demonstrated interchromosomal HR within multiple hematopoietic subpopulations including multi-lineage colony forming unit–granulocyte-erythrocyte-monocyte-megakaryocte (CFU-GEMM) colonies. This is a direct demonstration that somatic cells in vivo search genome-wide for homologous sequences suitable for DSB repair, and this type of repair can occur within early developmental populations capable of multi-lineage differentiation.
Collapse
Affiliation(s)
- Ryan R. White
- Department of Biology, University of North Carolina-Charlotte, Charlotte, North Carolina, United States of America
| | - Patricia Sung
- Developmental Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - C. Greer Vestal
- Department of Biology, University of North Carolina-Charlotte, Charlotte, North Carolina, United States of America
| | - Gregory Benedetto
- Department of Biology, University of North Carolina-Charlotte, Charlotte, North Carolina, United States of America
| | - Noelle Cornelio
- Department of Biology, University of North Carolina-Charlotte, Charlotte, North Carolina, United States of America
| | - Christine Richardson
- Department of Biology, University of North Carolina-Charlotte, Charlotte, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
10
|
Karia B, Martinez JA, Bishop AJR. Induction of homologous recombination following in utero exposure to DNA-damaging agents. DNA Repair (Amst) 2013; 12:912-21. [PMID: 24029142 DOI: 10.1016/j.dnarep.2013.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 07/06/2013] [Accepted: 08/19/2013] [Indexed: 11/19/2022]
Abstract
Much of our understanding of homologous recombination, as well as the development of the working models for these processes, has been derived from extensive work in model organisms, such as yeast and fruit flies, and mammalian systems by studying the repair of induced double strand breaks or repair following exposure to genotoxic agents in vitro. We therefore set out to expand this in vitro work to ask whether DNA-damaging agents with varying modes of action could induce somatic change in an in vivo mouse model of homologous recombination. We exposed pregnant dams to DNA-damaging agents, conferring a variety of lesions at a specific time in embryo development. To monitor homologous recombination frequency, we used the well-established retinal pigment epithelium pink-eyed unstable assay. Homologous recombination resulting in the deletion of a duplicated 70 kb fragment in the coding region of the Oca2 gene renders this gene functional and can be visualized as a pigmented eyespot in the retinal pigment epithelium. We observed an increased frequency of pigmented eyespots in resultant litters following exposure to cisplatin, methyl methanesulfonate, ethyl methanesulfonate, 3-aminobenzamide, bleomycin, and etoposide with a contrasting decrease in the frequency of detectable reversion events following camptothecin and hydroxyurea exposure. The somatic genomic rearrangements that result from such a wide variety of differently acting damaging agents implies long-term potential effects from even short-term in utero exposures.
Collapse
Affiliation(s)
- Bijal Karia
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA; Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
11
|
Kass EM, Helgadottir HR, Chen CC, Barbera M, Wang R, Westermark UK, Ludwig T, Moynahan ME, Jasin M. Double-strand break repair by homologous recombination in primary mouse somatic cells requires BRCA1 but not the ATM kinase. Proc Natl Acad Sci U S A 2013; 110:5564-9. [PMID: 23509290 PMCID: PMC3619303 DOI: 10.1073/pnas.1216824110] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Homology-directed repair (HDR) is a critical pathway for the repair of DNA double-strand breaks (DSBs) in mammalian cells. Efficient HDR is thought to be crucial for maintenance of genomic integrity during organismal development and tumor suppression. However, most mammalian HDR studies have focused on transformed and immortalized cell lines. We report here the generation of a Direct Repeat (DR)-GFP reporter-based mouse model to study HDR in primary cell types derived from diverse lineages. Embryonic and adult fibroblasts from these mice as well as cells derived from mammary epithelium, ovary, and neonatal brain were observed to undergo HDR at I-SceI endonuclease-induced DSBs at similar frequencies. When the DR-GFP reporter was crossed into mice carrying a hypomorphic mutation in the breast cancer susceptibility gene Brca1, a significant reduction in HDR was detected, showing that BRCA1 is critical for HDR in somatic cell types. Consistent with an HDR defect, Brca1 mutant mice are highly sensitive to the cross-linking agent mitomycin C. By contrast, loss of the DSB signaling ataxia telangiectasia-mutated (ATM) kinase did not significantly alter HDR levels, indicating that ATM is dispensable for HDR. Notably, chemical inhibition of ATM interfered with HDR. The DR-GFP mouse provides a powerful tool for dissecting the genetic requirements of HDR in a diverse array of somatic cell types in a normal, nontransformed cellular milieu.
Collapse
Affiliation(s)
| | - Hildur R. Helgadottir
- Developmental Biology Program
- Weill Graduate School of Medical Sciences of Cornell University, and
| | - Chun-Chin Chen
- Developmental Biology Program
- Weill Graduate School of Medical Sciences of Cornell University, and
| | | | | | | | - Thomas Ludwig
- Department of Molecular and Cellular Biochemistry, Ohio State University Wexner Medical Center, Columbus, OH 43210
| | - Mary Ellen Moynahan
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065; and
| | - Maria Jasin
- Developmental Biology Program
- Weill Graduate School of Medical Sciences of Cornell University, and
| |
Collapse
|