1
|
Mattarocci S. The DNA damage tolerance factor Rad5 and telomere replication. Curr Genet 2025; 71:11. [PMID: 40418329 DOI: 10.1007/s00294-025-01315-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/03/2025] [Accepted: 04/22/2025] [Indexed: 05/27/2025]
Abstract
The DNA Damage Tolerance pathway (DDT) is one of the major mechanisms for resolving replication fork blocks. A key factor in DDT is the fork-associated clamp PCNA, which can undergo to mono- or polyubiquitination, leading to error-prone or error-free modes of DNA damage bypass, respectively. In the yeast Saccharomyces cerevisiae, Rad5HLTF/SNF2 factor plays important roles in both pathways: (i) promoting the error-free mode through PCNA polyubiquitination and transient template switching and (ii) interacting with specialized DNA polymerases involved in the error-prone pathway. Rad5 also associates with telomeres, the repetitive DNA regions present at the ends of chromosomes. Telomeric DNA, tightly bound by tandem proteins arrays, poses unique challenges to replication fork progression. Here, I review the current understanding of the link between Rad5 and telomeres and provide evidence that Rad5 binds to yeast telomeres, with notable enrichment during telomere replication. This finding highlights a connection between telomeres and an important DDT factor in unperturbed wild-type cells, raising intriguing possibilities regarding the functional interplay between telomere replication and DNA damage tolerance mechanisms.
Collapse
Affiliation(s)
- Stefano Mattarocci
- Université Paris-Saclay, Université Paris-Cité, CEA, Institut de biologie François Jacob, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, Inserm, France.
| |
Collapse
|
2
|
Xie H, Song L, Mao G, Han J, Pu J, Wu Z, Chen J, Zhou J, Huang J, Fang D, Liu T. Synergistic protection of nascent DNA at stalled forks by MSANTD4 and BRCA1/2-RAD51. Nat Chem Biol 2025:10.1038/s41589-024-01833-9. [PMID: 39809895 DOI: 10.1038/s41589-024-01833-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
The regressed arms of reversed replication forks exhibit structural similarities to one-ended double-stranded breaks and need to be protected against uncontrolled nucleolytic degradation. Here, we identify MSANTD4 (Myb/SANT-like DNA-binding domain-containing protein 4), a functionally uncharacterized protein that uniquely counters the replication protein A (RPA)-Bloom (BLM)/Werner syndrome helicase (WRN)-DNA replication helicase/nuclease 2 (DNA2) complex to safeguard reversed replication forks from detrimental degradation, independently of the breast cancer susceptibility proteins (BRCA1/2)-DNA repair protein RAD51 pathway. MSANTD4 specifically interacts with the junctions between single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in DNA substrates harboring a 3' overhang, which resemble the structural features of regressed arms processed by WRN-DNA2. This DNA-binding capability allows MSANTD4 to accumulate at reversed forks, strategically antagonizing the RPA-BLM/WRN-DNA2 complex by impeding its access to the ssDNA-dsDNA junction of the regressed arms. Loss of MSANTD4 exacerbates genome instability induced by replication stress in BRCA1/2-deficient cells. Our findings unveil a collaborative defense mechanism orchestrated by MSANTD4 and BRCA1/2-RAD51, effectively counteracting nucleolytic attacks on the regressed arms and synergistically preserving the integrity of reversed forks.
Collapse
Affiliation(s)
- Haihua Xie
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lizhi Song
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China
| | - Genxiang Mao
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinhua Han
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiali Pu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhibing Wu
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Chen
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Huang
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China.
| | - Dong Fang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
| | - Ting Liu
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
3
|
Adolph MB, Warren GM, Couch FB, Greer BH, Eichman BF, Cortez D. WITHDRAWN: Strand dependent bypass of DNA lesions during fork reversal by ATP-dependent translocases SMARCAL1, ZRANB3, and HLTF. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613558. [PMID: 39345618 PMCID: PMC11429910 DOI: 10.1101/2024.09.17.613558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The authors have withdrawn this manuscript because they identified problems with how some figure panels were processed. Those experiments will be repeated before deposition of a new manuscript. Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding authors.
Collapse
|
4
|
Feng S, Liu K, Shang J, Hoeg L, Pastore G, Yang W, Roy S, Sastre-Moreno G, Young JTF, Wu W, Xu D, Durocher D. Profound synthetic lethality between SMARCAL1 and FANCM. Mol Cell 2024; 84:4522-4537.e7. [PMID: 39510066 DOI: 10.1016/j.molcel.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/06/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024]
Abstract
DNA replication stress is a threat to genome integrity. The large SNF2-family of ATPases participates in preventing and mitigating DNA replication stress by employing their ATP-driven motor to remodel DNA or DNA-bound proteins. To understand the contribution of these ATPases in genome maintenance, we undertook CRISPR-based synthetic lethality screens in human cells with three SNF2-type ATPases: SMARCAL1, ZRANB3, and HLTF. Here, we show that SMARCAL1 displays a profound synthetic-lethal interaction with FANCM, another ATP-dependent translocase involved in DNA replication and genome stability. Their combined loss causes severe genome instability that we link to chromosome breakage at loci enriched in simple repeats, which are known to challenge replication fork progression. Our findings illuminate a critical genetic buffering mechanism that provides an essential function for maintaining genome integrity.
Collapse
Affiliation(s)
- Sumin Feng
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Kaiwen Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jinfeng Shang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Lisa Hoeg
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Graziana Pastore
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - William Yang
- Repare Therapeutics, 7171 rue Frederick Banting, Saint-Laurent, QC H4S 1Z9, Canada
| | - Sabrina Roy
- Repare Therapeutics, 7171 rue Frederick Banting, Saint-Laurent, QC H4S 1Z9, Canada
| | - Guillermo Sastre-Moreno
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Jordan T F Young
- Repare Therapeutics, 7171 rue Frederick Banting, Saint-Laurent, QC H4S 1Z9, Canada
| | - Wei Wu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dongyi Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
5
|
Waheed Y, Mojumdar A, Shafiq M, de Marco A, De March M. The fork remodeler helicase-like transcription factor in cancer development: all at once. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167280. [PMID: 38851303 DOI: 10.1016/j.bbadis.2024.167280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/20/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
The Helicase-like Transcription Factor (HLTF) is a member of the SNF2-family of fork remodelers, primarily studied for its capacity to provide DNA Damage Tolerance (DDT) and to induce replication fork reversal (RFR). HLTF is recruited at stalled forks where both its ATPase motor and HIP116 Rad5p N-terminal (HIRAN) domains are necessary for regulating its interaction with DNA. HIRAN bestows specificity to ssDNA 3'-end and imparts branch migration as well as DNA remodeling capabilities facilitating damage repair. Both expression regulation and mutation rate affect HLTF activity. Gene hypermethylation induces loss of HLTF function, in particular in colorectal cancer (CRC), implying a tumour suppressor role. Surprisingly, a correlation between hypermethylation and HLTF mRNA upregulation has also been observed, even within the same cancer type. In many cancers, both complex mutation patterns and the presence of gene Copy Number Variations (CNVs) have been reported. These conditions affect the amount of functional HLTF and question the physiological role of this fork remodeler. This review offers a systematic collection of the presently strewed information regarding HLTF, its structural and functional characteristics, the multiple roles in DDT and the regulation in cancer progression highlighting new research perspectives.
Collapse
Affiliation(s)
- Yossma Waheed
- Department of Environmental and Biological Sciences, University of Nova Gorica, Vipaska Cesta 13, SI-5000 Nova Gorica, Slovenia; National Institute of Science and Technology, Sector H-12, Islamabad Capital Territory, Pakistan
| | - Aditya Mojumdar
- Department of Biochemistry and Microbiology, University of Victoria, BC V8W 2Y2, Victoria, Canada
| | - Mohammad Shafiq
- Department of Environmental and Biological Sciences, University of Nova Gorica, Vipaska Cesta 13, SI-5000 Nova Gorica, Slovenia
| | - Ario de Marco
- Department of Environmental and Biological Sciences, University of Nova Gorica, Vipaska Cesta 13, SI-5000 Nova Gorica, Slovenia
| | - Matteo De March
- Department of Environmental and Biological Sciences, University of Nova Gorica, Vipaska Cesta 13, SI-5000 Nova Gorica, Slovenia.
| |
Collapse
|
6
|
Schreuder A, Wendel TJ, Dorresteijn CGV, Noordermeer SM. (Single-stranded DNA) gaps in understanding BRCAness. Trends Genet 2024; 40:757-771. [PMID: 38789375 DOI: 10.1016/j.tig.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024]
Abstract
The tumour-suppressive roles of BRCA1 and 2 have been attributed to three seemingly distinct functions - homologous recombination, replication fork protection, and single-stranded (ss)DNA gap suppression - and their relative importance is under debate. In this review, we examine the origin and resolution of ssDNA gaps and discuss the recent advances in understanding the role of BRCA1/2 in gap suppression. There are ample data showing that gap accumulation in BRCA1/2-deficient cells is linked to genomic instability and chemosensitivity. However, it remains unclear whether there is a causative role and the function of BRCA1/2 in gap suppression cannot unambiguously be dissected from their other functions. We therefore conclude that the three functions of BRCA1 and 2 are closely intertwined and not mutually exclusive.
Collapse
Affiliation(s)
- Anne Schreuder
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands; Oncode Institute, Utrecht, The Netherlands
| | - Tiemen J Wendel
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands; Oncode Institute, Utrecht, The Netherlands
| | - Carlo G V Dorresteijn
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands
| | - Sylvie M Noordermeer
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands; Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
7
|
Cybulla E, Wallace S, Meroni A, Jackson J, Agashe S, Tennakoon M, Limbu M, Quinet A, Lomonosova E, Noia H, Tirman S, Wood M, Lemacon D, Fuh K, Zou L, Vindigni A. A RAD18-UBC13-PALB2-RNF168 axis mediates replication fork recovery in BRCA1-deficient cancer cells. Nucleic Acids Res 2024; 52:8861-8879. [PMID: 38943334 PMCID: PMC11347138 DOI: 10.1093/nar/gkae563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/24/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024] Open
Abstract
BRCA1/2 proteins function in genome stability by promoting repair of double-stranded DNA breaks through homologous recombination and by protecting stalled replication forks from nucleolytic degradation. In BRCA1/2-deficient cancer cells, extensively degraded replication forks can be rescued through distinct fork recovery mechanisms that also promote cell survival. Here, we identified a novel pathway mediated by the E3 ubiquitin ligase RAD18, the E2-conjugating enzyme UBC13, the recombination factor PALB2, the E3 ubiquitin ligase RNF168 and PCNA ubiquitination that promotes fork recovery in BRCA1- but not BRCA2-deficient cells. We show that this pathway does not promote fork recovery by preventing replication fork reversal and degradation in BRCA1-deficient cells. We propose a mechanism whereby the RAD18-UBC13-PALB2-RNF168 axis facilitates resumption of DNA synthesis by promoting re-annealing of the complementary single-stranded template strands of the extensively degraded forks, thereby allowing re-establishment of a functional replication fork. We also provide preliminary evidence for the potential clinical relevance of this novel fork recovery pathway in BRCA1-mutated cancers, as RAD18 is over-expressed in BRCA1-deficient cancers, and RAD18 loss compromises cell viability in BRCA1-deficient cancer cells.
Collapse
Affiliation(s)
- Emily Cybulla
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Sierra Wallace
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Alice Meroni
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jessica Jackson
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Sumedha Agashe
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Mithila Tennakoon
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Mangsi Limbu
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Annabel Quinet
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Elena Lomonosova
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Hollie Noia
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Stephanie Tirman
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Matthew Wood
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Delphine Lemacon
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Katherine Fuh
- Division of Gynecologic Oncology, Department of Ob/Gyn and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Lee Zou
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
8
|
Bai G, Endres T, Kühbacher U, Mengoli V, Greer BH, Peacock EM, Newton MD, Stanage T, Dello Stritto MR, Lungu R, Crossley MP, Sathirachinda A, Cortez D, Boulton SJ, Cejka P, Eichman BF, Cimprich KA. HLTF resolves G4s and promotes G4-induced replication fork slowing to maintain genome stability. Mol Cell 2024; 84:3044-3060.e11. [PMID: 39142279 PMCID: PMC11366124 DOI: 10.1016/j.molcel.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/29/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024]
Abstract
G-quadruplexes (G4s) form throughout the genome and influence important cellular processes. Their deregulation can challenge DNA replication fork progression and threaten genome stability. Here, we demonstrate an unexpected role for the double-stranded DNA (dsDNA) translocase helicase-like transcription factor (HLTF) in responding to G4s. We show that HLTF, which is enriched at G4s in the human genome, can directly unfold G4s in vitro and uses this ATP-dependent translocase function to suppress G4 accumulation throughout the cell cycle. Additionally, MSH2 (a component of MutS heterodimers that bind G4s) and HLTF act synergistically to suppress G4 accumulation, restrict alternative lengthening of telomeres, and promote resistance to G4-stabilizing drugs. In a discrete but complementary role, HLTF restrains DNA synthesis when G4s are stabilized by suppressing primase-polymerase (PrimPol)-dependent repriming. Together, the distinct roles of HLTF in the G4 response prevent DNA damage and potentially mutagenic replication to safeguard genome stability.
Collapse
Affiliation(s)
- Gongshi Bai
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Theresa Endres
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Ulrike Kühbacher
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Valentina Mengoli
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona 6500, Switzerland
| | - Briana H Greer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Emma M Peacock
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Matthew D Newton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Tyler Stanage
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Roxana Lungu
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Magdalena P Crossley
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Ataya Sathirachinda
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - David Cortez
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Simon J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona 6500, Switzerland
| | - Brandt F Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Karlene A Cimprich
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
9
|
Meyer D, Ceballos SJ, Gore S, Liu J, Reginato G, Cano-Linares MI, Maslowska KH, Villafañez F, Ede C, Pagès V, Prado F, Cejka P, Heyer WD. Rad51 determines pathway usage in post-replication repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599120. [PMID: 38915629 PMCID: PMC11195247 DOI: 10.1101/2024.06.14.599120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Stalled replication forks can be processed by several distinct mechanisms collectively called post-replication repair which includes homologous recombination, fork regression, and translesion DNA synthesis. However, the regulation of the usage between these pathways is not fully understood. The Rad51 protein plays a pivotal role in maintaining genomic stability through its roles in HR and in protecting stalled replication forks from degradation. We report the isolation of separation-of-function mutations in Saccharomyces cerevisiae Rad51 that retain their recombination function but display a defect in fork protection leading to a shift in post-replication repair pathway usage from HR to alternate pathways including mutagenic translesion synthesis. Rad51-E135D and Rad51-K305N show normal in vivo and in vitro recombination despite changes in their DNA binding profiles, in particular to dsDNA, with a resulting effect on their ATPase activities. The mutants lead to a defect in Rad51 recruitment to stalled forks in vivo as well as a defect in the protection of dsDNA from degradation by Dna2-Sgs1 and Exo1 in vitro . A high-resolution cryo-electron microscopy structure of the Rad51-ssDNA filament at 2.4 Å resolution provides a structural basis for a mechanistic understanding of the mutant phenotypes. Together, the evidence suggests a model in which Rad51 binding to duplex DNA is critical to control pathway usage at stalled replication forks.
Collapse
|
10
|
Tian T, Chen J, Zhao H, Li Y, Xia F, Huang J, Han J, Liu T. UFL1 triggers replication fork degradation by MRE11 in BRCA1/2-deficient cells. Nat Chem Biol 2024:10.1038/s41589-024-01611-7. [PMID: 38649452 DOI: 10.1038/s41589-024-01611-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
The stabilization of stalled forks has emerged as a crucial mechanism driving resistance to poly(ADP-ribose) polymerase (PARP) inhibitors in BRCA1/2-deficient tumors. Here, we identify UFL1, a UFM1-specific E3 ligase, as a pivotal regulator of fork stability and the response to PARP inhibitors in BRCA1/2-deficient cells. On replication stress, UFL1 localizes to stalled forks and catalyzes the UFMylation of PTIP, a component of the MLL3/4 methyltransferase complex, specifically at lysine 148. This modification facilitates the assembly of the PTIP-MLL3/4 complex, resulting in the enrichment of H3K4me1 and H3K4me3 at stalled forks and subsequent recruitment of the MRE11 nuclease. Consequently, loss of UFL1, disruption of PTIP UFMylation or overexpression of the UFM1 protease UFSP2 protects nascent DNA strands from extensive degradation and confers resistance to PARP inhibitors in BRCA1/2-deficient cells. These findings provide mechanistic insights into the processes underlying fork instability in BRCA1/2-deficient cells and offer potential therapeutic avenues for the treatment of BRCA1/2-deficient tumors.
Collapse
Affiliation(s)
- Tian Tian
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Junliang Chen
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China
| | - Huacun Zhao
- Department of Cell Biology, and Department of General Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yulin Li
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Feiyu Xia
- Department of Cell Biology, and Department of General Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Huang
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Jinhua Han
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Liu
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Cell Biology, and Department of General Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
11
|
Ye Z, Xu S, Shi Y, Cheng X, Zhang Y, Roy S, Namjoshi S, Longo MA, Link TM, Schlacher K, Peng G, Yu D, Wang B, Tainer JA, Ahmed Z. GRB2 stabilizes RAD51 at reversed replication forks suppressing genomic instability and innate immunity against cancer. Nat Commun 2024; 15:2132. [PMID: 38459011 PMCID: PMC10923831 DOI: 10.1038/s41467-024-46283-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
Growth factor receptor-bound protein 2 (GRB2) is a cytoplasmic adapter for tyrosine kinase signaling and a nuclear adapter for homology-directed-DNA repair. Here we find nuclear GRB2 protects DNA at stalled replication forks from MRE11-mediated degradation in the BRCA2 replication fork protection axis. Mechanistically, GRB2 binds and inhibits RAD51 ATPase activity to stabilize RAD51 on stalled replication forks. In GRB2-depleted cells, PARP inhibitor (PARPi) treatment releases DNA fragments from stalled forks into the cytoplasm that activate the cGAS-STING pathway to trigger pro-inflammatory cytokine production. Moreover in a syngeneic mouse metastatic ovarian cancer model, GRB2 depletion in the context of PARPi treatment reduced tumor burden and enabled high survival consistent with immune suppression of cancer growth. Collective findings unveil GRB2 function and mechanism for fork protection in the BRCA2-RAD51-MRE11 axis and suggest GRB2 as a potential therapeutic target and an enabling predictive biomarker for patient selection for PARPi and immunotherapy combination.
Collapse
Affiliation(s)
- Zu Ye
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Shengfeng Xu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yin Shi
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xueqian Cheng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yuan Zhang
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sunetra Roy
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sarita Namjoshi
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael A Longo
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Todd M Link
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Katharina Schlacher
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dihua Yu
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bin Wang
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John A Tainer
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Zamal Ahmed
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Chen J, Wu M, Yang Y, Ruan C, Luo Y, Song L, Wu T, Huang J, Yang B, Liu T. TFIP11 promotes replication fork reversal to preserve genome stability. Nat Commun 2024; 15:1262. [PMID: 38341452 PMCID: PMC10858868 DOI: 10.1038/s41467-024-45684-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Replication fork reversal, a critical protective mechanism against replication stress in higher eukaryotic cells, is orchestrated via a series of coordinated enzymatic reactions. The Bloom syndrome gene product, BLM, a member of the highly conserved RecQ helicase family, is implicated in this process, yet its precise regulation and role remain poorly understood. In this study, we demonstrate that the GCFC domain-containing protein TFIP11 forms a complex with the BLM helicase. TFIP11 exhibits a preference for binding to DNA substrates that mimic the structure generated at stalled replication forks. Loss of either TFIP11 or BLM leads to the accumulation of the other protein at stalled forks. This abnormal accumulation, in turn, impairs RAD51-mediated fork reversal and slowing, sensitizes cells to replication stress-inducing agents, and enhances chromosomal instability. These findings reveal a previously unidentified regulatory mechanism that modulates the activities of BLM and RAD51 at stalled forks, thereby impacting genome integrity.
Collapse
Affiliation(s)
- Junliang Chen
- Zhejiang Provincial Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000, Shaoxing, China
| | - Mingjie Wu
- The Trauma Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Yulan Yang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Chunyan Ruan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Yi Luo
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Lizhi Song
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Ting Wu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Jun Huang
- Zhejiang Provincial Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Bing Yang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Ting Liu
- Zhejiang Provincial Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.
- Department of Cell Biology, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| |
Collapse
|
13
|
Mórocz M, Qorri E, Pekker E, Tick G, Haracska L. Exploring RAD18-dependent replication of damaged DNA and discontinuities: A collection of advanced tools. J Biotechnol 2024; 380:1-19. [PMID: 38072328 DOI: 10.1016/j.jbiotec.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/21/2023]
Abstract
DNA damage tolerance (DDT) pathways mitigate the effects of DNA damage during replication by rescuing the replication fork stalled at a DNA lesion or other barriers and also repair discontinuities left in the newly replicated DNA. From yeast to mammalian cells, RAD18-regulated translesion synthesis (TLS) and template switching (TS) represent the dominant pathways of DDT. Monoubiquitylation of the polymerase sliding clamp PCNA by HRAD6A-B/RAD18, an E2/E3 protein pair, enables the recruitment of specialized TLS polymerases that can insert nucleotides opposite damaged template bases. Alternatively, the subsequent polyubiquitylation of monoubiquitin-PCNA by Ubc13-Mms2 (E2) and HLTF or SHPRH (E3) can lead to the switching of the synthesis from the damaged template to the undamaged newly synthesized sister strand to facilitate synthesis past the lesion. When immediate TLS or TS cannot occur, gaps may remain in the newly synthesized strand, partly due to the repriming activity of the PRIMPOL primase, which can be filled during the later phases of the cell cycle. The first part of this review will summarize the current knowledge about RAD18-dependent DDT pathways, while the second part will offer a molecular toolkit for the identification and characterization of the cellular functions of a DDT protein. In particular, we will focus on advanced techniques that can reveal single-stranded and double-stranded DNA gaps and their repair at the single-cell level as well as monitor the progression of single replication forks, such as the specific versions of the DNA fiber and comet assays. This collection of methods may serve as a powerful molecular toolkit to monitor the metabolism of gaps, detect the contribution of relevant pathways and molecular players, as well as characterize the effectiveness of potential inhibitors.
Collapse
Affiliation(s)
- Mónika Mórocz
- HCEMM-HUN-REN BRC Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary.
| | - Erda Qorri
- HCEMM-HUN-REN BRC Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary; Faculty of Science and Informatics, Doctoral School of Biology, University of Szeged, Szeged H-6720, Hungary.
| | - Emese Pekker
- HCEMM-HUN-REN BRC Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary; Doctoral School of Interdisciplinary Medicine, University of Szeged, Korányi fasor 10, 6720 Szeged, Hungary.
| | - Gabriella Tick
- Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary.
| | - Lajos Haracska
- HCEMM-HUN-REN BRC Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2. H-1117 Budapest, Hungary.
| |
Collapse
|
14
|
Khatib JB, Nicolae CM, Moldovan GL. Role of Translesion DNA Synthesis in the Metabolism of Replication-associated Nascent Strand Gaps. J Mol Biol 2024; 436:168275. [PMID: 37714300 PMCID: PMC10842951 DOI: 10.1016/j.jmb.2023.168275] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/11/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Translesion DNA synthesis (TLS) is a DNA damage tolerance pathway utilized by cells to overcome lesions encountered throughout DNA replication. During replication stress, cancer cells show increased dependency on TLS proteins for cellular survival and chemoresistance. TLS proteins have been described to be involved in various DNA repair pathways. One of the major emerging roles of TLS is single-stranded DNA (ssDNA) gap-filling, primarily after the repriming activity of PrimPol upon encountering a lesion. Conversely, suppression of ssDNA gap accumulation by TLS is considered to represent a mechanism for cancer cells to evade the toxicity of chemotherapeutic agents, specifically in BRCA-deficient cells. Thus, TLS inhibition is emerging as a potential treatment regimen for DNA repair-deficient tumors.
Collapse
Affiliation(s)
- Jude B Khatib
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA. https://twitter.com/JudeBKhatib
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
15
|
Bai G, Endres T, Kühbacher U, Greer BH, Peacock EM, Crossley MP, Sathirachinda A, Cortez D, Eichman BF, Cimprich KA. HLTF Prevents G4 Accumulation and Promotes G4-induced Fork Slowing to Maintain Genome Stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.563641. [PMID: 37961428 PMCID: PMC10634870 DOI: 10.1101/2023.10.27.563641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
G-quadruplexes (G4s) form throughout the genome and influence important cellular processes, but their deregulation can challenge DNA replication fork progression and threaten genome stability. Here, we demonstrate an unexpected, dual role for the dsDNA translocase HLTF in G4 metabolism. First, we find that HLTF is enriched at G4s in the human genome and suppresses G4 accumulation throughout the cell cycle using its ATPase activity. This function of HLTF affects telomere maintenance by restricting alternative lengthening of telomeres, a process stimulated by G4s. We also show that HLTF and MSH2, a mismatch repair factor that binds G4s, act in independent pathways to suppress G4s and to promote resistance to G4 stabilization. In a second, distinct role, HLTF restrains DNA synthesis upon G4 stabilization by suppressing PrimPol-dependent repriming. Together, the dual functions of HLTF in the G4 response prevent DNA damage and potentially mutagenic replication to safeguard genome stability.
Collapse
|
16
|
Tan Y, Wu D, Liu ZY, Yu HQ, Zheng XR, Lin XT, Bie P, Zhang LD, Xie CM. Degradation of helicase-like transcription factor (HLTF) by β-TrCP promotes hepatocarcinogenesis via activation of the p62/mTOR axis. J Mol Cell Biol 2023; 15:mjad012. [PMID: 36822623 PMCID: PMC10478628 DOI: 10.1093/jmcb/mjad012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/27/2022] [Accepted: 02/22/2023] [Indexed: 02/25/2023] Open
Abstract
Helicase-like transcription factor (HLTF) has been found to be involved in the maintenance of genome stability and tumour suppression, but whether its downregulation in cancers is associated with posttranslational regulation remains unclear. Here, we observed that HLTF was significantly downregulated in hepatocellular carcinoma (HCC) tissues and positively associated with the survival of HCC patients. Mechanistically, the decreased expression of HLTF in HCC was attributed to elevated β-TrCP-mediated ubiquitination and degradation. Knockdown of HLTF enhanced p62 transcriptional activity and mammalian target of rapamycin (mTOR) activation, leading to HCC tumourigenesis. Inhibition of mTOR effectively blocked β-TrCP overexpression- or HLTF knockdown-mediated HCC tumourigenesis and metastasis. Furthermore, in clinical tissues, decreased HLTF expression was positively correlated with elevated expression of β-TrCP, p62, or p-mTOR in HCC patients. Overall, our data not only uncover new roles of HLTF in HCC cell proliferation and metastasis, but also reveal a novel posttranslational modification of HLTF by β-TrCP, indicating that the β-TrCP/HLTF/p62/mTOR axis may be a new oncogenic driver involved in HCC development. This finding provides a potential therapeutic strategy for HCC patients by targeting the β-TrCP/HLTF/p62/mTOR axis.
Collapse
Affiliation(s)
- Ye Tan
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China
| | - Di Wu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ze-Yu Liu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hong-Qiang Yu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiang-Ru Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China
| | - Xiao-Tong Lin
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ping Bie
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China
| | - Lei-Da Zhang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chuan-Ming Xie
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
17
|
Moore CE, Yalcindag SE, Czeladko H, Ravindranathan R, Wijesekara Hanthi Y, Levy JC, Sannino V, Schindler D, Ciccia A, Costanzo V, Elia AE. RFWD3 promotes ZRANB3 recruitment to regulate the remodeling of stalled replication forks. J Cell Biol 2023; 222:e202106022. [PMID: 37036693 PMCID: PMC10097976 DOI: 10.1083/jcb.202106022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/05/2022] [Accepted: 01/30/2023] [Indexed: 04/11/2023] Open
Abstract
Replication fork reversal is an important mechanism to protect the stability of stalled forks and thereby preserve genomic integrity. While multiple enzymes have been identified that can remodel forks, their regulation remains poorly understood. Here, we demonstrate that the ubiquitin ligase RFWD3, whose mutation causes Fanconi Anemia, promotes recruitment of the DNA translocase ZRANB3 to stalled replication forks and ubiquitinated sites of DNA damage. Using electron microscopy, we show that RFWD3 stimulates fork remodeling in a ZRANB3-epistatic manner. Fork reversal is known to promote nascent DNA degradation in BRCA2-deficient cells. Consistent with a role for RFWD3 in fork reversal, inactivation of RFWD3 in these cells rescues fork degradation and collapse, analogous to ZRANB3 inactivation. RFWD3 loss impairs ZRANB3 localization to spontaneous nuclear foci induced by inhibition of the PCNA deubiquitinase USP1. We demonstrate that RFWD3 promotes PCNA ubiquitination and interaction with ZRANB3, providing a mechanism for RFWD3-dependent recruitment of ZRANB3. Together, these results uncover a new role for RFWD3 in regulating ZRANB3-dependent fork remodeling.
Collapse
Affiliation(s)
- Chandler E. Moore
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Selin E. Yalcindag
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hanna Czeladko
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ramya Ravindranathan
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yodhara Wijesekara Hanthi
- DNA Metabolism Laboratory, IFOM ETS, The AIRC Institute for Molecular Oncology, Milan, Italy
- Department of Oncology and Haematology-Oncology, University of Milan, Milan, Italy
| | - Juliana C. Levy
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Vincenzo Sannino
- DNA Metabolism Laboratory, IFOM ETS, The AIRC Institute for Molecular Oncology, Milan, Italy
- Department of Oncology and Haematology-Oncology, University of Milan, Milan, Italy
| | - Detlev Schindler
- Department of Human Genetics, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Alberto Ciccia
- Department of Genetics and Development, Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Vincenzo Costanzo
- DNA Metabolism Laboratory, IFOM ETS, The AIRC Institute for Molecular Oncology, Milan, Italy
- Department of Oncology and Haematology-Oncology, University of Milan, Milan, Italy
| | - Andrew E.H. Elia
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Wang YC, Kelso AA, Karamafrooz A, Chen YH, Chen WK, Cheng CT, Qi Y, Gu L, Malkas L, Taglialatela A, Kung HJ, Moldovan GL, Ciccia A, Stark JM, Ann DK. Arginine shortage induces replication stress and confers genotoxic resistance by inhibiting histone H4 translation and promoting PCNA ubiquitination. Cell Rep 2023; 42:112296. [PMID: 36961817 PMCID: PMC10517088 DOI: 10.1016/j.celrep.2023.112296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/12/2023] [Accepted: 03/06/2023] [Indexed: 03/25/2023] Open
Abstract
The arginine dependency of cancer cells creates metabolic vulnerability. In this study, we examine the impact of arginine availability on DNA replication and genotoxicity resistance. Using DNA combing assays, we find that limiting extracellular arginine results in the arrest of cancer cells at S phase and a slowing or stalling of DNA replication. The translation of new histone H4 is arginine dependent and influences DNA replication. Increased proliferating cell nuclear antigen (PCNA) occupancy and helicase-like transcription factor (HLTF)-catalyzed PCNA K63-linked polyubiquitination protect arginine-starved cells from DNA damage. Arginine-deprived cancer cells display tolerance to genotoxicity in a PCNA K63-linked polyubiquitination-dependent manner. Our findings highlight the crucial role of extracellular arginine in nutrient-regulated DNA replication and provide potential avenues for the development of cancer treatments.
Collapse
Affiliation(s)
- Yi-Chang Wang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Andrew A Kelso
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Adak Karamafrooz
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Yi-Hsuan Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Wei-Kai Chen
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Chun-Ting Cheng
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Yue Qi
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Long Gu
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Linda Malkas
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Angelo Taglialatela
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hsing-Jien Kung
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan, ROC
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Alberto Ciccia
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - David K Ann
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
19
|
Wang YC, Kelso AA, Karamafrooz A, Chen YH, Chen WK, Cheng CT, Qi Y, Gu L, Malkas L, Kung HJ, Moldovan GL, Ciccia A, Stark JM, Ann DK. Arginine shortage induces replication stress and confers genotoxic resistance by inhibiting histone H4 translation and promoting PCNA polyubiquitination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526362. [PMID: 36778247 PMCID: PMC9915598 DOI: 10.1101/2023.01.31.526362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The unique arginine dependencies of cancer cell proliferation and survival creates metabolic vulnerability. Here, we investigate the impact of extracellular arginine availability on DNA replication and genotoxic resistance. Using DNA combing assays, we find that when extracellular arginine is limited, cancer cells are arrested at S-phase and DNA replication forks slow or stall instantly until arginine is re-supplied. The translation of new histone H4 is arginine-dependent and impacts DNA replication and the expression of newly synthesized histone H4 is reduced in the avascular nutrient-poor breast cancer xenograft tumor cores. Furthermore, we demonstrate that increased PCNA occupancy and HLTF-catalyzed PCNA K63-linked polyubiquitination protects arginine-starved cells from hydroxyurea-induced, DNA2-catalyzed nascent strand degradation. Finally, arginine-deprived cancer cells are tolerant to genotoxic insults in a PCNA K63-linked polyubiquitination-dependent manner. Together, these findings reveal that extracellular arginine is the "linchpin" for nutrient-regulated DNA replication. Such information could be leveraged to expand current modalities or design new drug targets against cancer.
Collapse
Affiliation(s)
- Yi-Chang Wang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Andrew A. Kelso
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Adak Karamafrooz
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Yi-Hsuan Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Wei-Kai Chen
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Chun-Ting Cheng
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Yue Qi
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Long Gu
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Linda Malkas
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Hsing-Jien Kung
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan, ROC
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Alberto Ciccia
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Jeremy M. Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - David K Ann
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
20
|
Abstract
High-fidelity DNA replication is critical for the faithful transmission of genetic information to daughter cells. Following genotoxic stress, specialized DNA damage tolerance pathways are activated to ensure replication fork progression. These pathways include translesion DNA synthesis, template switching and repriming. In this Review, we describe how DNA damage tolerance pathways impact genome stability, their connection with tumorigenesis and their effects on cancer therapy response. We discuss recent findings that single-strand DNA gap accumulation impacts chemoresponse and explore a growing body of evidence that suggests that different DNA damage tolerance factors, including translesion synthesis polymerases, template switching proteins and enzymes affecting single-stranded DNA gaps, represent useful cancer targets. We further outline how the consequences of DNA damage tolerance mechanisms could inform the discovery of new biomarkers to refine cancer therapies.
Collapse
Affiliation(s)
- Emily Cybulla
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
21
|
Ho YC, Ku CS, Tsai SS, Shiu JL, Jiang YZ, Miriam HE, Zhang HW, Chen YT, Chiu WT, Chang SB, Shen CH, Myung K, Chi P, Liaw H. PARP1 recruits DNA translocases to restrain DNA replication and facilitate DNA repair. PLoS Genet 2022; 18:e1010545. [PMID: 36512630 PMCID: PMC9794062 DOI: 10.1371/journal.pgen.1010545] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/27/2022] [Accepted: 11/26/2022] [Indexed: 12/15/2022] Open
Abstract
Replication fork reversal which restrains DNA replication progression is an important protective mechanism in response to replication stress. PARP1 is recruited to stalled forks to restrain DNA replication. However, PARP1 has no helicase activity, and the mechanism through which PARP1 participates in DNA replication restraint remains unclear. Here, we found novel protein-protein interactions between PARP1 and DNA translocases, including HLTF, SHPRH, ZRANB3, and SMARCAL1, with HLTF showing the strongest interaction among these DNA translocases. Although HLTF and SHPRH share structural and functional similarity, it remains unclear whether SHPRH contains DNA translocase activity. We further identified the ability of SHPRH to restrain DNA replication upon replication stress, indicating that SHPRH itself could be a DNA translocase or a helper to facilitate DNA translocation. Although hydroxyurea (HU) and MMS induce different types of replication stress, they both induce common DNA replication restraint mechanisms independent of intra-S phase activation. Our results suggest that the PARP1 facilitates DNA translocase recruitment to damaged forks, preventing fork collapse and facilitating DNA repair.
Collapse
Affiliation(s)
- Yen-Chih Ho
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan
| | - Chen-Syun Ku
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan
| | - Siang-Sheng Tsai
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan
| | - Jia-Lin Shiu
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan
| | - Yi-Zhen Jiang
- Institute of Biochemical Sciences, National Taiwan University, Taipei City, Taiwan
| | - Hui Emmanuela Miriam
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan
| | - Han-Wen Zhang
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan
| | - Yen-Tzu Chen
- Department of Public Health & Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei City, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Song-Bin Chang
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan
| | - Che-Hung Shen
- National Institute of Cancer Research, National Health Research Institutes, Tainan City, Taiwan
| | - Kyungjae Myung
- IBS Center for Genomic Integrity, UNIST-gil 50, Ulsan, Republic of Korea
| | - Peter Chi
- Institute of Biochemical Sciences, National Taiwan University, Taipei City, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei City, Taiwan
| | - Hungjiun Liaw
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan
- * E-mail:
| |
Collapse
|
22
|
Jackson LM, Moldovan GL. Mechanisms of PARP1 inhibitor resistance and their implications for cancer treatment. NAR Cancer 2022; 4:zcac042. [PMID: 36568963 PMCID: PMC9773381 DOI: 10.1093/narcan/zcac042] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
The discovery of synthetic lethality as a result of the combined loss of PARP1 and BRCA has revolutionized the treatment of DNA repair-deficient cancers. With the development of PARP inhibitors, patients displaying germline or somatic mutations in BRCA1 or BRCA2 were presented with a novel therapeutic strategy. However, a large subset of patients do not respond to PARP inhibitors. Furthermore, many of those who do respond eventually acquire resistance. As such, combating de novo and acquired resistance to PARP inhibitors remains an obstacle in achieving durable responses in patients. In this review, we touch on some of the key mechanisms of PARP inhibitor resistance, including restoration of homologous recombination, replication fork stabilization and suppression of single-stranded DNA gap accumulation, as well as address novel approaches for overcoming PARP inhibitor resistance.
Collapse
Affiliation(s)
- Lindsey M Jackson
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
23
|
Zhu C, Iwase M, Li Z, Wang F, Quinet A, Vindigni A, Shao J. Profilin-1 regulates DNA replication forks in a context-dependent fashion by interacting with SNF2H and BOD1L. Nat Commun 2022; 13:6531. [PMID: 36319634 PMCID: PMC9626489 DOI: 10.1038/s41467-022-34310-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 10/21/2022] [Indexed: 12/04/2022] Open
Abstract
DNA replication forks are tightly controlled by a large protein network consisting of well-known core regulators and many accessory factors which remain functionally undefined. In this study, we report previously unknown nuclear functions of the actin-binding factor profilin-1 (PFN1) in DNA replication, which occur in a context-dependent fashion and require its binding to poly-L-proline (PLP)-containing proteins instead of actin. In unperturbed cells, PFN1 increases DNA replication initiation and accelerates fork progression by binding and stimulating the PLP-containing nucleosome remodeler SNF2H. Under replication stress, PFN1/SNF2H increases fork stalling and functionally collaborates with fork reversal enzymes to enable the over-resection of unprotected forks. In addition, PFN1 binds and functionally attenuates the PLP-containing fork protector BODL1 to increase the resection of a subset of stressed forks. Accordingly, raising nuclear PFN1 level decreases genome stability and cell survival during replication stress. Thus, PFN1 is a multi-functional regulator of DNA replication with exploitable anticancer potential.
Collapse
Affiliation(s)
- Cuige Zhu
- Divison of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mari Iwase
- Divison of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ziqian Li
- Divison of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Faliang Wang
- Divison of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Annabel Quinet
- Divison of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- UMR Genetic Stability Stem Cells and Radiation, University of Paris and University of Paris-Saclay, INSERM, iRCM/IBFJ CEA, Fontenay-aux-Roses, France
| | - Alessandro Vindigni
- Divison of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jieya Shao
- Divison of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
24
|
Walker JR, Zhu XD. Role of Cockayne Syndrome Group B Protein in Replication Stress: Implications for Cancer Therapy. Int J Mol Sci 2022; 23:10212. [PMID: 36142121 PMCID: PMC9499456 DOI: 10.3390/ijms231810212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 12/01/2022] Open
Abstract
A variety of endogenous and exogenous insults are capable of impeding replication fork progression, leading to replication stress. Several SNF2 fork remodelers have been shown to play critical roles in resolving this replication stress, utilizing different pathways dependent upon the nature of the DNA lesion, location on the DNA, and the stage of the cell cycle, to complete DNA replication in a manner preserving genetic integrity. Under certain conditions, however, the attempted repair may lead to additional genetic instability. Cockayne syndrome group B (CSB) protein, a SNF2 chromatin remodeler best known for its role in transcription-coupled nucleotide excision repair, has recently been shown to catalyze fork reversal, a pathway that can provide stability of stalled forks and allow resumption of DNA synthesis without chromosome breakage. Prolonged stalling of replication forks may collapse to give rise to DNA double-strand breaks, which are preferentially repaired by homology-directed recombination. CSB plays a role in repairing collapsed forks by promoting break-induced replication in S phase and early mitosis. In this review, we discuss roles of CSB in regulating the sources of replication stress, replication stress response, as well as the implications of CSB for cancer therapy.
Collapse
Affiliation(s)
| | - Xu-Dong Zhu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
25
|
Hao S, Wang Y, Zhao Y, Gao W, Cui W, Li Y, Cui J, Liu Y, Lin L, Xu X, Wang H. Dynamic switching of crotonylation to ubiquitination of H2A at lysine 119 attenuates transcription-replication conflicts caused by replication stress. Nucleic Acids Res 2022; 50:9873-9892. [PMID: 36062559 PMCID: PMC9508856 DOI: 10.1093/nar/gkac734] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/20/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
The reversible post-translational modification (PTM) of proteins plays an important role in many cellular processes. Lysine crotonylation (Kcr) is a newly identified PTM, but its functional significance remains unclear. Here, we found that Kcr is involved in the replication stress response. We show that crotonylation of histone H2A at lysine 119 (H2AK119) and ubiquitination of H2AK119 are reversibly regulated by replication stress. Decrotonylation of H2AK119 by SIRT1 is a prerequisite for subsequent ubiquitination of H2AK119 by BMI1. Accumulation of ubiquitinated H2AK119 at reversed replication forks leads to the release of RNA Polymerase II and transcription repression in the vicinity of stalled replication forks. These effects attenuate transcription–replication conflicts (TRCs) and TRC-associated R-loop formation and DNA double-strand breaks. These findings suggest that decrotonylation and ubiquitination of H2A at lysine 119 act together to resolve replication stress-induced TRCs and protect genome stability.
Collapse
Affiliation(s)
- Shuailin Hao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ya Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yuqin Zhao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Wen Gao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Wei Cui
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Youhang Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jian Cui
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yu Liu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Lixiu Lin
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability and Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, China Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Hailong Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
26
|
A somatic mutation-derived LncRNA signatures of genomic instability predicts the prognosis and tumor microenvironment immune characters in hepatocellular carcinoma. Hepatol Int 2022; 16:1220-1233. [PMID: 35947245 DOI: 10.1007/s12072-022-10375-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/04/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is an aggressive carcinoma with genome instability. Long non-coding RNAs (LncRNAs) have been functionally associated with genomic instability in cancers. However, the identification and prognostic value of lncRNAs related to genome instability have not been explored in hepatocellular carcinoma. In this study, we aim to identify a genomic instability-related lncRNA signature for predicting prognosis and the efficacy of immunotherapy in HCC patients. METHODS According to the somatic mutation and transcript data of 364 patients with HCC, we determined differentially expressed genome instability-related lncRNAs (GInLncRNAs). Gene ontology (GO) enrichment analyses and Kyoto Encyclopedia of genes and genomes enrichment analyses revealed the potential functions of genes co-expressed with those lncRNAs involved in cancer development and immune function. We further determined a genome instability-related lncRNA signature (GInLncSig) through Cox regression analysis and LASSO regression analysis. Thereafter, we performed correlation analyses with mutations, clinical stratification analyses, and survival analyses to evaluate GInLncSig predictive function. Subsequently, we construct a nomogram model for prognostic assessments of patients with HCC. Finally, we performed Immunocytes infiltration analysis, gene set enrichment analysis (ssGSEA) of immunity circle-associated pathways, and T cell-inflamed score to explore GInLncSig's potential value in guiding immunotherapy. RESULTS We identified 11 independent prognosis-associated GInLncRNAs (AC002511.2, LINC00501, LINC02055, LINC02714, LINC01508, LOC105371967, RP11_96A15.1, RP11_305F18.1, RP11_342M1.3, RP11_432J24.3, U95743.1) to construct a GInLncSig. According to the risk score calculated by GInLncSig, the high-risk group was characterized by a higher somatic mutation count, significantly poorer clinical prognosis, higher T cell-inflamed score, and specific tumor immune infiltration status compared to the low-risk group. Furthermore, we constructed a nomogram model to improve the reliability and clinical utility of predicting the prognosis of patients with HCC. CONCLUSION Our study established a reliable prognostic prediction signature that could be a tool for prognosis prediction and a promising predictive biomarker of immunotherapy in hepatocellular carcinoma.
Collapse
|
27
|
Kramarz K, Dziadkowiec D. Rrp1, Rrp2 and Uls1 - Yeast SWI2/SNF2 DNA dependent translocases in genome stability maintenance. DNA Repair (Amst) 2022; 116:103356. [PMID: 35716431 DOI: 10.1016/j.dnarep.2022.103356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/12/2022] [Accepted: 06/08/2022] [Indexed: 11/03/2022]
Abstract
Multiple eukaryotic SWI2/SNF2 DNA translocases safeguard genome integrity, mostly by remodelling nucleosomes, but also by fine-tuning mechanisms of DNA repair, such as homologous recombination. Among this large family there is a unique class of Rad5/16-like enzymes, including Saccharomyces cerevisiae Uls1 and its Schizosaccharomyces pombe orthologues Rrp1 and Rrp2, that have both translocase and E3 ubiquitin ligase activities, and are often directed towards their substrates by SUMOylation. Here we summarize recent advances in understanding how different activities of these yeast proteins jointly contribute to their important roles in replication stress response particularly at centromeres and telomeres. This extends the possible range of functions performed by this class of SNF2 enzymes in human cells involving both their translocase and ubiquitin ligase activities and related to SUMOylation pathways within the nucleus.
Collapse
Affiliation(s)
- Karol Kramarz
- Academic Excellence Hub - Research Centre for DNA Repair and Replication, Faculty of Biological Sciences, University of Wrocław, Poland.
| | | |
Collapse
|
28
|
Masai H. TT-pocket/HIRAN: binding to 3'-terminus of DNA for recognition and processing of stalled replication forks. J Biochem 2022; 172:57-60. [PMID: 35662338 DOI: 10.1093/jb/mvac042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/06/2022] [Indexed: 11/13/2022] Open
Abstract
Stalled replication forks need to be swiftly detected, protected from collapse, and the cause for fork stall be removed to restore the active replication fork. In bacteria, stalled forks are recognized and stabilized by PriA, a DEXH-type helicase, which also facilitates reassembly of an active replication fork. A TT-pocket (three-prime terminus binding pocket) present in the N-terminal segment of PriA plays a crucial role in stabilization of the stalled forks by specifically binding to the 3'-terminus of the nascent leading strand. Eukaryotic proteins, Rad5/HLTF, contain a TT-pocket related domain, HIRAN, that specifically binds to 3'-terminus of DNA, and play a role in stalled fork processing. While the TT-pocket of PriA facilitates the formation of an apparently stable and immobile complex on a fork with a 3'-terminus at the fork junction, HIRAN of Rad5/HLTF facilitates fork regression by itself. A recent report shows that HIRAN can displace 3 nucleotides at the end of the duplex DNA, providing mechanistic insight into how stalled forks are reversed in eukaryotes. In this article, I will compare the roles of 3'-terminus binding domains in stalled fork processing in prokaryotes and in eukaryotes.
Collapse
Affiliation(s)
- Hisao Masai
- Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
29
|
Ding L, Luo Y, Tian T, Chen X, Yang Y, Bu M, Han J, Yang B, Yan H, Liu T, Wu M, Zhang G, Xu Y, Zhu S, Huen MSY, Mao G, Huang J. RNF4 controls the extent of replication fork reversal to preserve genome stability. Nucleic Acids Res 2022; 50:5672-5687. [PMID: 35640614 PMCID: PMC9177969 DOI: 10.1093/nar/gkac447] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/09/2022] [Accepted: 05/15/2022] [Indexed: 11/14/2022] Open
Abstract
Replication fork reversal occurs via a two-step process that entails reversal initiation and reversal extension. DNA topoisomerase IIalpha (TOP2A) facilitates extensive fork reversal, on one hand through resolving the topological stress generated by the initial reversal, on the other hand via its role in recruiting the SUMO-targeted DNA translocase PICH to stalled forks in a manner that is dependent on its SUMOylation by the SUMO E3 ligase ZATT. However, how TOP2A activities at stalled forks are precisely regulated remains poorly understood. Here we show that, upon replication stress, the SUMO-targeted ubiquitin E3 ligase RNF4 accumulates at stalled forks and targets SUMOylated TOP2A for ubiquitination and degradation. Downregulation of RNF4 resulted in aberrant activation of the ZATT–TOP2A–PICH complex at stalled forks, which in turn led to excessive reversal and elevated frequencies of fork collapse. These results uncover a previously unidentified regulatory mechanism that regulates TOP2A activities at stalled forks and thus the extent of fork reversal.
Collapse
Affiliation(s)
- Linli Ding
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yi Luo
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Tian Tian
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, Guangdong, China
| | - Xu Chen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yulan Yang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Min Bu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jinhua Han
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Bing Yang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Haiyan Yan
- School of Medicine, Zhejiang University City of College, Hangzhou 310015, Zhejiang, China
| | - Ting Liu
- Department of Cell Biology, and Department of General Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Mengjie Wu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine and Key laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310058, Zhejiang, China
| | - Guofei Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Yipeng Xu
- Department of Urology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310058, Zhejiang, China
| | - Shaoxing Zhu
- Department of Urology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310058, Zhejiang, China
| | - Michael S Y Huen
- Department of Anatomy, The University of Hong Kong, Hong Kong, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, Zhejiang, China
| | - Jun Huang
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
30
|
Dusek CO, Dash RC, McPherson KS, Calhoun JT, Bezsonova I, Korzhnev DM, Hadden MK. DNA Sequence Specificity Reveals a Role of the HLTF HIRAN Domain in the Recognition of Trinucleotide Repeats. Biochemistry 2022; 61:10.1021/acs.biochem.2c00027. [PMID: 35608245 PMCID: PMC9684356 DOI: 10.1021/acs.biochem.2c00027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA damage tolerance (DDT) pathways enable cells to cope with a variety of replication blocks that threaten their ability to complete DNA replication. Helicase-like transcription factor (HLTF) plays a central role in the error-free DDT pathway, template switching (TS), by serving as a ubiquitin ligase to polyubiquitinate the DNA sliding clamp PCNA, which promotes TS initiation. HLTF also serves as an ATP-dependent DNA translocase facilitating replication fork remodeling. The HIP116, Rad5p N-terminal (HIRAN) domain of HLTF specifically recognizes the unmodified 3'-end of single-stranded DNA (ssDNA) at stalled replication forks to promote fork regression. Several crystal structures of the HIRAN domain in complex with ssDNA have been reported; however, optimal ssDNA sequences for high-affinity binding with the domain have not been described. Here we elucidated DNA sequence preferences of HLTF HIRAN through systematic studies of its binding to ssDNA substrates using fluorescence polarization assays and a computational analysis of the ssDNA:HIRAN interaction. These studies reveal that the HLTF HIRAN domain preferentially recognizes a (T/C)TG sequence at the 3'-hydroxyl ssDNA end, which occurs in the CTG trinucleotide repeat (TNR) regions that are susceptible to expansion and deletion mutations identified in neuromuscular and neurodegenerative disorders. These findings support a role for HLTF in maintaining the stability of difficult to replicate TNR microsatellite regions.
Collapse
Affiliation(s)
- Christopher O Dusek
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269-3092, United States
| | - Radha Charan Dash
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269-3092, United States
| | - Kerry S McPherson
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Jackson T Calhoun
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269-3092, United States
| | - Irina Bezsonova
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - M Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269-3092, United States
| |
Collapse
|
31
|
Mechanistic insights into the multiple activities of the Rad5 family of enzymes. J Mol Biol 2022; 434:167581. [DOI: 10.1016/j.jmb.2022.167581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/18/2022]
|
32
|
Silva BM, Santos LH, de Almeida JPP, de Magalhães MTQ. Rad5 HIRAN domain: Structural insights into its interaction with ssDNA through molecular modeling approaches. J Biomol Struct Dyn 2022; 41:3062-3075. [PMID: 35249470 DOI: 10.1080/07391102.2022.2045222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The Rad5 protein is an SWI/SNF family ubiquitin ligase that contains an N-terminal HIRAN domain and a RING C3HC4 motif. The HIRAN domain is critical for recognition of the stalled replication fork during the replication process and acts as a sensor to initiate the damaged DNA checkpoint. It is a conserved domain widely distributed in eukaryotic organisms and is present in several DNA-binding proteins from all kingdoms. Here we showed that distant species have important differences in key residues that affect affinity for ssDNA. Based on these findings, we hypothesized that different HIRAN domains might affect fork reversal and translesion synthesis through different metabolic processes. To address this question, we predicted the tertiary structure of both yeast and human HIRAN domains using molecular modeling. Structural dynamics experiments showed that the yeast HIRAN domain exhibited higher structural denaturation than its human homolog, although both domains became stable in the presence of ssDNA. Analysis of atomic contacts revealed that a greater number of interactions between the ssDNA nucleotides and the Rad5 domain are electrostatic. Taken together, these results provide new insights into the molecular mechanism of the HIRAN domain of Rad5 and may guide us to further elucidate differences in the ancient eukaryotes HIRAN sequences and their DNA affinity. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bruno M Silva
- Inter-unit postgraduate studies program in Bioinformatics, Federal University of Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Brazil.,Macromolecular Biophysics Laboratory (LBM), Biological Sciences Institute (ICB), Federal University of Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
| | - Lucianna H Santos
- Inter-unit postgraduate studies program in Bioinformatics, Federal University of Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Brazil.,Molecular Modeling and Drug Planning Laboratory, Department of Biochemistry and Immunology, Biological Sciences Institute (ICB), Federal University of Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
| | - João Paulo P de Almeida
- Inter-unit postgraduate studies program in Bioinformatics, Federal University of Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
| | - Mariana T Q de Magalhães
- Inter-unit postgraduate studies program in Bioinformatics, Federal University of Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Brazil.,Macromolecular Biophysics Laboratory (LBM), Biological Sciences Institute (ICB), Federal University of Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
| |
Collapse
|
33
|
Toth R, Balogh D, Pinter L, Jaksa G, Szeplaki B, Graf A, Gyorfy Z, Enyedi MZ, Kiss E, Haracska L, Unk I. The Rad5 Helicase and RING Domains Contribute to Genome Stability through their Independent Catalytic Activities. J Mol Biol 2022; 434:167437. [PMID: 34990655 DOI: 10.1016/j.jmb.2021.167437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/08/2021] [Accepted: 12/28/2021] [Indexed: 11/27/2022]
Abstract
Genomic stability is compromised by DNA damage that obstructs replication. Rad5 plays a prominent role in DNA damage bypass processes that evolved to ensure the continuation of stalled replication. Like its human orthologs, the HLTF and SHPRH tumor suppressors, yeast Rad5 has a RING domain that supports ubiquitin ligase activity promoting PCNA polyubiquitylation and a helicase domain that in the case of HLTF and Rad5 was shown to exhibit an ATPase-linked replication fork reversal activity. The RING domain is embedded in the helicase domain, confusing their separate investigation and the understanding of the exact role of Rad5 in DNA damage bypass. Particularly, it is still debated whether the helicase domain plays a catalytic or a non-enzymatic role during error-free damage bypass and whether it facilitates a function separately from the RING domain. In this study, through in vivo and in vitro characterization of domain-specific mutants, we delineate the contributions of the two domains to Rad5 function. Yeast genetic experiments and whole-genome sequencing complemented with biochemical assays demonstrate that the ubiquitin ligase and the ATPase-linked activities of Rad5 exhibit independent catalytic activities in facilitating separate pathways during error-free lesion bypass. Our results also provide important insights into the mutagenic role of Rad5 and indicate its tripartite contribution to DNA damage tolerance.
Collapse
Affiliation(s)
- Robert Toth
- DNA Repair Research Group, Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged H-6726, Hungary; University of Szeged, Doctoral School of Biology, Hungary
| | - David Balogh
- HCEMM-BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged H-6726, Hungary
| | | | | | | | - Alexandra Graf
- HCEMM-BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged H-6726, Hungary
| | - Zsuzsanna Gyorfy
- DNA Repair Research Group, Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged H-6726, Hungary
| | - Marton Zs Enyedi
- HCEMM-BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged H-6726, Hungary; Delta Bio 2000 Ltd., Szeged H-6726, Hungary
| | - Erno Kiss
- HCEMM-BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged H-6726, Hungary
| | - Lajos Haracska
- HCEMM-BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged H-6726, Hungary
| | - Ildiko Unk
- DNA Repair Research Group, Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged H-6726, Hungary.
| |
Collapse
|
34
|
Batenburg NL, Mersaoui SY, Walker JR, Coulombe Y, Hammond-Martel I, Wurtele H, Masson JY, Zhu XD. Cockayne syndrome group B protein regulates fork restart, fork progression and MRE11-dependent fork degradation in BRCA1/2-deficient cells. Nucleic Acids Res 2021; 49:12836-12854. [PMID: 34871413 PMCID: PMC8682776 DOI: 10.1093/nar/gkab1173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022] Open
Abstract
Cockayne syndrome group B (CSB) protein has been implicated in the repair of a variety of DNA lesions that induce replication stress. However, little is known about its role at stalled replication forks. Here, we report that CSB is recruited to stalled forks in a manner dependent upon its T1031 phosphorylation by CDK. While dispensable for MRE11 association with stalled forks in wild-type cells, CSB is required for further accumulation of MRE11 at stalled forks in BRCA1/2-deficient cells. CSB promotes MRE11-mediated fork degradation in BRCA1/2-deficient cells. CSB possesses an intrinsic ATP-dependent fork reversal activity in vitro, which is activated upon removal of its N-terminal region that is known to autoinhibit CSB’s ATPase domain. CSB functions similarly to fork reversal factors SMARCAL1, ZRANB3 and HLTF to regulate slowdown in fork progression upon exposure to replication stress, indicative of a role of CSB in fork reversal in vivo. Furthermore, CSB not only acts epistatically with MRE11 to facilitate fork restart but also promotes RAD52-mediated break-induced replication repair of double-strand breaks arising from cleavage of stalled forks by MUS81 in BRCA1/2-deficient cells. Loss of CSB exacerbates chemosensitivity in BRCA1/2-deficient cells, underscoring an important role of CSB in the treatment of cancer lacking functional BRCA1/2.
Collapse
Affiliation(s)
- Nicole L Batenburg
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Sofiane Y Mersaoui
- CHU de Québec-Université Laval, Oncology Division, Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, 9 McMahon, Québec City, Québec G1R 3S3, Canada
| | - John R Walker
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Yan Coulombe
- CHU de Québec-Université Laval, Oncology Division, Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, 9 McMahon, Québec City, Québec G1R 3S3, Canada
| | - Ian Hammond-Martel
- Centre de recherche, de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montréal, Québec H1T 2M4, Canada
| | - Hugo Wurtele
- Centre de recherche, de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montréal, Québec H1T 2M4, Canada.,Department of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Jean-Yves Masson
- CHU de Québec-Université Laval, Oncology Division, Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, 9 McMahon, Québec City, Québec G1R 3S3, Canada
| | - Xu-Dong Zhu
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
35
|
Prado F. Non-Recombinogenic Functions of Rad51, BRCA2, and Rad52 in DNA Damage Tolerance. Genes (Basel) 2021; 12:genes12101550. [PMID: 34680945 PMCID: PMC8535942 DOI: 10.3390/genes12101550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/28/2022] Open
Abstract
The DNA damage tolerance (DDT) response is aimed to timely and safely complete DNA replication by facilitating the advance of replication forks through blocking lesions. This process is associated with an accumulation of single-strand DNA (ssDNA), both at the fork and behind the fork. Lesion bypass and ssDNA filling can be performed by translation synthesis (TLS) and template switching mechanisms. TLS uses low-fidelity polymerases to incorporate a dNTP opposite the blocking lesion, whereas template switching uses a Rad51/ssDNA nucleofilament and the sister chromatid to bypass the lesion. Rad51 is loaded at this nucleofilament by two mediator proteins, BRCA2 and Rad52, and these three factors are critical for homologous recombination (HR). Here, we review recent advances showing that Rad51, BRCA2, and Rad52 perform some of these functions through mechanisms that do not require the strand exchange activity of Rad51: the formation and protection of reversed fork structures aimed to bypass blocking lesions, and the promotion of TLS. These findings point to the central HR proteins as potential molecular switches in the choice of the mechanism of DDT.
Collapse
Affiliation(s)
- Félix Prado
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, 41092 Seville, Spain
| |
Collapse
|
36
|
Le HP, Heyer WD, Liu J. Guardians of the Genome: BRCA2 and Its Partners. Genes (Basel) 2021; 12:genes12081229. [PMID: 34440403 PMCID: PMC8394001 DOI: 10.3390/genes12081229] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/28/2022] Open
Abstract
The tumor suppressor BRCA2 functions as a central caretaker of genome stability, and individuals who carry BRCA2 mutations are predisposed to breast, ovarian, and other cancers. Recent research advanced our mechanistic understanding of BRCA2 and its various interaction partners in DNA repair, DNA replication support, and DNA double-strand break repair pathway choice. In this review, we discuss the biochemical and structural properties of BRCA2 and examine how these fundamental properties contribute to DNA repair and replication fork stabilization in living cells. We highlight selected BRCA2 binding partners and discuss their role in BRCA2-mediated homologous recombination and fork protection. Improved mechanistic understanding of how BRCA2 functions in genome stability maintenance can enable experimental evidence-based evaluation of pathogenic BRCA2 mutations and BRCA2 pseudo-revertants to support targeted therapy.
Collapse
Affiliation(s)
- Hang Phuong Le
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Jie Liu
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
- Correspondence: ; Tel.: +1-530-752-3016
| |
Collapse
|
37
|
Su J, Xu R, Mongia P, Toyofuku N, Nakagawa T. Fission yeast Rad8/HLTF facilitates Rad52-dependent chromosomal rearrangements through PCNA lysine 107 ubiquitination. PLoS Genet 2021; 17:e1009671. [PMID: 34292936 PMCID: PMC8297803 DOI: 10.1371/journal.pgen.1009671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/18/2021] [Indexed: 11/19/2022] Open
Abstract
Gross chromosomal rearrangements (GCRs), including translocation, deletion, and inversion, can cause cell death and genetic diseases such as cancer in multicellular organisms. Rad51, a DNA strand exchange protein, suppresses GCRs by repairing spontaneous DNA damage through a conservative way of homologous recombination, gene conversion. On the other hand, Rad52 that catalyzes single-strand annealing (SSA) causes GCRs using homologous sequences. However, the detailed mechanism of Rad52-dependent GCRs remains unclear. Here, we provide genetic evidence that fission yeast Rad8/HLTF facilitates Rad52-dependent GCRs through the ubiquitination of lysine 107 (K107) of PCNA, a DNA sliding clamp. In rad51Δ cells, loss of Rad8 eliminated 75% of the isochromosomes resulting from centromere inverted repeat recombination, showing that Rad8 is essential for the formation of the majority of isochromosomes in rad51Δ cells. Rad8 HIRAN and RING finger mutations reduced GCRs, suggesting that Rad8 facilitates GCRs through 3’ DNA-end binding and ubiquitin ligase activity. Mms2 and Ubc4 but not Ubc13 ubiquitin-conjugating enzymes were required for GCRs. Consistent with this, mutating PCNA K107 rather than the well-studied PCNA K164 reduced GCRs. Rad8-dependent PCNA K107 ubiquitination facilitates Rad52-dependent GCRs, as PCNA K107R, rad8, and rad52 mutations epistatically reduced GCRs. In contrast to GCRs, PCNA K107R did not significantly change gene conversion rates, suggesting a specific role of PCNA K107 ubiquitination in GCRs. PCNA K107R enhanced temperature-sensitive growth defects of DNA ligase I cdc17-K42 mutant, implying that PCNA K107 ubiquitination occurs when Okazaki fragment maturation fails. Remarkably, K107 is located at the interface between PCNA subunits, and an interface mutation D150E bypassed the requirement of PCNA K107 and Rad8 ubiquitin ligase for GCRs. These data suggest that Rad8-dependent PCNA K107 ubiquitination facilitates Rad52-dependent GCRs by changing the PCNA clamp structure. Gross chromosomal rearrangements (GCRs), including translocation, can alter gene dosage and activity, resulting in genetic diseases such as cancer. However, GCRs can occur by some enzymes, including Rad52 recombinase, and result in chromosomal evolution. Therefore, GCRs are not only pathological but also physiological phenomena from an evolutionary point of view. However, the detailed mechanism of GCRs remains unclear. Here, using fission yeast, we show that the homolog of human HLTF, Rad8 causes GCRs through noncanonical ubiquitination of proliferating cellular nuclear antigen (PCNA) at a lysine 107 (K107). Rad51, a DNA strand exchange protein, suppresses the formation of isochromosomes whose arms mirror each another and chromosomal truncation. We found that, like Rad52, Rad8 is required for isochromosome formation but not chromosomal truncation in rad51Δ cells, showing a specific role of Rad8 in homology-mediated GCRs. Mutations in Rad8 ubiquitin E3 ligase RING finger domain, Mms2-Ubc4 ubiquitin-conjugating enzymes, and PCNA K107 reduced GCRs in rad51Δ cells, suggesting that Rad8-Mms2-Ubc4-dependent PCNA K107 ubiquitination facilitates GCRs. PCNA trimers form a DNA sliding clamp. The K107 residue is located at the PCNA-PCNA interface, and an interface mutation D150E restored GCRs in PCNA K107R mutant cells. This study provides genetic evidence that Rad8-dependent PCNA K107 ubiquitination facilitates GCRs by changing the PCNA clamp structure.
Collapse
Affiliation(s)
- Jie Su
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Ran Xu
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Piyusha Mongia
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Naoko Toyofuku
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Takuro Nakagawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
- * E-mail:
| |
Collapse
|
38
|
Thakar T, Moldovan GL. The emerging determinants of replication fork stability. Nucleic Acids Res 2021; 49:7224-7238. [PMID: 33978751 PMCID: PMC8287955 DOI: 10.1093/nar/gkab344] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/21/2022] Open
Abstract
A universal response to replication stress is replication fork reversal, where the nascent complementary DNA strands are annealed to form a protective four-way junction allowing forks to avert DNA damage while replication stress is resolved. However, reversed forks are in turn susceptible to nucleolytic digestion of the regressed nascent DNA arms and rely on dedicated mechanisms to protect their integrity. The most well studied fork protection mechanism involves the BRCA pathway and its ability to catalyze RAD51 nucleofilament formation on the reversed arms of stalled replication forks. Importantly, the inability to prevent the degradation of reversed forks has emerged as a hallmark of BRCA deficiency and underlies genome instability and chemosensitivity in BRCA-deficient cells. In the past decade, multiple factors underlying fork stability have been discovered. These factors either cooperate with the BRCA pathway, operate independently from it to augment fork stability in its absence, or act as enablers of fork degradation. In this review, we examine these novel determinants of fork stability, explore the emergent conceptual underpinnings underlying fork protection, as well as the impact of fork protection on cellular viability and cancer therapy.
Collapse
Affiliation(s)
- Tanay Thakar
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
39
|
Guilliam TA. Mechanisms for Maintaining Eukaryotic Replisome Progression in the Presence of DNA Damage. Front Mol Biosci 2021; 8:712971. [PMID: 34295925 PMCID: PMC8290200 DOI: 10.3389/fmolb.2021.712971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/25/2021] [Indexed: 12/04/2022] Open
Abstract
The eukaryotic replisome coordinates template unwinding and nascent-strand synthesis to drive DNA replication fork progression and complete efficient genome duplication. During its advancement along the parental template, each replisome may encounter an array of obstacles including damaged and structured DNA that impede its progression and threaten genome stability. A number of mechanisms exist to permit replisomes to overcome such obstacles, maintain their progression, and prevent fork collapse. A combination of recent advances in structural, biochemical, and single-molecule approaches have illuminated the architecture of the replisome during unperturbed replication, rationalised the impact of impediments to fork progression, and enhanced our understanding of DNA damage tolerance mechanisms and their regulation. This review focusses on these studies to provide an updated overview of the mechanisms that support replisomes to maintain their progression on an imperfect template.
Collapse
Affiliation(s)
- Thomas A. Guilliam
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
40
|
Lyu X, Sang PB, Chai W. CST in maintaining genome stability: Beyond telomeres. DNA Repair (Amst) 2021; 102:103104. [PMID: 33780718 PMCID: PMC8081025 DOI: 10.1016/j.dnarep.2021.103104] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022]
Abstract
The human CST (CTC1-STN1-TEN1) complex is an RPA-like single-stranded DNA binding protein complex. While its telomeric functions have been well investigated, numerous studies have revealed that hCST also plays important roles in maintaining genome stability beyond telomeres. Here, we review and discuss recent discoveries on CST in various global genome maintenance pathways, including findings on the CST supercomplex structure, its functions in unperturbed DNA replication, stalled replication, double-strand break repair, and the ATR-CHK1 activation pathway. By summarizing these recent discoveries, we hope to offer new insights into genome maintenance mechanisms and the pathogenesis of CST mutation-associated diseases.
Collapse
Affiliation(s)
- Xinxing Lyu
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250062, China; Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 60153, United States
| | - Pau Biak Sang
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 60153, United States
| | - Weihang Chai
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 60153, United States.
| |
Collapse
|
41
|
Qiu S, Jiang G, Cao L, Huang J. Replication Fork Reversal and Protection. Front Cell Dev Biol 2021; 9:670392. [PMID: 34041245 PMCID: PMC8141627 DOI: 10.3389/fcell.2021.670392] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
During genome replication, replication forks often encounter obstacles that impede their progression. Arrested forks are unstable structures that can give rise to collapse and rearrange if they are not properly processed and restarted. Replication fork reversal is a critical protective mechanism in higher eukaryotic cells in response to replication stress, in which forks reverse their direction to form a Holliday junction-like structure. The reversed replication forks are protected from nuclease degradation by DNA damage repair proteins, such as BRCA1, BRCA2, and RAD51. Some of these molecules work cooperatively, while others have unique functions. Once the stress is resolved, the replication forks can restart with the help of enzymes, including human RECQ1 helicase, but restart will not be considered here. Here, we review research on the key factors and mechanisms required for the remodeling and protection of stalled replication forks in mammalian cells.
Collapse
Affiliation(s)
- Shan Qiu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The MOE Key Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Guixing Jiang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liping Cao
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Huang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The MOE Key Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
42
|
Tye S, Ronson GE, Morris JR. A fork in the road: Where homologous recombination and stalled replication fork protection part ways. Semin Cell Dev Biol 2021; 113:14-26. [PMID: 32653304 PMCID: PMC8082280 DOI: 10.1016/j.semcdb.2020.07.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022]
Abstract
In response to replication hindrances, DNA replication forks frequently stall and are remodelled into a four-way junction. In such a structure the annealed nascent strand is thought to resemble a DNA double-strand break and remodelled forks are vulnerable to nuclease attack by MRE11 and DNA2. Proteins that promote the recruitment, loading and stabilisation of RAD51 onto single-stranded DNA for homology search and strand exchange in homologous recombination (HR) repair and inter-strand cross-link repair also act to set up RAD51-mediated protection of nascent DNA at stalled replication forks. However, despite the similarities of these pathways, several lines of evidence indicate that fork protection is not simply analogous to the RAD51 loading step of HR. Protection of stalled forks not only requires separate functions of a number of recombination proteins, but also utilises nucleases important for the resection steps of HR in alternative ways. Here we discuss how fork protection arises and how its differences with HR give insights into the differing contexts of these two pathways.
Collapse
Affiliation(s)
- Stephanie Tye
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - George E Ronson
- University of Birmingham, College of Medical Dental Schools, Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, Vincent Drive, Edgbaston, Birmingham, B15 2TT, UK
| | - Joanna R Morris
- University of Birmingham, College of Medical Dental Schools, Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, Vincent Drive, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
43
|
Mirsanaye AS, Typas D, Mailand N. Ubiquitylation at Stressed Replication Forks: Mechanisms and Functions. Trends Cell Biol 2021; 31:584-597. [PMID: 33612353 DOI: 10.1016/j.tcb.2021.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 11/17/2022]
Abstract
Accurate duplication of chromosomal DNA is vital for faithful transmission of the genome during cell division. However, DNA replication integrity is frequently challenged by genotoxic insults that compromise the progression and stability of replication forks, posing a threat to genome stability. It is becoming clear that the organization of the replisome displays remarkable flexibility in responding to and overcoming a wide spectrum of fork-stalling insults, and that these transactions are dynamically orchestrated and regulated by protein post-translational modifications (PTMs) including ubiquitylation. In this review, we highlight and discuss important recent advances on how ubiquitin-mediated signaling at the replication fork plays a crucial multifaceted role in regulating replisome composition and remodeling its configuration upon replication stress, thereby ensuring high-fidelity duplication of the genome.
Collapse
Affiliation(s)
- Ann Schirin Mirsanaye
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Dimitris Typas
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Niels Mailand
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark; Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
44
|
Hishiki A, Sato M, Hashimoto H. Structure of HIRAN domain of human HLTF bound to duplex DNA provides structural basis for DNA unwinding to initiate replication fork regression. J Biochem 2021; 167:597-602. [PMID: 31960921 DOI: 10.1093/jb/mvaa008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/13/2020] [Indexed: 01/06/2023] Open
Abstract
Replication fork regression is a mechanism to rescue a stalled fork by various replication stresses, such as DNA lesions. Helicase-like transcription factor, a SNF2 translocase, plays a central role in the fork regression and its N-terminal domain, HIRAN (HIP116 and Rad5 N-terminal), binds the 3'-hydroxy group of single-stranded DNA. Furthermore, HIRAN is supposed to bind double-stranded DNA (dsDNA) and involved in strand separation in the fork regression, whereas structural basis for mechanisms underlying dsDNA binding and strand separation by HIRAN are still unclear. Here, we report the crystal structure of HIRAN bound to duplex DNA. The structure reveals that HIRAN binds the 3'-hydroxy group of DNA and unexpectedly unwinds three nucleobases of the duplex. Phe-142 is involved in the dsDNA binding and the strand separation. In addition, the structure unravels the mechanism underlying sequence-independent recognition for purine bases by HIRAN, where the N-glycosidic bond adopts syn conformation. Our findings indicate direct involvement of HIRAN in the fork regression by separating of the daughter strand from the parental template.
Collapse
Affiliation(s)
- Asami Hishiki
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8002, Japan
| | - Mamoru Sato
- Graduate School of Medical Life Sciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Hiroshi Hashimoto
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8002, Japan
| |
Collapse
|
45
|
Tian T, Bu M, Chen X, Ding L, Yang Y, Han J, Feng XH, Xu P, Liu T, Ying S, Lei Y, Li Q, Huang J. The ZATT-TOP2A-PICH Axis Drives Extensive Replication Fork Reversal to Promote Genome Stability. Mol Cell 2020; 81:198-211.e6. [PMID: 33296677 DOI: 10.1016/j.molcel.2020.11.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/03/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022]
Abstract
Replication fork reversal is a global response to replication stress in mammalian cells, but precisely how it occurs remains poorly understood. Here, we show that, upon replication stress, DNA topoisomerase IIalpha (TOP2A) is recruited to stalled forks in a manner dependent on the SNF2-family DNA translocases HLTF, ZRANB3, and SMARCAL1. This is accompanied by an increase in TOP2A SUMOylation mediated by the SUMO E3 ligase ZATT and followed by recruitment of a SUMO-targeted DNA translocase, PICH. Disruption of the ZATT-TOP2A-PICH axis results in accumulation of partially reversed forks and enhanced genome instability. These results suggest that fork reversal occurs via a sequential two-step process. First, HLTF, ZRANB3, and SMARCAL1 initiate limited fork reversal, creating superhelical strain in the newly replicated sister chromatids. Second, TOP2A drives extensive fork reversal by resolving the resulting topological barriers and via its role in recruiting PICH to stalled forks.
Collapse
Affiliation(s)
- Tian Tian
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Min Bu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xu Chen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Linli Ding
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yulan Yang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jinhua Han
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xin-Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Pinglong Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ting Liu
- Department of Cell Biology and Department of General Surgery of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Songmin Ying
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yang Lei
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Qing Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jun Huang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
46
|
Shiu JL, Wu CK, Chang SB, Sun YJ, Chen YJ, Lai CC, Chiu WT, Chang WT, Myung K, Su WP, Liaw H. The HLTF-PARP1 interaction in the progression and stability of damaged replication forks caused by methyl methanesulfonate. Oncogenesis 2020; 9:104. [PMID: 33281189 PMCID: PMC7719709 DOI: 10.1038/s41389-020-00289-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 11/27/2022] Open
Abstract
Human HLTF participates in the lesion-bypass mechanism through the fork reversal structure, known as template switching of post-replication repair. However, the mechanism by which HLTF promotes the replication progression and fork stability of damaged forks remains unclear. Here, we identify a novel protein–protein interaction between HLTF and PARP1. The depletion of HLTF and PARP1 increases chromosome breaks, further reduces the length of replication tracks, and concomitantly increases the number of stalled forks after methyl methanesulfonate treatment according to a DNA fiber analysis. The progression of replication also depends on BARD1 in the presence of MMS treatment. By combining 5-ethynyl-2′-deoxyuridine with a proximity ligation assay, we revealed that the HLTF, PARP1, and BRCA1/BARD1/RAD51 proteins were initially recruited to damaged forks. However, prolonged stalling of damaged forks results in fork collapse. HLTF and PCNA dissociate from the collapsed forks, with increased accumulation of PARP1 and BRCA1/BARD1/RAD51 at the collapsed forks. Our results reveal that HLTF together with PARP1 and BARD1 participates in the stabilization of damaged forks, and the PARP1–BARD1 interaction is further involved in the repair of collapse forks.
Collapse
Affiliation(s)
- Jia-Lin Shiu
- Department of Life Sciences, National Cheng Kung University, No.1 University Road, Tainan City, 701, Taiwan
| | - Cheng-Kuei Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, Tainan City, 704, Taiwan
| | - Song-Bin Chang
- Department of Life Sciences, National Cheng Kung University, No.1 University Road, Tainan City, 701, Taiwan
| | - Yan-Jhih Sun
- Department of Life Sciences, National Cheng Kung University, No.1 University Road, Tainan City, 701, Taiwan
| | - Yen-Ju Chen
- Department of Life Sciences, National Cheng Kung University, No.1 University Road, Tainan City, 701, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, College of Life Science, National Chung Hsing University, No.145 Xingda Rd. South Dist., Taichung City, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Wen-Tsan Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Kyungjae Myung
- IBS Center for Genomic Integrity, UNIST-gil 50, Ulsan, 689-798, Republic of Korea
| | - Wen-Pin Su
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, Tainan City, 704, Taiwan. .,Departments of Oncology and Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, 704, Taiwan.
| | - Hungjiun Liaw
- Department of Life Sciences, National Cheng Kung University, No.1 University Road, Tainan City, 701, Taiwan.
| |
Collapse
|
47
|
Conti BA, Smogorzewska A. Mechanisms of direct replication restart at stressed replisomes. DNA Repair (Amst) 2020; 95:102947. [PMID: 32853827 PMCID: PMC7669714 DOI: 10.1016/j.dnarep.2020.102947] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 02/09/2023]
Affiliation(s)
- Brooke A Conti
- Laboratory of Genome Maintenance, The Rockefeller University, New York 10065, USA
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York 10065, USA.
| |
Collapse
|
48
|
Liu W, Krishnamoorthy A, Zhao R, Cortez D. Two replication fork remodeling pathways generate nuclease substrates for distinct fork protection factors. SCIENCE ADVANCES 2020; 6:6/46/eabc3598. [PMID: 33188024 PMCID: PMC7673757 DOI: 10.1126/sciadv.abc3598] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/23/2020] [Indexed: 05/11/2023]
Abstract
Fork reversal is a common response to replication stress, but it generates a DNA end that is susceptible to degradation. Many fork protection factors block degradation, but how they work remains unclear. Here, we find that 53BP1 protects forks from DNA2-mediated degradation in a cell type-specific manner. Fork protection by 53BP1 reduces S-phase DNA damage and hypersensitivity to replication stress. Unlike BRCA2, FANCD2, and ABRO1 that protect reversed forks generated by SMARCAL1, ZRANB3, and HLTF, 53BP1 protects forks remodeled by FBH1. This property is shared by the fork protection factors FANCA, FANCC, FANCG, BOD1L, and VHL. RAD51 is required to generate the resection substrate in all cases. Unexpectedly, BRCA2 is also required for fork degradation in the FBH1 pathway or when RAD51 activity is partially compromised. We conclude that there are multiple fork protection mechanisms that operate downstream of at least two RAD51-dependent fork remodeling pathways.
Collapse
Affiliation(s)
- W Liu
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237, USA
| | - A Krishnamoorthy
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237, USA
| | - R Zhao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237, USA
| | - D Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237, USA.
| |
Collapse
|
49
|
Kondratick CM, Washington MT, Spies M. Making Choices: DNA Replication Fork Recovery Mechanisms. Semin Cell Dev Biol 2020; 113:27-37. [PMID: 33967572 DOI: 10.1016/j.semcdb.2020.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
DNA replication is laden with obstacles that slow, stall, collapse, and break DNA replication forks. At each obstacle, there is a decision to be made whether to bypass the lesion, repair or restart the damaged fork, or to protect stalled forks from further demise. Each "decision" draws upon multitude of proteins participating in various mechanisms that allow repair and restart of replication forks. Specific functions for many of these proteins have been described and an understanding of how they come together in supporting replication forks is starting to emerge. Many questions, however, remain regarding selection of the mechanisms that enable faithful genome duplication and how "normal" intermediates in these mechanisms are sometimes funneled into "rogue" processes that destabilize the genome and lead to cancer, cell death, and emergence of chemotherapeutic resistance. In this review we will discuss molecular mechanisms of DNA damage bypass and replication fork protection and repair. We will specifically focus on the key players that define which mechanism is employed including: PCNA and its control by posttranslational modifications, translesion synthesis DNA polymerases, molecular motors that catalyze reversal of stalled replication forks, proteins that antagonize fork reversal and protect reversed forks from nucleolytic degradation, and the machinery of homologous recombination that helps to reestablish broken forks. We will also discuss risks to genome integrity inherent in each of these mechanisms.
Collapse
Affiliation(s)
- Christine M Kondratick
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - M Todd Washington
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242.,Department of Radiation Oncology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Maria Spies
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242.,Department of Radiation Oncology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
50
|
Nguyen DD, Kim EY, Sang PB, Chai W. Roles of OB-Fold Proteins in Replication Stress. Front Cell Dev Biol 2020; 8:574466. [PMID: 33043007 PMCID: PMC7517361 DOI: 10.3389/fcell.2020.574466] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022] Open
Abstract
Accurate DNA replication is essential for maintaining genome stability. However, this stability becomes vulnerable when replication fork progression is stalled or slowed - a condition known as replication stress. Prolonged fork stalling can cause DNA damage, leading to genome instabilities. Thus, cells have developed several pathways and a complex set of proteins to overcome the challenge at stalled replication forks. Oligonucleotide/oligosaccharide binding (OB)-fold containing proteins are a group of proteins that play a crucial role in fork protection and fork restart. These proteins bind to single-stranded DNA with high affinity and prevent premature annealing and unwanted nuclease digestion. Among these OB-fold containing proteins, the best studied in eukaryotic cells are replication protein A (RPA) and breast cancer susceptibility protein 2 (BRCA2). Recently, another RPA-like protein complex CTC1-STN1-TEN1 (CST) complex has been found to counter replication perturbation. In this review, we discuss the latest findings on how these OB-fold containing proteins (RPA, BRCA2, CST) cooperate to safeguard DNA replication and maintain genome stability.
Collapse
Affiliation(s)
| | | | | | - Weihang Chai
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States
| |
Collapse
|