1
|
Mazloumi Aboukheili AM, Walden H. USP1 in regulation of DNA repair pathways. DNA Repair (Amst) 2025; 146:103807. [PMID: 39848025 DOI: 10.1016/j.dnarep.2025.103807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/25/2025]
Abstract
Ubiquitin-specific protease 1 (USP1) is the founding member of the family of cysteine proteases that catalyse hydrolysis of the isopeptide bond between ubiquitin and targets. USP1 is often overexpressed in various cancers, and expression levels correlate with poor prognosis. USP1 and its partner USP1-associated Factor 1 (UAF1) are required for deubiquitinating monoubiquitin signals in DNA interstrand crosslink repair, and in Translesion synthesis, among others, and both proteins are subject to multiple regulations themselves. This review covers recent findings on the mechanisms and functions of USP1 in DNA repair, its regulation, and its potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
| | - Helen Walden
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, Scotland.
| |
Collapse
|
2
|
Wang Z, Li T, Liu D, Li M, Liu S, Yu X, Li H, Song H, Zhao W, Liu Z, Chen X, Lu G, Chen ZJ, Huang T, Liu H. The deubiquitinase cofactor UAF1 interacts with USP1 and plays an essential role in spermiogenesis. iScience 2024; 27:109456. [PMID: 38591005 PMCID: PMC10999478 DOI: 10.1016/j.isci.2024.109456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/02/2023] [Accepted: 03/07/2024] [Indexed: 04/10/2024] Open
Abstract
Spermiogenesis defines the final phase of male germ cell differentiation. While multiple deubiquitinating enzymes have been linked to spermiogenesis, the impacts of deubiquitination on spermiogenesis remain poorly characterized. Here, we investigated the function of UAF1 in mouse spermiogenesis. We selectively deleted Uaf1 in premeiotic germ cells using the Stra8-Cre knock-in mouse strain (Uaf1 sKO), and found that Uaf1 is essential for spermiogenesis and male fertility. Further, UAF1 interacts and colocalizes with USP1 in the testes. Conditional knockout of Uaf1 in testes results in disturbed protein levels and localization of USP1, suggesting that UAF1 regulates spermiogenesis through the function of the deubiquitinating enzyme USP1. Using tandem mass tag-based proteomics, we identified that conditional knockout of Uaf1 in the testes results in reduced levels of proteins that are essential for spermiogenesis. Thus, we conclude that the UAF1/USP1 deubiquitinase complex is essential for normal spermiogenesis by regulating the levels of spermiogenesis-related proteins.
Collapse
Affiliation(s)
- Ziqi Wang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Tongtong Li
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
| | - Dongkai Liu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Mengjing Li
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Shangming Liu
- School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Xiaochen Yu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Hanzhen Li
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
| | - Hui Song
- Department of Immunology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wei Zhao
- Department of Immunology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhaojian Liu
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Xiangfeng Chen
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Gang Lu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Tao Huang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Lu Z, Zhang Z, Yang M, Xiao M. Ubiquitin-specific protease 1 inhibition sensitizes hepatocellular carcinoma cells to doxorubicin by ubiquitinated proliferating cell nuclear antigen-mediated attenuation of stemness. Anticancer Drugs 2022; 33:622-631. [PMID: 35324534 DOI: 10.1097/cad.0000000000001311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Currently, resistance to the chemotherapeutic agent doxorubicin (Dox) in hepatocellular carcinoma (HCC) cells is an obstacle in developing effective Dox-targeted clinical therapies. Ubiquitin-specific protease 1 (USP1) plays a crucial role in the progression of multiple cancers. In this study, the purpose was to investigate the effect of USP1 depletion with chemotherapeutant Dox on the HCC cells. Flow cytometry was used to detect the ratio of apoptosis. The expression levels of selected proteins were evaluated by western blotting. In addition, the expression of genes was quantitated by quantitative real-time PCR assay. Coimmunoprecipitation was performed to confirm the interaction between USP1 and proliferating cell nuclear antigen (PCNA). Sphere formation assay was carried out to investigate the cancer stemness. Subcutaneous xenograft and orthotopic liver tumor models were established to examine the growth of tumor. Knockdown of USP1 increased the rate of Dox-induced apoptosis in stem-like and nonstem-like HCC cells. The combination of Dox and the USP1 inhibitor SJB3-019A (SJB3) markedly enhanced apoptosis in the primary liver carcinoma/PRF/5 and MHCC-97H cell lines. Notably, Dox/SJB3-induced tumor inhibition was further determined in vivo using a xenograft and orthotopic liver tumor model. Mechanically, USP1 inhibition via SJB3 or short hairpin RNA significantly decreased cancer stemness, including sphere formation ability and the expression of Nanog, Sox2, and c-Myc. The sensitization of HCC to Dox by SJB3 is attributed to the upregulation of PCNA ubiquitylation. Thus, genetic or pharmacological inhibition of USP1 restored the sensitivity of HCC cells to Dox in vitro and in vivo , representing a new potential therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Zhe Lu
- Clinical Laboratory, Women and Children's Health Care Center of Hainan Province and Departments of
| | | | - Min Yang
- Medical Oncology, Hainan Cancer Hospital, Haikou, P.R. China
| | - Meifang Xiao
- Clinical Laboratory, Women and Children's Health Care Center of Hainan Province and Departments of
| |
Collapse
|
4
|
Lemonidis K, Arkinson C, Rennie ML, Walden H. Mechanism, specificity, and function of FANCD2-FANCI ubiquitination and deubiquitination. FEBS J 2021; 289:4811-4829. [PMID: 34137174 DOI: 10.1111/febs.16077] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 12/20/2022]
Abstract
Fanconi anemia (FA) is a rare genetic disorder caused by mutations in any of the currently 22 known FA genes. The products of these genes, along with other FA-associated proteins, participate in a biochemical pathway, known as the FA pathway. This pathway is responsible for the repair of DNA interstrand cross-links (ICL) and the maintenance of genomic stability in response to replication stress. At the center of the pathway is the monoubiquitination of two FA proteins, FANCD2 and FANCI, on two specific lysine residues. This is achieved by the combined action of the UBE2T ubiquitin-conjugating enzyme and a large multicomponent E3 ligase, known as the FA-core complex. This E2-E3 pair specifically targets the FANCI-FANCD2 heterodimer (ID2 complex) for ubiquitination on DNA. Deubiquitination of both FANCD2 and FANCI, which is also critical for ICL repair, is achieved by the USP1-UAF1 complex. Recent work suggests that FANCD2 ubiquitination transforms the ID2 complex into a sliding DNA clamp. Further, ID2 ubiquitination on FANCI does not alter the closed ID2 conformation observed upon FANCD2 ubiquitination and the associated ID2Ub complex with high DNA affinity. However, the resulting dimonoubiquitinated complex is highly resistant to USP1-UAF1 deubiquitination. This review will provide an update on recent work focusing on how specificity in FANCD2 ubiquitination and deubiquitination is achieved. Recent findings shedding light to the mechanisms, molecular functions, and biological roles of FANCI/FANCD2 ubiquitination and deubiquitination will be also discussed. ENZYMES: UBA1 (6.2.1.45), UBE2T (2.3.2.23), FANCL (2.3.2.27), USP1 (3.4.19.12).
Collapse
Affiliation(s)
- Kimon Lemonidis
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, UK
| | - Connor Arkinson
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, UK
| | - Martin L Rennie
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, UK
| | - Helen Walden
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
5
|
Lee H, Park E. Perilla frutescens Extracts Enhance DNA Repair Response in UVB Damaged HaCaT Cells. Nutrients 2021; 13:nu13041263. [PMID: 33921322 PMCID: PMC8070160 DOI: 10.3390/nu13041263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022] Open
Abstract
Physiological processes in skin are associated with exposure to UV light and are essential for skin maintenance and regeneration. Here, we investigated whether the leaf and callus extracts of Perilla frutescens (Perilla), a well-known Asian herb, affect DNA damage response and repair in skin and keratinocytes exposed to Untraviolet B (UVB) light. First, we examined the protective effects of Perilla leaf extracts in UVB damaged mouse skin in vivo. Second, we cultured calluses using plant tissue culture technology, from Perilla leaf explant and then examined the effects of the leaf and callus extracts of Perilla on UVB exposed keratinocytes. HaCaT cells treated with leaf and callus Perilla extracts exhibited antioxidant activities, smaller DNA fragment tails, and enhanced colony formation after UVB exposure. Interestingly, keratinocytes treated with the leaf and callus extracts of Perilla showed G1/S cell cycle arrest, reduced protein levels of cyclin D1, Cyclin Dependent Kinase 6 (CDK6), and γH2AX, and enhanced levels of phosphorylated checkpoint kinase 1 (pCHK1) following UVB exposure. These observations suggest that the leaf and callus extracts of Perilla are candidate nutraceuticals for the prevention of keratinocyte aging.
Collapse
|
6
|
Song H, Zhao C, Yu Z, Li Q, Yan R, Qin Y, Jia M, Zhao W. UAF1 deubiquitinase complexes facilitate NLRP3 inflammasome activation by promoting NLRP3 expression. Nat Commun 2020; 11:6042. [PMID: 33247121 PMCID: PMC7695691 DOI: 10.1038/s41467-020-19939-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/05/2020] [Indexed: 02/08/2023] Open
Abstract
NOD-like receptor protein 3 (NLRP3) detects microbial infections or endogenous danger signals and activates the NLRP3 inflammasome, which has important functions in host defense and contributes to the pathogenesis of inflammatory diseases, and thereby needs to be tightly controlled. Deubiquitination of NLRP3 is considered a key step in NLRP3 inflammasome activation. However, the mechanisms by which deubiquitination controls NLRP3 inflammasome activation are unclear. Here, we show that the UAF1/USP1 deubiquitinase complex selectively removes K48-linked polyubiquitination of NLRP3 and suppresses its ubiquitination-mediated degradation, enhancing cellular NLRP3 levels, which are indispensable for subsequent NLRP3 inflammasome assembly and activation. In addition, the UAF1/USP12 and UAF1/USP46 complexes promote NF-κB activation, enhance the transcription of NLRP3 and proinflammatory cytokines (including pro-IL-1β, TNF, and IL-6) by inhibiting ubiquitination-mediated degradation of p65. Consequently, Uaf1 deficiency attenuates NLRP3 inflammasome activation and IL-1β secretion both in vitro and in vivo. Our study reveals that the UAF1 deubiquitinase complexes enhance NLRP3 and pro-IL-1β expression by targeting NLRP3 and p65 and licensing NLRP3 inflammasome activation. NLRP3 inflammasome activation is regulated by various signaling pathways to ensure inflammation does not go unchecked. Here the authors show how deubiquitination avoids this regulation to activate the NLRP3 inflammasome through the function of UAF1/USP deubiquitinase complexes.
Collapse
Affiliation(s)
- Hui Song
- Department of Immunology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.,State Key Laboratory of Microbial Technology, Shandong University, 250012, Jinan, Shandong, China
| | - Chunyuan Zhao
- Department of Immunology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.,State Key Laboratory of Microbial Technology, Shandong University, 250012, Jinan, Shandong, China.,Department of Cell Biology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Zhongxia Yu
- Department of Immunology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.,State Key Laboratory of Microbial Technology, Shandong University, 250012, Jinan, Shandong, China
| | - Qizhao Li
- Department of Immunology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.,State Key Laboratory of Microbial Technology, Shandong University, 250012, Jinan, Shandong, China
| | - Rongzhen Yan
- Department of Immunology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.,State Key Laboratory of Microbial Technology, Shandong University, 250012, Jinan, Shandong, China
| | - Ying Qin
- Department of Immunology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.,State Key Laboratory of Microbial Technology, Shandong University, 250012, Jinan, Shandong, China
| | - Mutian Jia
- Department of Immunology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.,State Key Laboratory of Microbial Technology, Shandong University, 250012, Jinan, Shandong, China
| | - Wei Zhao
- Department of Immunology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China. .,State Key Laboratory of Microbial Technology, Shandong University, 250012, Jinan, Shandong, China.
| |
Collapse
|
7
|
Kim SJ, Wie M, Park SH, Kim TM, Park JH, Kim S, Myung K, Lee KY. ATAD5 suppresses centrosome over-duplication by regulating UAF1 and ID1. Cell Cycle 2020; 19:1952-1968. [PMID: 32594826 PMCID: PMC7469630 DOI: 10.1080/15384101.2020.1785724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Centrosomes are the primary microtubule-organizing centers that are important for mitotic spindle assembly. Centrosome amplification is commonly observed in human cancer cells and contributes to genomic instability. However, it is not clear how centrosome duplication is dysregulated in cancer cells. Here, we report that ATAD5, a replisome protein that unloads PCNA from chromatin as a replication factor C-like complex (RLC), plays an important role in regulating centrosome duplication. ATAD5 is present at the centrosome, specifically at the base of the mother and daughter centrioles that undergo duplication. UAF1, which interacts with ATAD5 and regulates PCNA deubiquitination as a complex with ubiquitin-specific protease 1, is also localized at the centrosome. Depletion of ATAD5 or UAF1 increases cells with over-duplicated centrosome whereas ATAD5 overexpression reduces such cells. Consistently, the proportion of cells showing the multipolar mode of chromosome segregation is increased among ATAD5-depleted cells. The localization and function of ATAD5 at the centrosomes do not require other RLC subunits. UAF1 interacts and co-localizes with ID1, a protein that increases centrosome amplification upon overexpression. ATAD5 depletion reduces interactions between UAF1 and ID1 and increases ID1 signal at the centrosome, providing a mechanistic framework for understanding the role of ATAD5 in centrosome duplication.
Collapse
Affiliation(s)
- Seong-Jung Kim
- Center for Genomic Integrity, Institute for Basic Science , Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology , Ulsan, Korea
| | - Minwoo Wie
- Center for Genomic Integrity, Institute for Basic Science , Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology , Ulsan, Korea
| | - Su Hyung Park
- Center for Genomic Integrity, Institute for Basic Science , Ulsan, Korea
| | - Tae Moon Kim
- Center for Genomic Integrity, Institute for Basic Science , Ulsan, Korea
| | - Jun Hong Park
- Center for Genomic Integrity, Institute for Basic Science , Ulsan, Korea.,Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine , Naju-si, Republic of Korea
| | - Shinseog Kim
- Center for Genomic Integrity, Institute for Basic Science , Ulsan, Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science , Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology , Ulsan, Korea
| | - Kyoo-Young Lee
- Center for Genomic Integrity, Institute for Basic Science , Ulsan, Korea
| |
Collapse
|
8
|
Kafer GR, Cesare AJ. A Survey of Essential Genome Stability Genes Reveals That Replication Stress Mitigation Is Critical for Peri-Implantation Embryogenesis. Front Cell Dev Biol 2020; 8:416. [PMID: 32548123 PMCID: PMC7274024 DOI: 10.3389/fcell.2020.00416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022] Open
Abstract
Murine development demands that pluripotent epiblast stem cells in the peri-implantation embryo increase from approximately 120 to 14,000 cells between embryonic days (E) 4.5 and E7.5. This is possible because epiblast stem cells can complete cell cycles in under 3 h in vivo. To ensure conceptus fitness, epiblast cells must undertake this proliferative feat while maintaining genome integrity. How epiblast cells maintain genome health under such an immense proliferation demand remains unclear. To illuminate the contribution of genome stability pathways to early mammalian development we systematically reviewed knockout mouse data from 347 DDR and repair associated genes. Cumulatively, the data indicate that while many DNA repair functions are dispensable in embryogenesis, genes encoding replication stress response and homology directed repair factors are essential specifically during the peri-implantation stage of early development. We discuss the significance of these findings in the context of the unique proliferative demands placed on pluripotent epiblast stem cells.
Collapse
Affiliation(s)
| | - Anthony J. Cesare
- Genome Integrity Unit, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
9
|
Liang F, Miller AS, Tang C, Maranon D, Williamson EA, Hromas R, Wiese C, Zhao W, Sung P, Kupfer GM. The DNA-binding activity of USP1-associated factor 1 is required for efficient RAD51-mediated homologous DNA pairing and homology-directed DNA repair. J Biol Chem 2020; 295:8186-8194. [PMID: 32350107 DOI: 10.1074/jbc.ra120.013714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Indexed: 11/06/2022] Open
Abstract
USP1-associated factor 1 (UAF1) is an integral component of the RAD51-associated protein 1 (RAD51AP1)-UAF1-ubiquitin-specific peptidase 1 (USP1) trimeric deubiquitinase complex. This complex acts on DNA-bound, monoubiquitinated Fanconi anemia complementation group D2 (FANCD2) protein in the Fanconi anemia pathway of the DNA damage response. Moreover, RAD51AP1 and UAF1 cooperate to enhance homologous DNA pairing mediated by the recombinase RAD51 in DNA repair via the homologous recombination (HR) pathway. However, whereas the DNA-binding activity of RAD51AP1 has been shown to be important for RAD51-mediated homologous DNA pairing and HR-mediated DNA repair, the role of DNA binding by UAF1 in these processes is unclear. We have isolated mutant UAF1 variants that are impaired in DNA binding and tested them together with RAD51AP1 in RAD51-mediated HR. This biochemical analysis revealed that the DNA-binding activity of UAF1 is indispensable for enhanced RAD51 recombinase activity within the context of the UAF1-RAD51AP1 complex. In cells, DNA-binding deficiency of UAF1 increased DNA damage sensitivity and impaired HR efficiency, suggesting that UAF1 and RAD51AP1 have coordinated roles in DNA binding during HR and DNA damage repair. Our findings show that even though UAF1's DNA-binding activity is redundant with that of RAD51AP1 in FANCD2 deubiquitination, it is required for efficient HR-mediated chromosome damage repair.
Collapse
Affiliation(s)
- Fengshan Liang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Pediatrics, Section of Hematology-Oncology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Adam S Miller
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Caroline Tang
- Department of Pediatrics, Section of Hematology-Oncology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - David Maranon
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Elizabeth A Williamson
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Robert Hromas
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Gary M Kupfer
- Department of Pediatrics, Section of Hematology-Oncology, Yale University School of Medicine, New Haven, Connecticut, USA .,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
10
|
Cho J, Park E. Ferulic acid maintains the self-renewal capacity of embryo stem cells and adipose-derived mesenchymal stem cells in high fat diet-induced obese mice. J Nutr Biochem 2019; 77:108327. [PMID: 31926451 DOI: 10.1016/j.jnutbio.2019.108327] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/18/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
Self-renewal is required for embryo stem cells (ESCs) and adipose-derived mesenchymal stem cells (ADMSCs). This study examined the ability of ferulic acid in mouse ESCs and ADMSCs, in a high fat diet-induced mouse model. Initially, five natural compounds of ferulic acid, xanthohumol, curcumin, ascorbic acid, and quercetin were screened in ESCs using an alkaline phosphate +(AP+) assay, as a self-renewal biomarker. A ferulic acid treatment was the highest AP+ staining in hop-hit screening compounds. Also a ferulic acid increased Nanog mRNA levels in ESCs. The in vivo effects of ferulic acid were next examined in an obese mouse model. C57BL/6 J male mice were fed either a high fat diet (HFD) or control diet with ferulic acid (5 g/kg diet) for 8 weeks. Ferulic acid exhibited weight loss and improved glucose homeostasis, lipid profiling, and hepatic steatosis in a HFD-induced mouse model. Next, ADMSCs (Sca-1+CD45-), a hallmark of fat stem cells, were then isolated and quantified from mouse abdominal adipose tissue. A HFD decreased the Sca-1+CD45- cell population of ADMSCs, but HFD-induced obese mice given ferulic acid showed an increased the Sca-1+CD45- cell population of ADMSCs. Moreover, ferulic acid enhanced NANOG mRNA levels in human ADMSCs and its related gene mRNA expression. Overall, this study suggests that ferulic acid preserves self-renewal in ESCs, and contributes to ADMSCs self-renewal and effective weight control in obesity.
Collapse
Affiliation(s)
- Jinkyung Cho
- Diabetes Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, NY., USA
| | - Eunmi Park
- Diabetes Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, NY., USA; Department of Food and Nutrition, Hannam University, Daejeon 306-791, Republic of Korea.
| |
Collapse
|
11
|
Dogrusöz M, Ruschel Trasel A, Cao J, Ҫolak S, van Pelt SI, Kroes WGM, Teunisse AFAS, Alsafadi S, van Duinen SG, Luyten GPM, van der Velden PA, Amaro A, Pfeffer U, Jochemsen AG, Jager MJ. Differential Expression of DNA Repair Genes in Prognostically-Favorable versus Unfavorable Uveal Melanoma. Cancers (Basel) 2019; 11:cancers11081104. [PMID: 31382494 PMCID: PMC6721581 DOI: 10.3390/cancers11081104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 01/20/2023] Open
Abstract
Expression of DNA repair genes was studied in uveal melanoma (UM) in order to identify genes that may play a role in metastases formation. We searched for genes that are differentially expressed between tumors with a favorable and unfavorable prognosis. Gene-expression profiling was performed on 64 primary UM from the Leiden University Medical Center (LUMC), Leiden, The Netherlands. The expression of 121 genes encoding proteins involved in DNA repair pathways was analyzed: a total of 44 genes differed between disomy 3 and monosomy 3 tumors. Results were validated in a cohort from Genoa and Paris and the The Cancer Genome Atlas (TCGA) cohort. Expression of the PRKDC, WDR48, XPC, and BAP1 genes was significantly associated with clinical outcome after validation. PRKDC was highly expressed in metastasizing UM (p < 0.001), whereas WDR48, XPC, and BAP1 were lowly expressed (p < 0.001, p = 0.006, p = 0.003, respectively). Low expression of WDR48 and XPC was related to a large tumor diameter (p = 0.01 and p = 0.004, respectively), and a mixed/epithelioid cell type (p = 0.007 and p = 0.03, respectively). We conclude that the expression of WDR48, XPC, and BAP1 is significantly lower in UM with an unfavorable prognosis, while these tumors have a significantly higher expression of PRKDC. Pharmacological inhibition of DNA-PKcs resulted in decreased survival of UM cells. PRKDC may be involved in proliferation, invasion and metastasis of UM cells. Unraveling the role of DNA repair genes may enhance our understanding of UM biology and result in the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Mehmet Dogrusöz
- Department of Ophthalmology, Leiden University Medical Center, 2333 AZ Leiden, The Netherlands
- Department of Ophthalmology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Andrea Ruschel Trasel
- Department of Ophthalmology, Leiden University Medical Center, 2333 AZ Leiden, The Netherlands
- Universidade Federal do Rio Grande do Sul, 90040-060 Porto Alegre, Brazil
| | - Jinfeng Cao
- Department of Ophthalmology, Leiden University Medical Center, 2333 AZ Leiden, The Netherlands
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130012, China
| | - Selҫuk Ҫolak
- Department of Molecular Cell Biology, Leiden University Medical Center, 2333 AZ Leiden, The Netherlands
- Center for Reproductive Medicine, Elisabeth-TweeSteden Hospital, 5022 GC Tilburg, The Netherlands
| | - Sake I van Pelt
- Department of Ophthalmology, Leiden University Medical Center, 2333 AZ Leiden, The Netherlands
| | - Wilma G M Kroes
- Department of Clinical Genetics, Leiden University Medical Center, 2333 AZ Leiden, The Netherlands
| | - Amina F A S Teunisse
- Department of Clinical Genetics, Leiden University Medical Center, 2333 AZ Leiden, The Netherlands
| | - Samar Alsafadi
- Department of Translational Research, PSL Research University, Institute Curie, 75248 Paris, France
| | - Sjoerd G van Duinen
- Department of Pathology, Leiden University Medical Center, 2333 AZ Leiden, The Netherlands
| | - Gregorius P M Luyten
- Department of Ophthalmology, Leiden University Medical Center, 2333 AZ Leiden, The Netherlands
| | - Pieter A van der Velden
- Department of Ophthalmology, Leiden University Medical Center, 2333 AZ Leiden, The Netherlands
| | - Adriana Amaro
- Laboratory of Tumor Epigenetics, Department of Integrated Oncology Therapies, IRCCS Ospedale Policlinico San Martino, 16133 Genoa, Italy
| | - Ulrich Pfeffer
- Laboratory of Tumor Epigenetics, Department of Integrated Oncology Therapies, IRCCS Ospedale Policlinico San Martino, 16133 Genoa, Italy
| | - Aart G Jochemsen
- Department of Molecular Cell Biology, Leiden University Medical Center, 2333 AZ Leiden, The Netherlands
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, 2333 AZ Leiden, The Netherlands.
| |
Collapse
|
12
|
Liang F, Miller AS, Longerich S, Tang C, Maranon D, Williamson EA, Hromas R, Wiese C, Kupfer GM, Sung P. DNA requirement in FANCD2 deubiquitination by USP1-UAF1-RAD51AP1 in the Fanconi anemia DNA damage response. Nat Commun 2019; 10:2849. [PMID: 31253762 PMCID: PMC6599204 DOI: 10.1038/s41467-019-10408-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 05/08/2019] [Indexed: 02/02/2023] Open
Abstract
Fanconi anemia (FA) is a multigenic disease of bone marrow failure and cancer susceptibility stemming from a failure to remove DNA crosslinks and other chromosomal lesions. Within the FA DNA damage response pathway, DNA-dependent monoubiquitinaton of FANCD2 licenses downstream events, while timely FANCD2 deubiquitination serves to extinguish the response. Here, we show with reconstituted biochemical systems, which we developed, that efficient FANCD2 deubiquitination by the USP1-UAF1 complex is dependent on DNA and DNA binding by UAF1. Surprisingly, we find that the DNA binding activity of the UAF1-associated protein RAD51AP1 can substitute for that of UAF1 in FANCD2 deubiquitination in our biochemical system. We also reveal the importance of DNA binding by UAF1 and RAD51AP1 in FANCD2 deubiquitination in the cellular setting. Our results provide insights into a key step in the FA pathway and help define the multifaceted role of the USP1-UAF1-RAD51AP1 complex in DNA damage tolerance and genome repair. In the Fanconi anemia pathway, deubiquitination of FANCD2 is a fundamental regulatory step. Here, the authors have developed a set of biochemical tools to reconstitute FANCD2 deubiquitination by recombinant USP1-UAF1-RAD51AP1 and reveal critical mechanistic details of the process.
Collapse
Affiliation(s)
- Fengshan Liang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA.,Department of Pediatrics, Section of Hematology-Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - Adam S Miller
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Simonne Longerich
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Caroline Tang
- Department of Pediatrics, Section of Hematology-Oncology, Yale University School of Medicine, New Haven, CT, USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - David Maranon
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Elizabeth A Williamson
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Robert Hromas
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Gary M Kupfer
- Department of Pediatrics, Section of Hematology-Oncology, Yale University School of Medicine, New Haven, CT, USA. .,Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA. .,Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
13
|
Mani C, Reddy PH, Palle K. DNA repair fidelity in stem cell maintenance, health, and disease. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165444. [PMID: 30953688 DOI: 10.1016/j.bbadis.2019.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/13/2022]
Abstract
Stem cells are a sub population of cell types that form the foundation of our body, and have the potential to replicate, replenish and repair limitlessly to maintain the tissue and organ homeostasis. Increased lifetime and frequent replication set them vulnerable for both exogenous and endogenous agents-induced DNA damage compared to normal cells. To counter these damages and preserve genetic information, stem cells have evolved with various DNA damage response and repair mechanisms. Furthermore, upon experiencing irreparable DNA damage, stem cells mostly prefer early senescence or apoptosis to avoid the accumulation of damages. However, the failure of these mechanisms leads to various diseases, including cancer. Especially, given the importance of stem cells in early development, DNA repair deficiency in stem cells leads to various disabilities like developmental delay, premature aging, sensitivity to DNA damaging agents, degenerative diseases, etc. In this review, we have summarized the recent update about how DNA repair mechanisms are regulated in stem cells and their association with disease progression and pathogenesis.
Collapse
Affiliation(s)
- Chinnadurai Mani
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX 79430, United States of America
| | - P Hemachandra Reddy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX 79430, United States of America
| | - Komaraiah Palle
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX 79430, United States of America.
| |
Collapse
|
14
|
The Fanconi Anemia Pathway and Fertility. Trends Genet 2019; 35:199-214. [DOI: 10.1016/j.tig.2018.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 12/11/2022]
|
15
|
Khanal S, Galloway DA. High-risk human papillomavirus oncogenes disrupt the Fanconi anemia DNA repair pathway by impairing localization and de-ubiquitination of FancD2. PLoS Pathog 2019; 15:e1007442. [PMID: 30818369 PMCID: PMC6413947 DOI: 10.1371/journal.ppat.1007442] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/12/2019] [Accepted: 02/04/2019] [Indexed: 12/31/2022] Open
Abstract
Persistent expression of high-risk HPV oncogenes is necessary for the development of anogenital and oropharyngeal cancers. Here, we show that E6/E7 expressing cells are hypersensitive to DNA crosslinking agent cisplatin and have defects in repairing DNA interstrand crosslinks (ICL). Importantly, we elucidate how E6/E7 attenuate the Fanconi anemia (FA) DNA crosslink repair pathway. Though E6/E7 activated the pathway by increasing FancD2 monoubiquitination and foci formation, they inhibited the completion of the repair by multiple mechanisms. E6/E7 impaired FancD2 colocalization with double-strand breaks (DSB), which subsequently hindered the recruitment of the downstream protein Rad51 to DSB in E6 cells. Further, E6 expression caused delayed FancD2 de-ubiquitination, an important process for effective ICL repair. Delayed FancD2 de-ubiquitination was associated with the increased chromatin retention of FancD2 hindering USP1 de-ubiquitinating activity, and persistently activated ATR/CHK-1/pS565 FancI signaling. E6 mediated p53 degradation did not hamper the cell cycle specific process of FancD2 modifications but abrogated repair by disrupting FancD2 de-ubiquitination. Further, E6 reduced the expression and foci formation of Palb2, which is a repair protein downstream of FancD2. These findings uncover unique mechanisms by which HPV oncogenes contribute to genomic instability and the response to cisplatin therapies.
Collapse
Affiliation(s)
- Sujita Khanal
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Denise A. Galloway
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
16
|
Arkinson C, Chaugule VK, Toth R, Walden H. Specificity for deubiquitination of monoubiquitinated FANCD2 is driven by the N-terminus of USP1. Life Sci Alliance 2018; 1:e201800162. [PMID: 30456385 PMCID: PMC6238601 DOI: 10.26508/lsa.201800162] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 12/26/2022] Open
Abstract
Deubiquitination of FANCD2, FANCI, and PCNA by USP1 is essential for DNA repair signalling. Reconstitution of the system reveals that USP1-mediated specificity towards K561 of FANCD2 is directed by a unique sequence at USP1's N-terminus. The Fanconi anemia pathway for DNA interstrand crosslink repair and the translesion synthesis pathway for DNA damage tolerance both require cycles of monoubiquitination and deubiquitination. The ubiquitin-specific protease-1 (USP1), in complex with USP1-associated factor 1, regulates multiple DNA repair pathways by deubiquitinating monoubiquitinated Fanconi anemia group D2 protein (FANCD2), Fanconi anemia group I protein (FANCI), and proliferating cell nuclear antigen (PCNA). Loss of USP1 activity gives rise to chromosomal instability. Whereas many USPs hydrolyse ubiquitin–ubiquitin linkages, USP1 targets ubiquitin–substrate conjugates at specific sites. The molecular basis of USP1's specificity for multiple substrates is poorly understood. Here, we reconstitute deubiquitination of purified monoubiquitinated FANCD2, FANCI, and PCNA and show that molecular determinants for substrate deubiquitination by USP1 reside within the highly conserved and extended N-terminus. We found that the N-terminus of USP1 harbours a FANCD2-specific binding sequence required for deubiquitination of K561 on FANCD2. In contrast, the N-terminus is not required for direct PCNA or FANCI deubiquitination. Furthermore, we show that the N-terminus of USP1 is sufficient to engineer specificity in a more promiscuous USP.
Collapse
Affiliation(s)
- Connor Arkinson
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Viduth K Chaugule
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Rachel Toth
- The Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, The University of Dundee, Dundee, UK
| | - Helen Walden
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, UK
| |
Collapse
|
17
|
Yates M, Maréchal A. Ubiquitylation at the Fork: Making and Breaking Chains to Complete DNA Replication. Int J Mol Sci 2018; 19:E2909. [PMID: 30257459 PMCID: PMC6213728 DOI: 10.3390/ijms19102909] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 12/11/2022] Open
Abstract
The complete and accurate replication of the genome is a crucial aspect of cell proliferation that is often perturbed during oncogenesis. Replication stress arising from a variety of obstacles to replication fork progression and processivity is an important contributor to genome destabilization. Accordingly, cells mount a complex response to this stress that allows the stabilization and restart of stalled replication forks and enables the full duplication of the genetic material. This response articulates itself on three important platforms, Replication Protein A/RPA-coated single-stranded DNA, the DNA polymerase processivity clamp PCNA and the FANCD2/I Fanconi Anemia complex. On these platforms, the recruitment, activation and release of a variety of genome maintenance factors is regulated by post-translational modifications including mono- and poly-ubiquitylation. Here, we review recent insights into the control of replication fork stability and restart by the ubiquitin system during replication stress with a particular focus on human cells. We highlight the roles of E3 ubiquitin ligases, ubiquitin readers and deubiquitylases that provide the required flexibility at stalled forks to select the optimal restart pathways and rescue genome stability during stressful conditions.
Collapse
Affiliation(s)
- Maïlyn Yates
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
| | - Alexandre Maréchal
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
| |
Collapse
|
18
|
Yu Z, Song H, Jia M, Zhang J, Wang W, Li Q, Zhang L, Zhao W. USP1-UAF1 deubiquitinase complex stabilizes TBK1 and enhances antiviral responses. J Exp Med 2017; 214:3553-3563. [PMID: 29138248 PMCID: PMC5716033 DOI: 10.1084/jem.20170180] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/27/2017] [Accepted: 09/18/2017] [Indexed: 12/14/2022] Open
Abstract
Optimal activation of TANK-binding kinase 1 (TBK1) is crucial for initiation of innate antiviral immunity and maintenance of immune homeostasis. Although several E3 ubiquitin ligases have been reported to regulate TBK1 activation by mediating its polyubiquitination, the functions of deubiquitinase on TBK1 activity remain largely unclear. Here, we identified a deubiquitinase complex, which is formed by ubiquitin specific peptidase 1 (USP1) and USP1-associated factor 1 (UAF1), as a viral infection-induced physiological enhancer of TBK1 expression. USP1-UAF1 complex enhanced TLR3/4 and RIG-I-induced IFN regulatory factor 3 (IRF3) activation and subsequent IFN-β secretion. Mechanistically, USP1 and UAF1 bound to TBK1, removed its K48-linked polyubiquitination, and then reversed the degradation process of TBK1. Furthermore, we found that ML323, a specific USP1-UAF1 inhibitor, attenuated IFN-β expression and enhanced viral replication both in vitro and in vivo. Therefore, our results outline a novel mechanism for the control of TBK1 activity and suggest USP1-UAF1 complex as a potential target for the prevention of viral diseases.
Collapse
Affiliation(s)
- Zhongxia Yu
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Hui Song
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Mutian Jia
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Jintao Zhang
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Wenwen Wang
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Qi Li
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Lining Zhang
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan, China
| | - Wei Zhao
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| |
Collapse
|
19
|
Zheng H, Wang M, Zhao C, Wu S, Yu P, Lü Y, Wang T, Ai Y. Characterization of the deubiquitination activity and substrate specificity of the chicken ubiquitin-specific protease 1/USP associated factor 1 complex. PLoS One 2017; 12:e0186535. [PMID: 29091922 PMCID: PMC5665528 DOI: 10.1371/journal.pone.0186535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 10/03/2017] [Indexed: 12/02/2022] Open
Abstract
Deubiquitinases (DUBs) are essential regulators of intracellular processes involving ubiquitin (Ub) modification. The human DUB ubiquitin-specific protease 1 (hUSP1) interacts with human USP-associated factor 1 (hUAF1), and helps to regulate processes such as DNA damage repair. Previously, we identified a chicken USP1 homologue (chUSP1) during an investigation into the properties of Marek's disease virus (MDV). However, chUSP1's deubiquitination activity, interaction with chUAF1, and substrate specificity remained unknown. In the present study, we expressed and purified both chUAF1 and chUSP1 with or without putative catalytic core mutations using the Bac-to-Bac system, before investigating their deubiquitination activity and kinetics using various substrates. chUSP1 was shown to interact with chUAF1 both in cellular assays in which the two proteins were co-expressed, and in in vitro assays using purified proteins. Heterodimerization with chUAF1 increased the deubiquitination activity of chUSP1 up to 54-fold compared with chUSP1 alone. The chUSP1 mutants C91S, H603A, and D758A reduced the deubiquitination activity of the chUSP1/chUAF1 complex by 10-, 7-, and 33-fold, respectively, while the C91A and H594A chUSP1 mutants eliminated deubiquitination activity of the chUSP1/chUAF1 complex completely. This suggests that C91 and H594, but not D758, are essential for chUSP1 deubiquitination activity, and that a nucleophilic group at position 91 is needed for the deubiquitination reaction. The chUSP1/chUAF1 complex was found to have distinct substrate preferences; efficient hydrolysis of Ub dimers with K11-, K48-, and K63-linkages was seen, with weaker hydrolysis observed with K6-, K27-, and K33-linkages and no hydrolysis seen with a K29-linkage. Furthermore, other Ub-like substrates were disfavored by the complex. No activity was seen with SUMO1-GST, SUMO2- and SUMO3-dimers, ISG15-Rho, FAT10-Rho, or Ufm1-Rho, and only weak activity was observed with NEDD8-Rho. Overall, the data presented here characterize the activity and substrate preferences of chUSP1, and thus may facilitate future studies on its in vivo role.
Collapse
Affiliation(s)
- Hainan Zheng
- College of Animal Science, Jilin University, Changchun, China
| | - Mengyun Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Chengcheng Zhao
- Institute of Translational Medicine, Jilin University, Changchun, China
| | - Shanli Wu
- College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Peifeng Yu
- College of Animal Science, Jilin University, Changchun, China
| | - Yan Lü
- College of Animal Science, Jilin University, Changchun, China
| | - Tiedong Wang
- College of Animal Science, Jilin University, Changchun, China
- * E-mail: (YXA); (TDW)
| | - Yongxing Ai
- College of Animal Science, Jilin University, Changchun, China
- * E-mail: (YXA); (TDW)
| |
Collapse
|
20
|
Park E. Data on the effects of anti-cancer drug of resveratrol in breast cancer cells, MDA-MB-231 cells. Data Brief 2017; 12:68-71. [PMID: 28377996 PMCID: PMC5369870 DOI: 10.1016/j.dib.2017.03.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 12/11/2022] Open
Abstract
The data here is related to the article, "Curcumin enhances poly (ADP-ribose) polymerase inhibitor sensitivity to chemotherapy in breast cancer cells" (Y.E Choi, and E. Park, 2015) [1]. The article shows that curcumin, as a natural bioactive compound, enhanced DNA damage response and induced cell death in MDA-MB-231 cells [1]. This data includes that breast cancer cells, MDA-MB-231 respond to DNA damage after UV irradiation, post to resveratrol treatment. The data shows that resveratrol treatment results in reduction of S-phase cell cycle and induction of γ-H2AX, which is a hallmark of DNA damage after UV irradiation in breast cancer cells, MDA-MB-231. Moreover, resveratrol sensitizes breast cancer cells to respond to UV treatment as a natural bioactive compound.
Collapse
Affiliation(s)
- Eunmi Park
- Department of Food and Nutrition, School of Life Science and Nano-Technology, Hannam University, Daejeon, South Korea
| |
Collapse
|
21
|
van Twest S, Murphy VJ, Hodson C, Tan W, Swuec P, O'Rourke JJ, Heierhorst J, Crismani W, Deans AJ. Mechanism of Ubiquitination and Deubiquitination in the Fanconi Anemia Pathway. Mol Cell 2016; 65:247-259. [PMID: 27986371 DOI: 10.1016/j.molcel.2016.11.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/25/2016] [Accepted: 10/31/2016] [Indexed: 11/26/2022]
Abstract
Monoubiquitination and deubiquitination of FANCD2:FANCI heterodimer is central to DNA repair in a pathway that is defective in the cancer predisposition syndrome Fanconi anemia (FA). The "FA core complex" contains the RING-E3 ligase FANCL and seven other essential proteins that are mutated in various FA subtypes. Here, we purified recombinant FA core complex to reveal the function of these other proteins. The complex contains two spatially separate FANCL molecules that are dimerized by FANCB and FAAP100. FANCC and FANCE act as substrate receptors and restrict monoubiquitination to the FANCD2:FANCI heterodimer in only a DNA-bound form. FANCA and FANCG are dispensable for maximal in vitro ubiquitination. Finally, we show that the reversal of this reaction by the USP1:UAF1 deubiquitinase only occurs when DNA is disengaged. Our work reveals the mechanistic basis for temporal and spatial control of FANCD2:FANCI monoubiquitination that is critical for chemotherapy responses and prevention of Fanconi anemia.
Collapse
Affiliation(s)
- Sylvie van Twest
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Vincent J Murphy
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Charlotte Hodson
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Winnie Tan
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia; Department of Medicine (St. Vincent's Health), The University of Melbourne, VIC 3010, Australia
| | - Paolo Swuec
- Architecture and Dynamics of Macromolecular Machines Laboratory, London Research Institute, South Mimms, Hertfordshire EN6 3LD, UK
| | - Julienne J O'Rourke
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia; Department of Medicine (St. Vincent's Health), The University of Melbourne, VIC 3010, Australia
| | - Jörg Heierhorst
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia; Department of Medicine (St. Vincent's Health), The University of Melbourne, VIC 3010, Australia
| | - Wayne Crismani
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia; Department of Medicine (St. Vincent's Health), The University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
22
|
Liu J, Zhu H, Zhong N, Jiang Z, Xu L, Deng Y, Jiang Z, Wang H, Wang J. Gene silencing of USP1 by lentivirus effectively inhibits proliferation and invasion of human osteosarcoma cells. Int J Oncol 2016; 49:2549-2557. [PMID: 27840911 DOI: 10.3892/ijo.2016.3752] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/20/2016] [Indexed: 11/06/2022] Open
Abstract
Osteosarcoma is the most frequent malignant bone tumor, affecting the extremities of adolescents and young adults. Ubiquitin-specific protease 1 (USP1) plays a critical role in many cellular processes including proteasome degradation, chromatin remodeling and cell cycle regulation. In the present study, we discovered that USP1 was overexpressed in 26 out of 30 osteosarcoma tissues compared to cartilage tumor tissues and normal bone tissues. We then constructed a lentiviral vector mediating RNA interference (RNAi) targeting USP1 and demonstrated that it significantly suppressed the mRNA and protein expression of the USP1 gene in U2OS cells. Knockdown of USP1 inhibited the growth and colony-forming, as well as significantly reduced the invasiveness of U2OS cells. Western blot analysis indicated that suppression of USP1 downregulated the expression of many proteins including SIK2, MMP-2, GSK-3β, Bcl-2, Stat3, cyclin E1, Notch1, Wnt-1 and cyclin A1. Most of these proteins are associated with tumor genesis and development. RNAi of SIK2 significantly decreased SIK2 protein expression and inhibited the ability of forming colonies, as well as induced apoptosis and reduced the invasiveness of U2OS cells. Collectively, our results suggest that silencing USP1 inhibits cell proliferation and invasion in U2OS cells. Therefore, USP1 may provide a novel therapeutic target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Jinbo Liu
- Department of Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Hongjun Zhu
- Department of Thoracic Surgery, The First People's Hospital of Shangqiu, Shangqiu, Henan 476100, P.R. China
| | - Ning Zhong
- Department of Thoracic Surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215000, P.R. China
| | - Zifeng Jiang
- Clinical Laboratories, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lele Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215200, P.R. China
| | - Youping Deng
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Zhenhuan Jiang
- Department of Orthopaedics, People's Hospital of Yixing City, Yixing, Jiangsu 214200, P.R. China
| | - Hongwei Wang
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Jinzhi Wang
- Department of Cell Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215007, P.R. China
| |
Collapse
|
23
|
Cukras S, Lee E, Palumbo E, Benavidez P, Moldovan GL, Kee Y. The USP1-UAF1 complex interacts with RAD51AP1 to promote homologous recombination repair. Cell Cycle 2016; 15:2636-2646. [PMID: 27463890 DOI: 10.1080/15384101.2016.1209613] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
USP1 deubiquitinating enzyme and its stoichiometric binding partner UAF1 play an essential role in promoting DNA homologous recombination (HR) repair in response to various types of DNA damaging agents. Deubiquitination of FANCD2 may be attributed to the key role of USP1-UAF1 complex in regulating HR repair, however whether USP1-UAF1 promotes HR repair independently of FANCD2 deubiquitination is not known. Here we show evidence that the USP1-UAF1 complex has a FANCD2-independent function in promoting HR repair. Proteomic search of UAF1-interacting proteins revealed that UAF1 associates with RAD51AP1, a RAD51-interacting protein implicated in HR repair. We show that UAF1 mediates the interaction between USP1 and RAD51AP1, and that depletion of USP1 or UAF1 led to a decreased stability of RAD51AP1. Protein interaction mapping analysis identified some key residues within RAD51AP1 required for interacting with the USP1-UAF1 complex. Cells expressing the UAF1 interaction-deficient mutant of RAD51AP1 show increased chromosomal aberrations in response to Mitomycin C treatment. Moreover, similar to the RAD51AP1 depleted cells, the cells expressing UAF1-interaction deficient RAD51AP1 display persistent RAD51 foci following DNA damage exposure, indicating that these factors regulate a later step during the HR repair. These data altogether suggest that the USP1-UAF1 complex promotes HR repair via multiple mechanisms: through FANCD2 deubiquitination, as well as by interacting with RAD51AP1.
Collapse
Affiliation(s)
- Scott Cukras
- a Department of Cell Biology , Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida , Tampa , FL , USA
| | - Euiho Lee
- a Department of Cell Biology , Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida , Tampa , FL , USA
| | - Emily Palumbo
- a Department of Cell Biology , Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida , Tampa , FL , USA
| | - Pamela Benavidez
- a Department of Cell Biology , Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida , Tampa , FL , USA
| | - George-Lucian Moldovan
- b Department of Biochemistry and Molecular Biology , Pennsylvania State University College of Medicine , Hershey , PA , USA
| | - Younghoon Kee
- a Department of Cell Biology , Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida , Tampa , FL , USA
| |
Collapse
|
24
|
Liang F, Longerich S, Miller AS, Tang C, Buzovetsky O, Xiong Y, Maranon DG, Wiese C, Kupfer GM, Sung P. Promotion of RAD51-Mediated Homologous DNA Pairing by the RAD51AP1-UAF1 Complex. Cell Rep 2016; 15:2118-2126. [PMID: 27239033 PMCID: PMC5381662 DOI: 10.1016/j.celrep.2016.05.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/27/2016] [Accepted: 04/24/2016] [Indexed: 01/09/2023] Open
Abstract
The UAF1-USP1 complex deubiquitinates FANCD2 during execution of the Fanconi anemia DNA damage response pathway. As such, UAF1 depletion results in persistent FANCD2 ubiquitination and DNA damage hypersensitivity. UAF1-deficient cells are also impaired for DNA repair by homologous recombination. Herein, we show that UAF1 binds DNA and forms a dimeric complex with RAD51AP1, an accessory factor of the RAD51 recombinase, and a trimeric complex with RAD51 through RAD51AP1. Two small ubiquitin-like modifier (SUMO)-like domains in UAF1 and a SUMO-interacting motif in RAD51AP1 mediate complex formation. Importantly, UAF1 enhances RAD51-mediated homologous DNA pairing in a manner that is dependent on complex formation with RAD51AP1 but independent of USP1. Mechanistically, RAD51AP1-UAF1 co-operates with RAD51 to assemble the synaptic complex, a critical nucleoprotein intermediate in homologous recombination, and cellular studies reveal the biological significance of the RAD51AP1-UAF1 protein complex. Our findings provide insights into an apparently USP1-independent role of UAF1 in genome maintenance.
Collapse
Affiliation(s)
- Fengshan Liang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Simonne Longerich
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Adam S Miller
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Caroline Tang
- Section of Hematology-Oncology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Olga Buzovetsky
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - David G Maranon
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Gary M Kupfer
- Section of Hematology-Oncology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
25
|
Ceccaldi R, Sarangi P, D'Andrea AD. The Fanconi anaemia pathway: new players and new functions. Nat Rev Mol Cell Biol 2016; 17:337-49. [PMID: 27145721 DOI: 10.1038/nrm.2016.48] [Citation(s) in RCA: 529] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Fanconi anaemia pathway repairs DNA interstrand crosslinks (ICLs) in the genome. Our understanding of this complex pathway is still evolving, as new components continue to be identified and new biochemical systems are used to elucidate the molecular steps of repair. The Fanconi anaemia pathway uses components of other known DNA repair processes to achieve proper repair of ICLs. Moreover, Fanconi anaemia proteins have functions in genome maintenance beyond their canonical roles of repairing ICLs. Such functions include the stabilization of replication forks and the regulation of cytokinesis. Thus, Fanconi anaemia proteins are emerging as master regulators of genomic integrity that coordinate several repair processes. Here, we summarize our current understanding of the functions of the Fanconi anaemia pathway in ICL repair, together with an overview of its connections with other repair pathways and its emerging roles in genome maintenance.
Collapse
Affiliation(s)
- Raphael Ceccaldi
- Department of Radiation Oncology and Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Prabha Sarangi
- Department of Radiation Oncology and Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology and Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
26
|
McClurg UL, Robson CN. Deubiquitinating enzymes as oncotargets. Oncotarget 2016; 6:9657-68. [PMID: 25962961 PMCID: PMC4496387 DOI: 10.18632/oncotarget.3922] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/08/2015] [Indexed: 12/19/2022] Open
Abstract
Carcinogenesis is a complex process tightly regulated at multiple levels by post-translational modifications. Epigenetics plays a major role in cancer development, all stable changes to the gene expression process that are not a result of a direct change in the DNA code are described as epigenetics. Epigenetic processes are regulated by post-translational modifications including ubiquitination which can directly affect either histones or transcription factors or may target their co-factors and interacting partners exerting an indirect effect. Deubiquitination of these target proteins is equally important and alterations in this pathway can also lead to cancer development, progression and metastasis. Only the correct, unaltered balance between ubiquitination and deubiquitination ensures healthy cellular homeostasis. In this review we focus on the role of deubiquitinating (DUB) enzymes in various aspects of epigenetics including the regulation of transcription factors, histone modifications, DNA damage repair pathways and cell cycle regulation. We discuss the impact of those processes on tumourigenesis and potential therapeutic applications of DUBs for cancer treatment.
Collapse
Affiliation(s)
- Urszula L McClurg
- Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Craig N Robson
- Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
27
|
Lim KH, Song MH, Baek KH. Decision for cell fate: deubiquitinating enzymes in cell cycle checkpoint. Cell Mol Life Sci 2016; 73:1439-55. [PMID: 26762302 PMCID: PMC11108577 DOI: 10.1007/s00018-015-2129-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/03/2015] [Accepted: 12/30/2015] [Indexed: 09/29/2022]
Abstract
All organs consisting of single cells are consistently maintaining homeostasis in response to stimuli such as free oxygen, DNA damage, inflammation, and microorganisms. The cell cycle of all mammalian cells is regulated by protein expression in the right phase to respond to proliferation and apoptosis signals. Post-translational modifications (PTMs) of proteins by several protein-editing enzymes are associated with cell cycle regulation by their enzymatic functions. Ubiquitination, one of the PTMs, is also strongly related to cell cycle regulation by protein degradation or signal transduction. The importance of deubiquitinating enzymes (DUBs), which have a reversible function for ubiquitination, has recently suggested that the function of DUBs is also important for determining the fate of proteins during cell cycle processing. This article reviews and summarizes the diverse roles of DUBs, including DNA damage, cell cycle processing, and regulation of histone proteins, and also suggests the possibility for therapeutic targets.
Collapse
Affiliation(s)
- Key-Hwan Lim
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 463-400, Republic of Korea
| | - Myoung-Hyun Song
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 463-400, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 463-400, Republic of Korea.
| |
Collapse
|
28
|
Park E. Data on cell cycle in breast cancer cell line, MDA-MB-231 with ferulic acid treatment. Data Brief 2016; 7:107-10. [PMID: 26958638 PMCID: PMC4764770 DOI: 10.1016/j.dib.2016.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/26/2016] [Accepted: 02/01/2016] [Indexed: 12/12/2022] Open
Abstract
Inhibition to repair DNA metabolism to respond to damaged DNA can lead to genetic instability, resulting in cancer cell death (Audeh et al., 2010; Bryant et al., 2005; Farmer et al., 2005; Lukas et al., 2003; Tutt et al., 2010) [1], [2], [6], [8], [11]. Despite of various studies demonstrating efficiency of combination therapy through down-regulation of DNA repair pathway, the suppression effects of DNA repair pathway by chemotherapeutic agents from natural bioactive compounds are less understood (Eitsuka et al., 2014; Kastan et al., 2004; Kawabata et al., 2000; Mancuso et al., 2014) [5], [7], [9]. Here, the data shows that ferulic acid reduced the S-phases post to UV treatment in breast cancer cells and was hypersensitive in breast cancer cells, MDA-MB-231.
Collapse
Affiliation(s)
- Eunmi Park
- Department of Food and Nutrition, School of Life Science and Nano-Technology, Hannam University, Daejeon, Republic of Korea
| |
Collapse
|
29
|
Abstract
Both proteolytic and nonproteolytic functions of ubiquitination are essential regulatory mechanisms for promoting DNA repair and the DNA damage response in mammalian cells. Deubiquitinating enzymes (DUBs) have emerged as key players in the maintenance of genome stability. In this minireview, we discuss the recent findings on human DUBs that participate in genome maintenance, with a focus on the role of DUBs in the modulation of DNA repair and DNA damage signaling.
Collapse
|
30
|
Structural Insights into WD-Repeat 48 Activation of Ubiquitin-Specific Protease 46. Structure 2015; 23:2043-54. [DOI: 10.1016/j.str.2015.08.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/27/2015] [Accepted: 08/04/2015] [Indexed: 11/18/2022]
|
31
|
Choi YE, Park E. Curcumin enhances poly(ADP-ribose) polymerase inhibitor sensitivity to chemotherapy in breast cancer cells. J Nutr Biochem 2015; 26:1442-7. [PMID: 26350251 DOI: 10.1016/j.jnutbio.2015.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 07/16/2015] [Accepted: 07/18/2015] [Indexed: 12/12/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitor has shown promising responses in homologous recombination (HR) repair-deficient cancer cells. More specifically, targeting HR pathway in combination with PARP inhibitor has been an effective chemotherapy strategy by so far. Curcumin has been recognized as anticancer agents for several types of cancers. Here, we demonstrate that curcumin inhibits a critical step in HR pathway, Rad51 foci formation, and accumulates γ-H2AX levels in MDA-MB-231 breast cancer cells. Curcumin also directly reduces HR and induces cell death with cotreatment of PARP inhibitor in MDA-MB-231 breast cancer cells. Moreover, curcumin, when combined with ABT-888, could effectively delayed breast tumor formation in vivo. Our study indicates that cotreatment of curcumin and PARP inhibitor might be useful for the combination chemotherapy for aggressive breast cancer treatment as a natural bioactive compound.
Collapse
Affiliation(s)
- Young Eun Choi
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Eunmi Park
- Department of Food and Nutrition, School of Life Science and Nano-Technology, Hannam University, Daejeon 305-811, Korea.
| |
Collapse
|
32
|
Choi YE, Park E. Ferulic acid in combination with PARP inhibitor sensitizes breast cancer cells as chemotherapeutic strategy. Biochem Biophys Res Commun 2015; 458:520-524. [PMID: 25677620 DOI: 10.1016/j.bbrc.2015.01.147] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 01/29/2015] [Indexed: 10/24/2022]
Abstract
Homologous-recombination (HR)-dependent repair defective cells are hypersensitive to poly (ADP-ribose) polymerase (PARP) inhibitors. Combinations of defective HR pathway and PARP inhibitors have been an effective chemotherapeutic modality. We previously showed that knockdown of the WD40-repeat containing protein, Uaf1, causes an HR repair defect in mouse embryo fibroblast cells and therefore, increases sensitivity to PARP inhibitor, ABT-888. Similarly, here, we show that ferulic acid reduces HR repair, inhibits RAD 51 foci formation, and accumulates γ-H2AX in breast cancer cells. Moreover, ferulic acid, when combined with ABT-888, renders breast cancer cells become hypersensitive to ABT-888. Our study indicates that ferulic acid in combination with ABT-888 treatment may serve as an effective combination chemotherapeutic agent as a natural bioactive compound.
Collapse
Affiliation(s)
- Young Eun Choi
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Eunmi Park
- Department of Food and Nutrition, School of Life Science and Nano-Technology, Hannam University, 461-6 Jeonmin-Dong, Yuseong-gu, Daejeon 305-811, Republic of Korea.
| |
Collapse
|
33
|
Abstract
Fanconi anemia (FA) represents a paradigm of rare genetic diseases, where the quest for cause and cure has led to seminal discoveries in cancer biology. Although a total of 16 FA genes have been identified thus far, the biochemical function of many of the FA proteins remains to be elucidated. FA is rare, yet the fact that 5 FA genes are in fact familial breast cancer genes and FA gene mutations are found frequently in sporadic cancers suggest wider applicability in hematopoiesis and oncology. Establishing the interaction network involving the FA proteins and their associated partners has revealed an intersection of FA with several DNA repair pathways, including homologous recombination, DNA mismatch repair, nucleotide excision repair, and translesion DNA synthesis. Importantly, recent studies have shown a major involvement of the FA pathway in the tolerance of reactive aldehydes. Moreover, despite improved outcomes in stem cell transplantation in the treatment of FA, many challenges remain in patient care.
Collapse
|
34
|
E1-mediated recruitment of a UAF1-USP deubiquitinase complex facilitates human papillomavirus DNA replication. J Virol 2014; 88:8545-55. [PMID: 24850727 DOI: 10.1128/jvi.00379-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED The human papillomavirus (HPV) E1 helicase promotes viral DNA replication through its DNA unwinding activity and association with host factors. The E1 proteins from anogenital HPV types interact with the cellular WD repeat-containing factor UAF1 (formerly known as p80). Specific amino acid substitutions in E1 that impair this interaction inhibit maintenance of the viral episome in immortalized keratinocytes and reduce viral DNA replication by up to 70% in transient assays. In this study, we determined by affinity purification of UAF1 that it interacts with three deubiquitinating enzymes in C33A cervical carcinoma cells: USP1, a nuclear protein, and the two cytoplasmic enzymes USP12 and USP46. Coimmunoprecipitation experiments indicated that E1 assembles into a ternary complex with UAF1 and any one of these three USPs. Moreover, expression of E1 leads to a redistribution of USP12 and USP46 from the cytoplasm to the nucleus. Chromatin immunoprecipitation studies further revealed that E1 recruits these threes USPs to the viral origin in association with UAF1. The function of USP1, USP12, and USP46 in viral DNA replication was investigated by overproduction of catalytically inactive versions of these enzymes in transient assays. All three dominant negative USPs reduced HPV31 DNA replication by up to 60%, an effect that was specific, as it was not observed in assays performed with a truncated E1 lacking the UAF1-binding domain or with bovine papillomavirus 1 E1, which does not bind UAF1. These results highlight the importance of the USP1, USP12, and USP46 deubiquitinating enzymes in anogenital HPV DNA replication. IMPORTANCE Human papillomaviruses are small DNA tumor viruses that induce benign and malignant lesions of the skin and mucosa. HPV types that infect the anogenital tract are the etiological agents of cervical cancer, the majority of anal cancers, and a growing proportion of head-and-neck cancers. Replication of the HPV genome requires the viral protein E1, a DNA helicase that also interacts with host factors to promote viral DNA synthesis. We previously reported that the E1 helicase from anogenital HPV types associates with the WD40 repeat-containing protein UAF1. Here, we show that UAF1 bridges the interaction of E1 with three deubiquitinating enzymes, USP1, USP12, and USP46. We further show that these deubiquitinases are recruited by E1/UAF1 to the viral origin of DNA replication and that overexpression of catalytically inactive versions of these enzymes reduces viral DNA replication. These results highlight the need for an E1-associated deubiquitinase activity in anogenital HPV genome replication.
Collapse
|