1
|
Guan Y, Li M, Qiu Z, Xu J, Zhang Y, Hu N, Zhang X, Guo W, Yuan J, Shi Q, Wang W. Comprehensive analysis of DOK family genes expression, immune characteristics, and drug sensitivity in human tumors. J Adv Res 2022; 36:73-87. [PMID: 35127166 PMCID: PMC8799871 DOI: 10.1016/j.jare.2021.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023] Open
Abstract
The expression of DOK family genes is related to overall survival (OS), clinical stage, tumor mutation, methylation, CNV, and SNV. DOK family genes are significantly associated with poor prognosis of UVM. DOK1-DOK3 has obvious correlation with tumor immunity and tumor microenvironment. DOK family gene is significantly related to tumor stemness and drug sensitivity. The expression of DOK family genes is related to the activation of EMT and hormone ER pathways, and is related to the inhibition of DNA damage response, cell cycle, and hormone AR pathways. DOK1 and DOK3, DOK2 and DOK3 have the significant correlation.
Introduction Objectives Methods Results Conclusions
Collapse
|
2
|
Ha X, Cai X, Cao H, Li J, Yang B, Jiang R, Li X, Li B, Xin Y. Docking protein 1 and free fatty acids are associated with insulin resistance in patients with type 2 diabetes mellitus. J Int Med Res 2021; 49:3000605211048293. [PMID: 34727748 PMCID: PMC8573522 DOI: 10.1177/03000605211048293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Insulin resistance (IR) is a key defect in type 2 diabetes mellitus (T2DM); therefore, effective means of ameliorating IR are sought. METHODS We performed a retrospective cohort study of 154 patients with T2DM and 39 with pre-diabetes (pre-DM). The effects of IR and a high concentration of FFA on gene expression were determined using microarray analysis and quantitative reverse transcription polymerase chain reaction (RT-qPCR) in patients with T2DM or pre-DM. RESULTS Serum FFA concentration and homeostasis model assessment of IR (HOMA-IR) were significantly higher in patients with T2DM but no obesity and in those with pre-DM than in controls. HOMA-IR was significantly associated with T2DM. RT-qPCR showed that the expression of FBJ murine osteosarcoma viral oncogene homolog (FOS) and AE binding protein 1 (AEBP1) was much lower in the circulation of participants with obesity and diabetes. RT-qPCR showed that the expression of docking protein 1 (DOK1) was significantly lower in the blood of participants with diabetes but no obesity and in those with pre-DM than in controls. CONCLUSIONS FFA and DOK1 are associated with IR in patients with T2DM but no obesity or pre-DM. The downregulation of DOK1 might inhibit lipid synthesis and induce lipolysis, inducing or worsening IR.
Collapse
Affiliation(s)
- Xiaoqin Ha
- Department of Clinical Laboratory, The People's Liberation Army Joint Service Support Unit 940 Hospital, Lanzhou, China.,The Second Hospital of Lanzhou University, Lanzhou, China
| | - Xiaoling Cai
- Department of Medical Laboratory, Qinghai Provincial People's Hospital, Xining, China
| | - Huizhe Cao
- The Second Medical Centre of the Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jie Li
- The First People's Hospital of Baiyin, China
| | - Bo Yang
- Department of Obstetrics and Gynaecology, Reproductive Medicine Centre, The First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Ruru Jiang
- Department of Haematology, Nanjing Drum Tower Hospital, Nanjing, China
| | - Xin Li
- The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University, Xuzhou, China
| | - Bin Li
- Department of Clinical Laboratory, The People's Liberation Army Joint Service Support Unit 940 Hospital, Lanzhou, China
| | - Yuan Xin
- Department of Clinical Laboratory, The People's Liberation Army Joint Service Support Unit 940 Hospital, Lanzhou, China
| |
Collapse
|
3
|
Guarino F, Zinghirino F, Mela L, Pappalardo XG, Ichas F, De Pinto V, Messina A. NRF-1 and HIF-1α contribute to modulation of human VDAC1 gene promoter during starvation and hypoxia in HeLa cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148289. [PMID: 32810507 DOI: 10.1016/j.bbabio.2020.148289] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
VDAC (Voltage Dependent Anion Channel) is a family of pore forming protein located in the outer mitochondrial membrane. Its channel property ensures metabolites exchange between mitochondria and the rest of the cell resulting in metabolism and bioenergetics regulation, and in cell death and life switch. VDAC1 is the best characterized and most abundant isoform, and is involved in many pathologies, as cancer or neurodegenerative diseases. However, little information is available about its gene expression regulation in normal and/or pathological conditions. In this work, we explored VDAC1 gene expression regulation in normal conditions and in the contest of some metabolic and energetic mitochondrial dysfunction and cell stress as example. The core of the putative promoter region was characterized in terms of transcription factors responsive elements both by bioinformatic studies and promoter activity experiments. In particular, we found an abundant presence of NRF-1 sites, together with other transcription factors binding sites involved in cell growth, proliferation, development, and we studied their prevalence in gene activity. Furthermore, upon depletion of nutrients or controlled hypoxia, as detected in various pathologies, we found that VDAC1 transcripts levels were significantly increased in a time related manner. VDAC1 promoter activity was also validated by gene reporter assays. According to PCR real-time experiments, it was confirmed that VDAC1 promoter activity is further stimulated when cells are exposed to stress. A bioinformatic survey suggested HIF-1α, besides NRF-1, as a most active TFBS. Their validation was obtained by TFBS mutagenesis and TF overexpression experiments. In conclusion, we experimentally demonstrated the involvement of both NRF-1 and HIF-1α in the regulation of VDAC1 promoter activation at basal level and in some peculiar cell stress conditions.
Collapse
Affiliation(s)
- Francesca Guarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy.
| | - Federica Zinghirino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Lia Mela
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Xena Giada Pappalardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - François Ichas
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, Bordeaux, France; INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, U-1084, Université de Poitiers, Poitiers, France
| | - Vito De Pinto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; National Institute for Biostructures and Biosystems, Section of Catania, Rome, Italy.
| | - Angela Messina
- Department of Biological, Geological and Environmental Sciences, Section of Molecular Biology, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; National Institute for Biostructures and Biosystems, Section of Catania, Rome, Italy
| |
Collapse
|
4
|
Nishimura T, Nakamura H, Yachie A, Hase T, Fujii K, Koizumi H, Naruki S, Takagi M, Matsuoka Y, Furuya N, Kato H, Saji H. Disease-related cellular protein networks differentially affected under different EGFR mutations in lung adenocarcinoma. Sci Rep 2020; 10:10881. [PMID: 32616892 PMCID: PMC7331587 DOI: 10.1038/s41598-020-67894-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 05/28/2020] [Indexed: 12/21/2022] Open
Abstract
It is unclear how epidermal growth factor receptor EGFR major driver mutations (L858R or Ex19del) affect downstream molecular networks and pathways. This study aimed to provide information on the influences of these mutations. The study assessed 36 protein expression profiles of lung adenocarcinoma (Ex19del, nine; L858R, nine; no Ex19del/L858R, 18). Weighted gene co-expression network analysis together with analysis of variance-based screening identified 13 co-expressed modules and their eigen proteins. Pathway enrichment analysis for the Ex19del mutation demonstrated involvement of SUMOylation, epithelial and mesenchymal transition, ERK/mitogen-activated protein kinase signalling via phosphorylation and Hippo signalling. Additionally, analysis for the L858R mutation identified various pathways related to cancer cell survival and death. With regard to the Ex19del mutation, ROCK, RPS6KA1, ARF1, IL2RA and several ErbB pathways were upregulated, whereas AURK and GSKIP were downregulated. With regard to the L858R mutation, RB1, TSC22D3 and DOCK1 were downregulated, whereas various networks, including VEGFA, were moderately upregulated. In all mutation types, CD80/CD86 (B7), MHC, CIITA and IFGN were activated, whereas CD37 and SAFB were inhibited. Costimulatory immune-checkpoint pathways by B7/CD28 were mainly activated, whereas those by PD-1/PD-L1 were inhibited. Our findings may help identify potential therapeutic targets and develop therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Toshihide Nishimura
- Department of Translational Medicine Informatics, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8511, Japan.
| | - Haruhiko Nakamura
- Department of Translational Medicine Informatics, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8511, Japan
- Department of Chest Surgery, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8511, Japan
| | - Ayako Yachie
- The Systems Biology Institute, Tokyo, 141-0022, Japan
| | - Takeshi Hase
- The Systems Biology Institute, Tokyo, 141-0022, Japan
| | - Kiyonaga Fujii
- Department of Translational Medicine Informatics, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8511, Japan
| | - Hirotaka Koizumi
- Department of Pathology, St. Marianna University Hospital, Kawasaki, Kanagawa, 216-8511, Japan
| | - Saeko Naruki
- Department of Pathology, St. Marianna University Hospital, Kawasaki, Kanagawa, 216-8511, Japan
| | - Masayuki Takagi
- Department of Pathology, St. Marianna University Hospital, Kawasaki, Kanagawa, 216-8511, Japan
| | | | - Naoki Furuya
- Division of Respiratory Medicine, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8511, Japan
| | - Harubumi Kato
- Tokyo Medical University, Tokyo, 160-0023, Japan
- International University of Health and Welfare, Tokyo, 107-8402, Japan
| | - Hisashi Saji
- Department of Chest Surgery, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8511, Japan
| |
Collapse
|
5
|
He P, Xu Z, Zhou J, Li X, Zhang W, Wu D, Zhang Z, Lian X, Yao X, Deng Z, Lin J, Qian J. Methylation‐associated
DOK1
and
DOK2
down‐regulation: Potential biomarkers for predicting adverse prognosis in acute myeloid leukemia. J Cell Physiol 2018; 233:6604-6614. [PMID: 29150948 DOI: 10.1002/jcp.26271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/25/2017] [Accepted: 11/06/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Pin‐Fang He
- Laboratory CenterAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
| | - Zi‐Jun Xu
- Laboratory CenterAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
| | - Jing‐Dong Zhou
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
- Department of HematologyAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
| | - Xi‐Xi Li
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
- Department of HematologyAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
| | - Wei Zhang
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
- Department of HematologyAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
| | - De‐Hong Wu
- Department of HematologyThe Third People's Hospital of KunShan CityKunshanJiangsuP.R. China
| | - Zhi‐Hui Zhang
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
- Department of HematologyAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
| | - Xin‐Yue Lian
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
- Department of HematologyAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
| | - Xin‐Yu Yao
- School of medicineJiangsu UniversityZhenjiangJiangsuP.R. China
| | - Zhao‐Qun Deng
- Laboratory CenterAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
| | - Jiang Lin
- Laboratory CenterAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
| | - Jun Qian
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
- Department of HematologyAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
| |
Collapse
|
6
|
DOK1/PPARgamma pathway mediates anti-tumor ability of all-trans retinoic acid in breast cancer MCF-7 cells. Biochem Biophys Res Commun 2017; 487:189-193. [DOI: 10.1016/j.bbrc.2017.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 04/05/2017] [Indexed: 01/15/2023]
|
7
|
lncRNA-HIT promotes cell proliferation of non-small cell lung cancer by association with E2F1. Cancer Gene Ther 2017; 24:221-226. [PMID: 28429752 DOI: 10.1038/cgt.2017.10] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 12/13/2022]
Abstract
Lung cancer is the leading cause of cancer-related death around the world. Long noncoding RNA (lncRNA) has pivotal roles in cancer occurrence and development. However, only a few lncRNAs have been functionally characterized. In the present study, we investigated the effects of lncRNA-HIT (HOXA transcript induced by TGFβ) expression on non-small cell lung cancer (NSCLC) cell phenotype with the gain-of-function and loss-of-function assays. We found that ectopic expression or knockdown of lncRNA-HIT markedly increased or decreased NSCLC cell proliferation, respectively. Moreover, we also showed that lncRNA-HIT interacted with E2F1 to regulate its target genes, such as Survivin, FOXM1, SKP2, NELL2 and DOK1. Collectively, our findings indicated that lncRNA-HIT affected the proliferation of NSCLC cells at least in part via regulating the occupancy of E2F1 in the promoter regions of its target genes. The lncRNA-HIT-E2F1 complex may be a potential target for NSCLC treatment.
Collapse
|
8
|
Luo J, Wang W, Tang Y, Zhou D, Gao Y, Zhang Q, Zhou X, Zhu H, Xing L, Yu J. mRNA and methylation profiling of radioresistant esophageal cancer cells: the involvement of Sall2 in acquired aggressive phenotypes. J Cancer 2017; 8:646-656. [PMID: 28367244 PMCID: PMC5370508 DOI: 10.7150/jca.15652] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 12/10/2016] [Indexed: 01/15/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the deadliest malignancies worldwide. Radiotherapy plays a critical role in the curative management of inoperable ESCC patients. However, radioresistance restricts the efficacy of radiotherapy for ESCC patients. The molecules involved in radioresistance remain largely unknown, and new approaches to sensitize cells to irradiation are in demand. Technical advances in analysis of mRNA and methylation have enabled the exploration of the etiology of diseases and have the potential to broaden our understanding of the molecular pathways of ESCC radioresistance. In this study, we constructed radioresistant TE-1 and Eca-109 cell lines (TE-1/R and Eca-109/R, respectively). The radioresistant cells showed an increased migration ability but reduced apoptosis and cisplatin sensitivity compared with their parent cells. mRNA and methylation profiling by microarray revealed 1192 preferentially expressed mRNAs and 8841 aberrantly methylated regions between TE-1/R and TE-1 cells. By integrating the mRNA and methylation profiles, we related the decreased expression of transcription factor Sall2 with a corresponding increase in its methylation in TE-1/R cells, indicating its involvement in radioresistance. Upregulation of Sall2 decreased the growth and migration advantage of radioresistant ESCC cells. Taken together, our present findings illustrate the mRNA and DNA methylation changes during the radioresistance of ESCC and the important role of Sall2 in esophageal cancer malignancy.
Collapse
Affiliation(s)
- Judong Luo
- Medical college of Shandong University, Jinan, Shandong, China
| | - Wenjie Wang
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu,China
| | - Yiting Tang
- Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou, Jiangsu, China
| | - Dandan Zhou
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu,China
| | - Yi Gao
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu,China
| | - Qi Zhang
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu,China
| | - Xifa Zhou
- Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou, Jiangsu, China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University; Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ligang Xing
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University; Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University; Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
9
|
Subcellular compartmentalization of docking protein-1 contributes to progression in colorectal cancer. EBioMedicine 2016; 8:159-172. [PMID: 27428427 PMCID: PMC4919572 DOI: 10.1016/j.ebiom.2016.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/19/2016] [Accepted: 05/04/2016] [Indexed: 12/20/2022] Open
Abstract
Full-length (FL) docking protein-1 (DOK1) is an adapter protein which inhibits growth factor and immune response pathways in normal tissues, but is frequently lost in human cancers. Small DOK1 variants remain in cells of solid tumors and leukemias, albeit, their functions are elusive. To assess the so far unknown role of DOK1 in colorectal cancer (CRC), we generated DOK1 mutants which mimic the domain structure and subcellular distribution of DOK1 protein variants in leukemia patients. We found that cytoplasmic DOK1 activated peroxisome-proliferator-activated-receptor-gamma (PPARγ) resulting in inhibition of the c-FOS promoter and cell proliferation, whereas nuclear DOK1 was inactive. PPARγ-agonist increased expression of endogenous DOK1 and interaction with PPARγ. Forward translation of this cell-based signaling model predicted compartmentalization of DOK1 in patients. In a large series of CRC patients, loss of DOK1 protein was associated with poor prognosis at early tumor stages (*p = 0.001; n = 1492). In tumors with cytoplasmic expression of DOK1, survival was improved, whereas nuclear localization of DOK1 correlated with poor outcome, indicating that compartmentalization of DOK1 is critical for CRC progression. Thus, DOK1 was identified as a prognostic factor for non-metastatic CRC, and, via its drugability by PPARγ-agonist, may constitute a potential target for future cancer treatments. Forward translation of a cell-based signaling model predicted clinical relevance for DOK1 in colorectal cancer (CRC). DOK1 is an independent prognostic factor in CRC patients, and its loss associated with poor survival. Cancer cell growth inhibition by DOK1 was increased (“drugable”) by PPARγ-agonist. Poor survival due to failure to respond to clinical therapies prevents effective treatment of cancer. Thus, there is a high medical need for novel drug targets and biomarkers. DOK1 blocks pro-cancer signaling in the healthy body, but is often lost in tumors. We show that colorectal cancer patients who are positive for DOK1 have a better survival outcome than patients who are negative. Anti-diabetic drugs up-regulated DOK1 and promoted its protective actions against tumor cells. Our study therefore suggests DOK1 as a marker for good prognosis and as a potential drug target for therapy of colorectal cancer.
Collapse
|
10
|
Li B, Wu W, Luo H, Liu Z, Liu H, Li Q, Pan Z. Molecular characterization and epigenetic regulation of Mei1 in cattle and cattle-yak. Gene 2015; 573:50-6. [PMID: 26165450 DOI: 10.1016/j.gene.2015.07.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/29/2015] [Accepted: 07/08/2015] [Indexed: 11/28/2022]
Abstract
Mei1 is required for the homologous recombination of meiosis during the mammalian spermatogenesis. However, the knowledge about bovine Mei1 (bMei1) is still limited. In the present study, we cloned and characterized the bMei1, and investigated the epigenetic regulatory mechanism of bMei1 expression in vivo and in vitro. The full length coding region of bMei1 was 3819bp, which encoded a polypeptide of 1272 amino acids. Real-time PCR showed that the mRNA expression level of bMei1 in the testis of cattle-yak with meiotic arrest and male infertility was significantly decreased as compared with cattle (P<0.01). Conversely, the methylation levels of bMei1 promoter and gene body in the testis of cattle-yak were significantly increased. Additionally, the expression level of bMei1 in bovine mammary epithelial cells (BMECs) was activated by treatment with the methyltransferase inhibitor 5-aza-2' deoxycytidine (5-Aza-CdR). Our data suggest that bMei1 may play an important role in the meiosis of spermatogenesis and may be involved in cattle-yak male sterility, and its transcription was regulated by DNA methylation.
Collapse
Affiliation(s)
- Bojiang Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangjun Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hua Luo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zequn Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
11
|
Jiang X, Huang L, Xing D. Photoactivation of Dok1/ERK/PPARγ signaling axis inhibits excessive lipolysis in insulin-resistant adipocytes. Cell Signal 2015; 27:1265-75. [PMID: 25813581 DOI: 10.1016/j.cellsig.2015.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/07/2015] [Accepted: 03/16/2015] [Indexed: 12/19/2022]
Abstract
Insulin resistance is a hallmark of the metabolic syndrome and type 2 diabetes. Increased plasma FFA level is an important cause of obesity-associated insulin resistance. Over-activated ERK is closely related with FFA release from adipose tissues in patients with type 2 diabetes. Nevertheless, there are no effective strategies to lower plasma FFA level. Low-power laser irradiation (LPLI) has been reported to regulate multiple biological processes. However, whether LPLI could ameliorate metabolic disorders and the molecular mechanisms involved remain unknown. In this study, we first demonstrated that LPLI suppresses excessive lipolysis of insulin-resistant adipocytes by activating tyrosine kinases-1(Dok1)/ERK/PPARγ pathway. Our data showed that LPLI inhibits ERK phosphorylation through the activation of Dok1, resulting in decreased phospho-PPARγ level. Non-phosphorylated PPARγ maintains in nucleus to promote the expression of adipogenic genes, reversing excessive lipolysis in insulin-resistant adipocytes. In summary, the present research highlights the important roles of Dok1/ERK/PPARγ pathway in lowering FFA release from adipocytes, and our research extends the knowledge of the biological effects induced by LPLI.
Collapse
Affiliation(s)
- Xiaoxiao Jiang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Lei Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
12
|
eIF2α dephosphorylation in basolateral amygdala mediates reconsolidation of drug memory. J Neurosci 2014; 34:10010-21. [PMID: 25057203 DOI: 10.1523/jneurosci.0934-14.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Maladaptive memories elicited by exposure to environmental stimuli associated with drugs of abuse are often responsible for relapse among addicts. Interference with the reconsolidation of drug memory can inhibit drug seeking. Previous studies have indicated that the dephosphorylation of the eukaryotic initiation factor 2 α-subunit (eIF2α) plays an important role in synaptic plasticity and long-term memory consolidation, but its role in the reconsolidation of drug memory remains unknown. The amygdala is required for the reconsolidation of a destabilized drug memory after retrieval of drug-paired stimuli. Here, we used conditioned place preference (CPP) and self-administration procedures to determine whether amygdala eIF2α dephosphorylation is required for the reconsolidation of morphine and cocaine memories in rats. We found that the levels of eIF2α phosphorylation (Ser51) and activating transcription factor 4 (ATF4) were decreased after reexposure to a previously morphine- or cocaine-paired context (i.e., a memory retrieval procedure) in the basolateral amygdala (BLA) but not in the central amygdala. Intra-BLA infusions of Sal003, a selective inhibitor of eIF2α dephosphorylation, immediately after memory retrieval disrupted the reconsolidation of morphine- or cocaine-induced CPP, leading to a long-lasting suppression of drug-paired stimulus-induced craving. Advanced knockdown of ATF4 expression in the BLA by lentivirus-mediated short-hairpin RNA blocked the disruption of the reconsolidation of morphine-induced CPP induced by Sal003 treatment. Furthermore, inhibition of eIF2α dephosphorylation in the BLA immediately after light/tone stimulus retrieval decreased subsequent cue-induced heroin-seeking behavior in the self-administration procedure. These results demonstrate that eIF2α dephosphorylation in the BLA mediates the memory reconsolidation of drug-paired stimuli.
Collapse
|
13
|
Mukherjee M, Jing-Song F, Ramachandran S, Guy GR, Sivaraman J. Dimeric switch of Hakai-truncated monomers during substrate recognition: insights from solution studies and NMR structure. J Biol Chem 2014; 289:25611-23. [PMID: 25074933 DOI: 10.1074/jbc.m114.592840] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hakai, an E3 ubiquitin ligase, disrupts cell-cell contacts in epithelial cells and is up-regulated in human colon and gastric adenocarcinomas. Hakai acts through its phosphotyrosine-binding (HYB) domain, which bears a dimeric fold that recognizes the phosphotyrosine motifs of E-cadherin, cortactin, DOK1, and other Src substrates. Unlike the monomeric nature of the SH2 and phosphotyrosine-binding domains, the architecture of the HYB domain consists of an atypical, zinc-coordinated tight homodimer. Here, we report a C-terminal truncation mutant of the HYB domain (HYB(ΔC)), comprising amino acids 106-194, which exists as a monomer in solution. The NMR structure revealed that this deletion mutant undergoes a dramatic structural change caused by a rearrangement of the atypical zinc-coordinated unit in the C terminus of the HYB domain to a C2H2-like zinc finger in HYB(ΔC). Moreover, using isothermal titration calorimetry, we show that dimerization of HYB(ΔC) can be induced using a phosphotyrosine substrate peptide. This ligand-induced dimerization of HYB(ΔC) is further validated using analytical ultracentrifugation, size-exclusion chromatography, NMR relaxation studies, dynamic light scattering, and circular dichroism experiments. Overall, these observations suggest that the dimeric architecture of the HYB domain is essential for the phosphotyrosine-binding property of Hakai.
Collapse
Affiliation(s)
- Manjeet Mukherjee
- From the Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore 117543 and
| | - Fan Jing-Song
- From the Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore 117543 and
| | - Sarath Ramachandran
- From the Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore 117543 and
| | - Graeme R Guy
- the Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673
| | - J Sivaraman
- From the Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore 117543 and
| |
Collapse
|
14
|
Epstein-Barr virus down-regulates tumor suppressor DOK1 expression. PLoS Pathog 2014; 10:e1004125. [PMID: 24809689 PMCID: PMC4014463 DOI: 10.1371/journal.ppat.1004125] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 04/01/2014] [Indexed: 12/29/2022] Open
Abstract
The DOK1 tumor suppressor gene encodes an adapter protein that acts as a negative regulator of several signaling pathways. We have previously reported that DOK1 expression is up-regulated upon cellular stress, via the transcription factor E2F1, and down-regulated in a variety of human malignancies due to aberrant hypermethylation of its promoter. Here we show that Epstein Barr virus (EBV) infection of primary human B-cells leads to the down-regulation of DOK1 gene expression via the viral oncoprotein LMP1. LMP1 alone induces recruitment to the DOK1 promoter of at least two independent inhibitory complexes, one containing E2F1/pRB/DNMT1 and another containing at least EZH2. These events result in tri-methylation of histone H3 at lysine 27 (H3K27me3) of the DOK1 promoter and gene expression silencing. We also present evidence that the presence of additional EBV proteins leads to further repression of DOK1 expression with an additional mechanism. Indeed, EBV infection of B-cells induces DNA methylation at the DOK1 promoter region including the E2F1 responsive elements that, in turn, lose the ability to interact with E2F complexes. Treatment of EBV-infected B-cell-lines with the methyl-transferase inhibitor 5-aza-2′-deoxycytidine rescues DOK1 expression. In summary, our data show the deregulation of DOK1 gene expression by EBV and provide novel insights into the regulation of the DOK1 tumor suppressor in viral-related carcinogenesis. Many oncogenic viruses exhibit cellular transforming properties, often involving oncogenes activation and tumor suppressor genes inactivation. The DOK1 gene is a newly identified tumor suppressor gene with altered expression via hypermethylation of its promoter in a variety of human cancers, including head and neck, lung, gastric and others. In addition, a correlation has been reported between DOK1 aberrant hypermethylation and the presence of oncogenic viruses such as hepatitis B virus (HBV) in hepatocellular carcinoma (HCC) and Epstein-Barr virus (EBV) in Burkitt's lymphoma-derived cell lines. Here we demonstrate for the first time that EBV is directly involved in the inhibition of DOK1 expression in B-cells. We show that EBV leads to epigenetic repression of DOK1 through increased DNA methylation of its promoter and H3K27 tri-methylation. The LMP1 oncoprotein plays a key role in the repression of DOK1 expression. It promotes the formation and the recruitment to the DOK1 promoter of transcriptionally inhibitory complexes composed of E2F1/pRB/DNMT1 and of EZH2 which is part of the polycomb repressive complex 2. Interestingly, one or more additional EBV protein(s) cooperate(s) with LMP1 in inducing massive DNA methylation at the DOK1 promoter, leading to the loss of E2F1 complexes recruitment and even stronger repression of DOK1 expression.
Collapse
|
15
|
Yang R, Bai Y, Qin Z, Yu T. EgoNet: identification of human disease ego-network modules. BMC Genomics 2014; 15:314. [PMID: 24773628 PMCID: PMC4234496 DOI: 10.1186/1471-2164-15-314] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/16/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Mining novel biomarkers from gene expression profiles for accurate disease classification is challenging due to small sample size and high noise in gene expression measurements. Several studies have proposed integrated analyses of microarray data and protein-protein interaction (PPI) networks to find diagnostic subnetwork markers. However, the neighborhood relationship among network member genes has not been fully considered by those methods, leaving many potential gene markers unidentified. The main idea of this study is to take full advantage of the biological observation that genes associated with the same or similar diseases commonly reside in the same neighborhood of molecular networks. RESULTS We present EgoNet, a novel method based on egocentric network-analysis techniques, to exhaustively search and prioritize disease subnetworks and gene markers from a large-scale biological network. When applied to a triple-negative breast cancer (TNBC) microarray dataset, the top selected modules contain both known gene markers in TNBC and novel candidates, such as RAD51 and DOK1, which play a central role in their respective ego-networks by connecting many differentially expressed genes. CONCLUSIONS Our results suggest that EgoNet, which is based on the ego network concept, allows the identification of novel biomarkers and provides a deeper understanding of their roles in complex diseases.
Collapse
Affiliation(s)
| | | | | | - Tianwei Yu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, 1518 Clifton Rd, N,E, Atlanta, GA, USA.
| |
Collapse
|
16
|
Miah S, Goel RK, Dai C, Kalra N, Beaton-Brown E, Bagu ET, Bonham K, Lukong KE. BRK targets Dok1 for ubiquitin-mediated proteasomal degradation to promote cell proliferation and migration. PLoS One 2014; 9:e87684. [PMID: 24523872 PMCID: PMC3921129 DOI: 10.1371/journal.pone.0087684] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 01/02/2014] [Indexed: 12/13/2022] Open
Abstract
Breast tumor kinase (BRK), also known as protein tyrosine kinase 6 (PTK6), is a non-receptor tyrosine kinase overexpressed in more that 60% of human breast carcinomas. The overexpression of BRK has been shown to sensitize mammary epithelial cells to mitogenic signaling and to promote cell proliferation and tumor formation. The molecular mechanisms of BRK have been unveiled by the identification and characterization of BRK target proteins. Downstream of tyrosine kinases 1 or Dok1 is a scaffolding protein and a substrate of several tyrosine kinases. Herein we show that BRK interacts with and phosphorylates Dok1 specifically on Y362. We demonstrate that this phosphorylation by BRK significantly downregulates Dok1 in a ubiquitin-proteasome-mediated mechanism. Together, these results suggest a novel mechanism of action of BRK in the promotion of tumor formation, which involves the targeting of tumor suppressor Dok1 for degradation through the ubiquitin proteasomal pathway.
Collapse
Affiliation(s)
- Sayem Miah
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Raghuveera Kumar Goel
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Chenlu Dai
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Natasha Kalra
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Erika Beaton-Brown
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Cancer Research Unit, Health Research Division, Saskatchewan Cancer Agency, and Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Edward T. Bagu
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Cancer Research Unit, Health Research Division, Saskatchewan Cancer Agency, and Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Keith Bonham
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Cancer Research Unit, Health Research Division, Saskatchewan Cancer Agency, and Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kiven E. Lukong
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|