1
|
Cummings MJ, Yu H, Paudel S, Hu G, Li X, Hemberger M, Wang X. Uterine-specific SIRT1 deficiency confers premature uterine aging and impairs invasion and spacing of blastocyst, and stromal cell decidualization, in mice. Mol Hum Reprod 2022; 28:gaac016. [PMID: 35536234 PMCID: PMC10689003 DOI: 10.1093/molehr/gaac016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/28/2022] [Indexed: 12/02/2023] Open
Abstract
A distinct age-related alteration in the uterine environment has recently been identified as a prevalent cause of the reproductive decline in older female mice. However, the molecular mechanisms that underlie age-associated uterine adaptability to pregnancy are not known. Sirtuin 1 (SIRT1), a multifunctional NAD+-dependent deacetylase that regulates cell viability, senescence and inflammation during aging, is reduced in aged decidua. Thus, we hypothesize that SIRT1 plays a critical role in uterine adaptability to pregnancy and that uterine-specific ablation of Sirt1 gene accelerates premature uterine aging. Female mice with uterine ablation of Sirt1 gene using progesterone receptor Cre (PgrCre) exhibit subfertility and signs of premature uterine aging. These Sirt1-deficient mothers showed decreases in litter size from their 1st pregnancy and became sterile (25.1 ± 2.5 weeks of age) after giving birth to the third litter. We report that uterine-specific Sirt1 deficiency impairs invasion and spacing of blastocysts, and stromal cell decidualization, leading to abnormal placentation. We found that these problems traced back to the very early stages of hormonal priming of the uterus. During the window of receptivity, Sirt1 deficiency compromises uterine epithelial-stromal crosstalk, whereby estrogen, progesterone and Indian hedgehog signaling pathways are dysregulated, hampering stromal cell priming for decidualization. Uterine transcriptomic analyses also link these causes to perturbations of histone proteins and epigenetic modifiers, as well as adrenomedullin signaling, hyaluronic acid metabolism, and cell senescence. Strikingly, our results also identified genes with significant overlaps with the transcriptome of uteri from aged mice and transcriptomes related to master regulators of decidualization (e.g. Foxo1, Wnt4, Sox17, Bmp2, Egfr and Nr2f2). Our results also implicate accelerated deposition of aging-related fibrillar Type I and III collagens in Sirt1-deficient uteri. Collectively, SIRT1 is an important age-related regulator of invasion and spacing of blastocysts, as well as decidualization of stromal cells.
Collapse
Affiliation(s)
- Magdalina J Cummings
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
- The Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Hongyao Yu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Sudikshya Paudel
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
- The Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Guang Hu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Myriam Hemberger
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Xiaoqiu Wang
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
- The Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
2
|
Rasha F, Mims BM, Castro-Piedras I, Barnes BJ, Grisham MB, Rahman RL, Pruitt K. The Versatility of Sirtuin-1 in Endocrinology and Immunology. Front Cell Dev Biol 2020; 8:589016. [PMID: 33330467 PMCID: PMC7717970 DOI: 10.3389/fcell.2020.589016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
Sirtuins belong to the class III family of NAD-dependent histone deacetylases (HDAC) and are involved in diverse physiological processes that range from regulation of metabolism and endocrine function to coordination of immunity and cellular responses to stress. Sirtuin-1 (SIRT1) is the most well-studied family member and has been shown to be critically involved in epigenetics, immunology, and endocrinology. The versatile roles of SIRT1 include regulation of energy sensing metabolic homeostasis, deacetylation of histone and non-histone proteins in numerous tissues, neuro-endocrine regulation via stimulation of hypothalamus-pituitary axes, synthesis and maintenance of reproductive hormones via steroidogenesis, maintenance of innate and adaptive immune system via regulation of T- and B-cell maturation, chronic inflammation and autoimmune diseases. Moreover, SIRT1 is an appealing target in various disease contexts due to the promise of pharmacological and/or natural modulators of SIRT1 activity within the context of endocrine and immune-related disease models. In this review we aim to provide a broad overview on the role of SIRT1 particularly within the context of endocrinology and immunology.
Collapse
Affiliation(s)
- Fahmida Rasha
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Brianyell McDaniel Mims
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Isabel Castro-Piedras
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Betsy J. Barnes
- Laboratory of Autoimmune and Cancer Research, Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Molecular Medicine and Department of Pediatrics, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, United States
| | - Matthew B. Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | | | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
3
|
Song SB, Park JS, Chung GJ, Lee IH, Hwang ES. Diverse therapeutic efficacies and more diverse mechanisms of nicotinamide. Metabolomics 2019; 15:137. [PMID: 31587111 DOI: 10.1007/s11306-019-1604-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/30/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Nicotinamide (NAM) is a form of vitamin B3 that, when administered at near-gram doses, has been shown or suggested to be therapeutically effective against many diseases and conditions. The target conditions are incredibly diverse ranging from skin disorders such as bullous pemphigoid to schizophrenia and depression and even AIDS. Similar diversity is expected for the underlying mechanisms. In a large portion of the conditions, NAM conversion to nicotinamide adenine dinucleotide (NAD+) may be a major factor in its efficacy. The augmentation of cellular NAD+ level not only modulates mitochondrial production of ATP and superoxide, but also activates many enzymes. Activated sirtuin proteins, a family of NAD+-dependent deacetylases, play important roles in many of NAM's effects such as an increase in mitochondrial quality and cell viability countering neuronal damages and metabolic diseases. Meanwhile, certain observed effects are mediated by NAM itself. However, our understanding on the mechanisms of NAM's effects is limited to those involving certain key proteins and may even be inaccurate in some proposed cases. AIM OF REVIEW This review details the conditions that NAM has been shown to or is expected to effectively treat in humans and animals and evaluates the proposed underlying molecular mechanisms, with the intention of promoting wider, safe therapeutic application of NAM. KEY SCIENTIFIC CONCEPTS OF REVIEW NAM, by itself or through altering metabolic balance of NAD+ and tryptophan, modulates mitochondrial function and activities of many molecules and thereby positively affects cell viability and metabolic functions. And, NAM administration appears to be quite safe with limited possibility of side effects which are related to NAM's metabolites.
Collapse
Affiliation(s)
- Seon Beom Song
- Department of Life Science, University of Seoul, Dongdaemun-gu, Seoulsiripdae-ro 163, Seoul, Republic of Korea
| | - Jin Sung Park
- Department of Life Science, University of Seoul, Dongdaemun-gu, Seoulsiripdae-ro 163, Seoul, Republic of Korea
| | - Gu June Chung
- Department of Life Science, University of Seoul, Dongdaemun-gu, Seoulsiripdae-ro 163, Seoul, Republic of Korea
| | - In Hye Lee
- Department of Life Science, Ewha Womans University, Ewhayeodae-gil 52, Seoul, Republic of Korea
| | - Eun Seong Hwang
- Department of Life Science, University of Seoul, Dongdaemun-gu, Seoulsiripdae-ro 163, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Song L, Zhuang P, Lin M, Kang M, Liu H, Zhang Y, Yang Z, Chen Y, Zhang Y. Urine Metabonomics Reveals Early Biomarkers in Diabetic Cognitive Dysfunction. J Proteome Res 2017; 16:3180-3189. [DOI: 10.1021/acs.jproteome.7b00168] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Lili Song
- Chinese Materia Medica College, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, People’s Republic of China
| | - Pengwei Zhuang
- Chinese Materia Medica College, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, People’s Republic of China
| | - Mengya Lin
- Chinese Materia Medica College, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, People’s Republic of China
| | - Mingqin Kang
- Jilin Entry-Exit Inspection and Quarantine Bureau, 1301 Puyang Street, Lvyuan District, Changchun City, Jilin Province, 130062, People’s Republic of China
| | - Hongyue Liu
- Chinese Materia Medica College, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, People’s Republic of China
| | - Yuping Zhang
- Chinese Materia Medica College, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, People’s Republic of China
| | - Zhen Yang
- Chinese Materia Medica College, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, People’s Republic of China
| | - Yunlong Chen
- Chinese Materia Medica College, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, People’s Republic of China
| | - Yanjun Zhang
- Chinese Materia Medica College, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, People’s Republic of China
| |
Collapse
|
5
|
Refat MS, El-Megharbel SM, Hussien MA, Hamza RZ, Al-Omar MA, Naglah AM, Afifi WM, Kobeasy MI. Spectroscopic, structural characterizations and antioxidant capacity of the chromium (III) niacinamide compound as a diabetes mellitus drug model. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:122-131. [PMID: 27619974 DOI: 10.1016/j.saa.2016.08.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 07/02/2016] [Accepted: 08/28/2016] [Indexed: 06/06/2023]
Abstract
New binuclear chromium (III) niacinamide compound with chemical formula [Cr2(Nic)(Cl)6(H2O)4]·H2O was obtained upon the reaction of chromium (III) chloride with niacinamide (Nic) in methanol solvent at 60°C. The proposed structure was discussed with the help of microanalytical analyses, conductivity, spectroscopic (FT-IR and UV-vis.), magnetic calculations, thermogravimetric analyses (TG/TGA), and morphological studies (X-ray of solid powder and scan electron microscopy. The infrared spectrum of free niacinamide in comparison with its chromium (III) compound indicated that the chelation mode occurs via both nitrogen atoms of pyridine ring and primary -NH2 group. The efficiency of chromium (III) niacinamide compound in decreasing of glucose level of blood and HbA1c in case of diabetic rats was checked. The ameliorating gluconeogenic enzymes, lipid profile and antioxidant defense capacities are considered as an indicator of the efficiency of new chromium (III) compound as antidiabetic drug model.
Collapse
Affiliation(s)
- Moamen S Refat
- Chemistry Department, Faculty of Science, Taif University, P.O. Box 888, Al-Hawiah, Taif 21974, Saudi Arabia; Department of Chemistry, Faculty of Science, Port Said, Port Said University, Egypt.
| | - Samy M El-Megharbel
- Chemistry Department, Faculty of Science, Taif University, P.O. Box 888, Al-Hawiah, Taif 21974, Saudi Arabia; Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - M A Hussien
- Department of Chemistry, Faculty of Science, Port Said, Port Said University, Egypt
| | - Reham Z Hamza
- Department of Zoology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Mohamed A Al-Omar
- Department of Pharmaceutical Chemistry, Drug Exploration and Development Chair, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed M Naglah
- Department of Pharmaceutical Chemistry, Drug Exploration and Development Chair, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; Peptide Chemistry Department, Chemical Industries Research Division, National Research Centre, 12622-Dokki, Cairo, Egypt
| | - Walid M Afifi
- International Extended Care Center, Jeddah, Saudi Arabia; Nephrology Unit, Zagazig University Hospital, Egypt
| | - Mohamed I Kobeasy
- Chemistry Department, Faculty of Science, Taif University, P.O. Box 888, Al-Hawiah, Taif 21974, Saudi Arabia; Department of Biochemistry, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
6
|
Treviño LS, Bolt MJ, Grimm SL, Edwards DP, Mancini MA, Weigel NL. Differential Regulation of Progesterone Receptor-Mediated Transcription by CDK2 and DNA-PK. Mol Endocrinol 2015; 30:158-72. [PMID: 26652902 DOI: 10.1210/me.2015-1144] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Progesterone receptor (PR) function is altered by cell signaling, but the mechanisms of kinase-specific regulation are not well defined. To examine the role of cell signaling in the regulation of PR transcriptional activity, we have utilized a previously developed mammalian-based estrogen-response element promoter array cell model and automated cell imaging and analysis platform to visualize and quantify effects of specific kinases on different mechanistic steps of PR-mediated target gene activation. For these studies, we generated stable estrogen-response element array cell lines expressing inducible chimeric PR that contains a swap of the estrogen receptor-α DNA-binding domain for the DNA-binding domain of PR. We have focused on 2 kinases important for steroid receptor activity: cyclin-dependent kinase 2 and DNA-dependent protein kinase. Treatment with either a Cdk1/2 inhibitor (NU6102) or a DNA-dependent protein kinase inhibitor (NU7441) decreased hormone-mediated chromatin decondensation and transcriptional activity. Further, we observed a quantitative reduction in the hormone-mediated recruitment of select coregulator proteins with NU6102 that is not observed with NU7441. In parallel, we determined the effect of kinase inhibition on hormone-mediated induction of primary and mature transcripts of endogenous genes in T47D breast cancer cells. Treatment with NU6102 was much more effective than NU7441, in inhibiting induction of PR target genes that exhibit a rapid increase in primary transcript expression in response to hormone. Taken together, these results indicate that the 2 kinases regulate PR transcriptional activity by distinct mechanisms.
Collapse
Affiliation(s)
- Lindsey S Treviño
- Departments of Molecular and Cellular Biology (L.S.T., M.J.B., S.L.G., D.P.E., M.A.M., N.L.W.) and Pathology and Immunology (S.L.G., D.P.E.), Baylor College of Medicine, Houston, Texas 77030
| | - Michael J Bolt
- Departments of Molecular and Cellular Biology (L.S.T., M.J.B., S.L.G., D.P.E., M.A.M., N.L.W.) and Pathology and Immunology (S.L.G., D.P.E.), Baylor College of Medicine, Houston, Texas 77030
| | - Sandra L Grimm
- Departments of Molecular and Cellular Biology (L.S.T., M.J.B., S.L.G., D.P.E., M.A.M., N.L.W.) and Pathology and Immunology (S.L.G., D.P.E.), Baylor College of Medicine, Houston, Texas 77030
| | - Dean P Edwards
- Departments of Molecular and Cellular Biology (L.S.T., M.J.B., S.L.G., D.P.E., M.A.M., N.L.W.) and Pathology and Immunology (S.L.G., D.P.E.), Baylor College of Medicine, Houston, Texas 77030
| | - Michael A Mancini
- Departments of Molecular and Cellular Biology (L.S.T., M.J.B., S.L.G., D.P.E., M.A.M., N.L.W.) and Pathology and Immunology (S.L.G., D.P.E.), Baylor College of Medicine, Houston, Texas 77030
| | - Nancy L Weigel
- Departments of Molecular and Cellular Biology (L.S.T., M.J.B., S.L.G., D.P.E., M.A.M., N.L.W.) and Pathology and Immunology (S.L.G., D.P.E.), Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
7
|
Effect of SIRT1 on cellular apoptosis and steroidogenesis in bovine ovarian granulosa cells in vitro. Livest Sci 2015. [DOI: 10.1016/j.livsci.2015.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
The role of H3K4me3 and H3K9/14ac in the induction by dexamethasone of Per1 and Sgk1, two glucococorticoid early response genes that mediate the effects of acute stress in mammals. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:866-72. [DOI: 10.1016/j.bbagrm.2014.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/16/2014] [Accepted: 07/14/2014] [Indexed: 12/21/2022]
|
9
|
Moore RL, Faller DV. SIRT1 represses estrogen-signaling, ligand-independent ERα-mediated transcription, and cell proliferation in estrogen-responsive breast cells. J Endocrinol 2013; 216:273-85. [PMID: 23169992 PMCID: PMC3852670 DOI: 10.1530/joe-12-0102] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In prostate and breast cancer, the androgen receptor and estrogen receptor (ER) mediate induction of androgen- and estrogen-responsive genes respectively and stimulate cell proliferation in response to the binding of their cognate steroid hormones. Sirtuin 1 (SIRT1) is a NAD+-dependent class III histone deacetylase that has been linked to gene silencing, control of the cell cycle, apoptosis, and energy homeostasis. In prostate cancer, SIRT1 is required for androgen antagonist-mediated transcriptional repression and growth suppression of prostate cancer cells. Whether SIRT1 plays a similar role in the actions of estrogen or antagonists had not been determined. We report here that SIRT1 represses the transcriptional and proliferative response of breast cancer cells to estrogens, and this repression is ERα dependent. Inhibition of SIRT1 activity results in the phosphorylation of ERα in an AKT-dependent manner, and this activation requires phosphoinositide 3-kinase activity. Phosphorylated ERα subsequently accumulates in the nucleus, where ERα binds DNA ER-responsive elements and activates transcription of estrogen-responsive genes. This ER-dependent transcriptional activation augments estrogen-induced signaling, but also activates ER signaling in the absence of estrogen, thus defining a novel and unexpected mechanism of ligand-independent ERα-mediated activation and target gene transcription. Like ligand-dependent activation of ERα, SIRT1 inhibition-mediated ERα activation in the absence of estrogen also results in breast cancer cell proliferation. Together, these data demonstrate that SIRT1 regulates the most important cell signaling pathway for the growth of breast cancer cells, both in the presence and the absence of estrogen.
Collapse
Affiliation(s)
- Robert L Moore
- Cancer Center, Boston University School of Medicine, 72 East Concord Street, Room K-701, Boston, Massachusetts 02118-2307, USA
| | | |
Collapse
|
10
|
Khurana S, Chakraborty S, Zhao X, Liu Y, Guan D, Lam M, Huang W, Yang S, Kao HY. Identification of a novel LXXLL motif in α-actinin 4-spliced isoform that is critical for its interaction with estrogen receptor α and co-activators. J Biol Chem 2012; 287:35418-35429. [PMID: 22908231 DOI: 10.1074/jbc.m112.401364] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
α-Actinins (ACTNs) are a family of proteins cross-linking actin filaments that maintain cytoskeletal organization and cell motility. Recently, it has also become clear that ACTN4 can function in the nucleus. In this report, we found that ACTN4 (full length) and its spliced isoform ACTN4 (Iso) possess an unusual LXXLL nuclear receptor interacting motif. Both ACTN4 (full length) and ACTN4 (Iso) potentiate basal transcription activity and directly interact with estrogen receptor α, although ACTN4 (Iso) binds ERα more strongly. We have also found that both ACTN4 (full length) and ACTN4 (Iso) interact with the ligand-independent and the ligand-dependent activation domains of estrogen receptor α. Although ACTN4 (Iso) interacts efficiently with transcriptional co-activators such as p300/CBP-associated factor (PCAF) and steroid receptor co-activator 1 (SRC-1), the full length ACTN4 protein either does not or does so weakly. More importantly, the flanking sequences of the LXXLL motif are important not only for interacting with nuclear receptors but also for the association with co-activators. Taken together, we have identified a novel extended LXXLL motif that is critical for interactions with both receptors and co-activators. This motif functions more efficiently in a spliced isoform of ACTN4 than it does in the full-length protein.
Collapse
Affiliation(s)
- Simran Khurana
- Department of Biochemistry, Case Western Reserve University and the Research Institute of University Hospitals of Cleveland, Cleveland, Ohio 44106
| | - Sharmistha Chakraborty
- Department of Biochemistry, Case Western Reserve University and the Research Institute of University Hospitals of Cleveland, Cleveland, Ohio 44106
| | - Xuan Zhao
- Department of Biochemistry, Case Western Reserve University and the Research Institute of University Hospitals of Cleveland, Cleveland, Ohio 44106
| | - Yu Liu
- Department of Biochemistry, Case Western Reserve University and the Research Institute of University Hospitals of Cleveland, Cleveland, Ohio 44106
| | - Dongyin Guan
- Department of Biochemistry, Case Western Reserve University and the Research Institute of University Hospitals of Cleveland, Cleveland, Ohio 44106
| | - Minh Lam
- Comprehensive Cancer Center, Case Western Reserve University and the Research Institute of University Hospitals of Cleveland, Cleveland, Ohio 44106
| | - Wei Huang
- Center for Proteomics and Department of Pharmacology, School of Medicine, Case Western Reserve University and the Research Institute of University Hospitals of Cleveland, Cleveland, Ohio 44106
| | - Sichun Yang
- Center for Proteomics and Department of Pharmacology, School of Medicine, Case Western Reserve University and the Research Institute of University Hospitals of Cleveland, Cleveland, Ohio 44106
| | - Hung-Ying Kao
- Department of Biochemistry, Case Western Reserve University and the Research Institute of University Hospitals of Cleveland, Cleveland, Ohio 44106.
| |
Collapse
|
11
|
Ma JX, Li H, Chen XM, Yang XH, Wang Q, Wu ML, Kong QY, Li ZX, Liu J. Expression patterns and potential roles of SIRT1 in human medulloblastoma cells in vivo and in vitro. Neuropathology 2012; 33:7-16. [PMID: 22537175 DOI: 10.1111/j.1440-1789.2012.01318.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Medulloblastoma is a primitive neuroectodermal tumor, which originates in the cerebellum, presumably due to the alterations of some neurogenetic elements. Sirtuin 1 (SIRT1), a class III histone deacetylase (HDAC), regulates differentiation of neuronal stem cells but its status in medulloblastomas remains largely unknown. The current study aimed to address this issue by checking SIRT1 expression in noncancerous cerebellar tissues, medulloblastoma tissues and established cell lines. The roles of SIRT1 in proliferation and survival of UW228-3 medulloblastoma cells were analyzed by SIRT1 small interfering RNA (siRNA) transfection and SIRT1 inhibitor nicotinamide treatment. The results revealed that the frequency of SIRT1 expression in medulloblastoma tissues was 64.17% (77/120), while only one out of seven tumor-surrounding noncancerous cerebellar tissues showed restricted SIRT1 expression in the cells within the granule layer. Of the three morphological subtypes, the rates of SIRT1 detection in the large cell/anaplastic cell (79.07%; 34/43) and the classic medulloblastomas (60.29%; 41/68) are higher than that (22.22%; 2/9) in nodular/desmoplastic medulloblastomas (P<0.01 and P<0.05, respectively). Heterogeneous SIRT1 expression was commonly observed in classic medulloblastoma. Inhibition of SIRT1 expression by siRNA arrested 64.96% of UW228-3 medulloblastoma cells in the gap 1 (G1) phase and induced 14.53% of cells to apoptosis at the 48-h time point. Similarly, inhibition of SIRT1 enzymatic activity with nicotinamide brought about G1 arrest and apoptosis in a dose-related fashion. Our data thus indicate: (i) that SIRT1 may act as a G1-phase promoter and a survival factor in medulloblastoma cells; and (ii) that SIRT1 expression is correlated with the formation and prognosis of human medulloblastomas. In this context, SIRT1 would be a potential therapeutic target of medulloblastomas.
Collapse
Affiliation(s)
- Jing-Xin Ma
- Liaoning Laboratory of Cancer Genetics and Epigenetics, Department of Cell Biology, Dalian Medical University, Dalian Department of Pathology, Sheng-Jing Hospital, China Medical University, Shenyang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Sirtuins, which are class III NAD-dependent histone deacetylases that regulate a number of physiological processes, play important roles in the regulation of metabolism, aging, oncogenesis, and cancer progression. Recently, a role for the sirtuins in the regulation of steroid hormone receptor signaling is emerging. In this mini-review, we will summarize current research into the regulation of estrogen, androgen, progesterone, mineralocorticoid, and glucocorticoid signaling by sirtuins in cancer. Sirtuins can regulate steroid hormone signaling through a variety of molecular mechanisms, including acting as co-regulatory transcription factors, deacetylating histones in the promoters of genes with nuclear receptor-binding sites, directly deacetylating steroid hormone nuclear receptors, and regulating pathways that modify steroid hormone receptors through phosphorylation. Furthermore, disruption of sirtuin activity may be an important step in the development of steroid hormone-refractory cancers.
Collapse
Affiliation(s)
- R L Moore
- Cancer Center, Departments of Medicine Biochemistry Pediatrics Microbiology Pathology and Laboratory Medicine, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118-2307, USA
| | | | | |
Collapse
|
13
|
Eades G, Yao Y, Yang M, Zhang Y, Chumsri S, Zhou Q. miR-200a regulates SIRT1 expression and epithelial to mesenchymal transition (EMT)-like transformation in mammary epithelial cells. J Biol Chem 2011; 286:25992-6002. [PMID: 21596753 DOI: 10.1074/jbc.m111.229401] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Evidence supports a critical role for microRNAs (miRNAs) in regulation of tissue-specific differentiation and development. Signifying a disruption of these programs, expression profiling has revealed extensive miRNA dysregulation in tumors compared with healthy tissue. The miR-200 family has been established as a key regulator of epithelial phenotype and, as such, is deeply involved in epithelial to mesenchymal transition (EMT) processes in breast cancer. However, the effects of the miR-200 family on transformation of normal mammary epithelial cells have yet to be fully characterized. By examining a TGF-β driven model of transformation of normal mammary epithelium, we demonstrate that the class III histone deacetylase silent information regulator 1 (SIRT1), a proposed oncogene in breast cancer, is overexpressed upon EMT-like transformation and that epigenetic silencing of miR-200a contributes at least in part to the overexpression of SIRT1. We have established the SIRT1 transcript as subject to regulation by miR-200a, through miR-200a targeting of SIRT1 3'-UTR. We also observed SIRT1 and miR-200a participation in a negative feedback regulatory loop. Restoration of miR-200a or the knockdown of SIRT1 prevented transformation of normal mammary epithelial cells evidenced by decreased anchorage-independent growth and decreased cell migration. Finally, we observed SIRT1 overexpression in association with decreased miR-200a in breast cancer patient samples. These observations provide further evidence for a critical tumor suppressive role of the miR-200 family in breast epithelium in addition to identifying a novel regulatory mechanism, which may contribute to SIRT1 up-regulation in breast cancer.
Collapse
Affiliation(s)
- Gabriel Eades
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
14
|
Maiese K, Chong ZZ, Shang YC, Hou J. Novel avenues of drug discovery and biomarkers for diabetes mellitus. J Clin Pharmacol 2011; 51:128-52. [PMID: 20220043 PMCID: PMC3033756 DOI: 10.1177/0091270010362904] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Globally, developed nations spend a significant amount of their resources on health care initiatives that poorly translate into increased population life expectancy. As an example, the United States devotes 16% of its gross domestic product to health care, the highest level in the world, but falls behind other nations that enjoy greater individual life expectancy. These observations point to the need for pioneering avenues of drug discovery to increase life span with controlled costs. In particular, innovative drug development for metabolic disorders such as diabetes mellitus becomes increasingly critical given that the number of diabetic people will increase exponentially over the next 20 years. This article discusses the elucidation and targeting of novel cellular pathways that are intimately tied to oxidative stress in diabetes mellitus for new treatment strategies. Pathways that involve wingless, β-nicotinamide adenine dinucleotide (NAD(+)) precursors, and cytokines govern complex biological pathways that determine both cell survival and longevity during diabetes mellitus and its complications. Furthermore, the role of these entities as biomarkers for disease can further enhance their utility irrespective of their treatment potential. Greater understanding of the intricacies of these unique cellular mechanisms will shape future drug discovery for diabetes mellitus to provide focused clinical care with limited or absent long-term complications.
Collapse
Affiliation(s)
- Kenneth Maiese
- Department of Neurology, 8C-1 UHC, Wayne State University School of Medicine, 4201 St. Antoine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
15
|
Aoyagi S, Archer TK. Differential glucocorticoid receptor-mediated transcription mechanisms. J Biol Chem 2010; 286:4610-9. [PMID: 21127044 DOI: 10.1074/jbc.m110.195040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nuclear receptors such as the glucocorticoid receptor (GR) are ligand-dependent transcription factors that mediate transcription of target genes by recruiting factors that modulate chromatin structure. In this study, curcumin, a compound known to inhibit GR-mediated transcription, was used to examine the different mechanisms by which GR regulates transcription. The mechanisms of transcription regulation of metallothioneine-2A (MT2A) and solute carrier family 19 member 2 (SLC19A2), two GR target genes where the hormone-dependent gene activation is inhibited or unaffected by curcumin treatment, respectively, were analyzed by chromatin immunoprecipitation and RT-PCR experiments. The data suggest that the loss of hormone-dependent MT2A gene expression is due to the inhibition of continued transcription activity after initial assembly of the transcription machinery. In contrast, the hormone-dependent SLC19A2 gene expression is maintained because the continued transcription output after assembly of transcription machinery is unaffected by curcumin. These results suggest that the two GR target genes use alternate mechanisms to regulate expression levels at the level of continued transcription output after transcription machinery assembly.
Collapse
Affiliation(s)
- Sayura Aoyagi
- Chromatin and Gene Expression Section, Laboratory of Molecular Carcinogenesis, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
16
|
Diani-Moore S, Ram P, Li X, Mondal P, Youn DY, Sauve AA, Rifkind AB. Identification of the aryl hydrocarbon receptor target gene TiPARP as a mediator of suppression of hepatic gluconeogenesis by 2,3,7,8-tetrachlorodibenzo-p-dioxin and of nicotinamide as a corrective agent for this effect. J Biol Chem 2010; 285:38801-10. [PMID: 20876576 DOI: 10.1074/jbc.m110.131573] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The environmental toxin TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin, dioxin) produces diverse toxic effects including a lethal wasting syndrome whose hallmark is suppressed hepatic gluconeogenesis. All TCDD toxicities require activation of the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor. Whereas the mechanism for AHR induction of target genes is well understood, it is not known how AHR activation produces any TCDD toxicity. This report identifies for the first time an AHR target gene, TiPARP (TCDD-inducible poly(ADP-ribose) polymerase, PARP7) that can mediate a TCDD toxicity, i.e. suppression of hepatic gluconeogenesis. TCDD suppressed hepatic glucose production, expression of key gluconeogenic genes, phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase (G6Pase), and NAD(+) levels, and increased PARP activity and TiPARP expression. TCDD also increased acetylation and ubiquitin-dependent proteosomal degradation of the peroxisome proliferator-activated receptor γ coactivator 1 α (PGC1α), a coactivator of PEPCK and G6Pase transcription. TiPARP overexpression reproduced TCDD effects on glucose output and NAD(+) levels whereas TiPARP silencing diminished them. TiPARP overexpression also increased PGC1α acetylation and decreased PGC1α levels. In contrast, silencing of cytochromes P450 (CYP) 1A, main AHR-induced genes, did not alter TCDD suppression of gluconeogenesis. The vitamin B3 constituent, nicotinamide (NAM), prevented TCDD suppression of glucose output, NAD(+), and gluconeogenic genes and stabilized PGC1α. The corrective effects of NAM could be attributed to increased NAD(+) levels and suppression of AHR target gene induction. The results reveal that TiPARP can mediate a TCDD effect, that the AHR is linked to PGC1α function and stability and that NAM has novel AHR antagonist activity.
Collapse
Affiliation(s)
- Silvia Diani-Moore
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York 10065, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Maiese K, Shang YC, Chong ZZ, Hou J. Diabetes mellitus: channeling care through cellular discovery. Curr Neurovasc Res 2010; 7:59-64. [PMID: 20158461 DOI: 10.2174/156720210790820217] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 12/29/2009] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus (DM) impacts a significant portion of the world's population and care for this disorder places an economic burden on the gross domestic product for any particular country. Furthermore, both Type 1 and Type 2 DM are becoming increasingly prevalent and there is increased incidence of impaired glucose tolerance in the young. The complications of DM are protean and can involve multiple systems throughout the body that are susceptible to the detrimental effects of oxidative stress and apoptotic cell injury. For these reasons, innovative strategies are necessary for the implementation of new treatments for DM that are generated through the further understanding of cellular pathways that govern the pathological consequences of DM. In particular, both the precursor for the coenzyme beta-nicotinamide adenine dinucleotide (NAD(+)), nicotinamide, and the growth factor erythropoietin offer novel platforms for drug discovery that involve cellular metabolic homeostasis and inflammatory cell control. Interestingly, these agents and their tightly associated pathways that consist of cell cycle regulation, protein kinase B, forkhead transcription factors, and Wnt signaling also function in a broader sense as biomarkers for disease onset and progression.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
18
|
Yao Y, Li H, Gu Y, Davidson NE, Zhou Q. Inhibition of SIRT1 deacetylase suppresses estrogen receptor signaling. Carcinogenesis 2009; 31:382-7. [PMID: 19995796 DOI: 10.1093/carcin/bgp308] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Estrogen receptor alpha (ERalpha) mediates estrogen-dependent gene transcription, which plays a critical role in mammary gland development, reproduction and homeostasis. Histone acetyltransferases and class I and class II histone deacetylases (HDACs) cause posttranscriptional modification of histone proteins that participate in ERalpha signaling. Here, we report that human SIRT1, a class III HDAC, regulates ERalpha expression. Inhibition of SIRT1 activity by sirtinol suppresses ERalpha expression through disruption of basal transcriptional complexes at the ERalpha promoter. This effect leads to inhibition of estrogen-responsive gene expression. Our in vitro observations were further extended that SIRT1 knockout reduces ERalpha protein in mouse mammary gland. Finally, ERalpha-mediated estrogen response genes are also decreased in mouse embryonic fibroblasts derived from SIRT1-knockout mice. These results suggest that inhibition of SIRT1 deacetylase activity by either pharmacological inhibitors or genetic depletion impairs ERalpha-mediated signaling pathways.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
19
|
Maiese K, Chong ZZ, Hou J, Shang YC. The vitamin nicotinamide: translating nutrition into clinical care. Molecules 2009; 14:3446-85. [PMID: 19783937 PMCID: PMC2756609 DOI: 10.3390/molecules14093446] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 09/08/2009] [Accepted: 09/08/2009] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide, the amide form of vitamin B(3) (niacin), is changed to its mononucleotide compound with the enzyme nicotinic acide/nicotinamide adenylyltransferase, and participates in the cellular energy metabolism that directly impacts normal physiology. However, nicotinamide also influences oxidative stress and modulates multiple pathways tied to both cellular survival and death. During disorders that include immune system dysfunction, diabetes, and aging-related diseases, nicotinamide is a robust cytoprotectant that blocks cellular inflammatory cell activation, early apoptotic phosphatidylserine exposure, and late nuclear DNA degradation. Nicotinamide relies upon unique cellular pathways that involve forkhead transcription factors, sirtuins, protein kinase B (Akt), Bad, caspases, and poly (ADP-ribose) polymerase that may offer a fine line with determining cellular longevity, cell survival, and unwanted cancer progression. If one is cognizant of the these considerations, it becomes evident that nicotinamide holds great potential for multiple disease entities, but the development of new therapeutic strategies rests heavily upon the elucidation of the novel cellular pathways that nicotinamide closely governs.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
20
|
Chong ZZ, Maiese K. Enhanced tolerance against early and late apoptotic oxidative stress in mammalian neurons through nicotinamidase and sirtuin mediated pathways. Curr Neurovasc Res 2009; 5:159-70. [PMID: 18691073 DOI: 10.2174/156720208785425666] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Focus upon therapeutic strategies that intersect between pathways that govern cellular metabolism and cellular survival may offer the greatest impact for the treatment of a number of neurodegenerative and metabolic disorders, such as diabetes mellitus. In this regard, we investigated the role of a Drosophila nicotinamidase (DN) in mammalian SH-SY5Y neuronal cells during oxidative stress. We demonstrate that during free radical exposure to nitric oxide generators DN neuronal expression significantly increased cell survival and blocked cellular membrane injury. Furthermore, DN neuronal expression prevented both apoptotic late DNA degradation and early phosphatidylserine exposure that may serve to modulate inflammatory cell activation in vivo. Nicotinamidase activity that limited nicotinamide cellular concentrations appeared to be necessary for DN neuroprotection, since application of progressive nicotinamide concentrations could abrogate the benefits of DN expression during oxidative stress. Pathways that involved sirtuin activation and SIRT1 were suggested to be vital, at least in part, for DN to confer protection through a series of studies. First, application of resveratrol increased cell survival during oxidative stress either alone or in conjunction with the expression of DN to a similar degree, suggesting that DN may rely upon SIRT1 activation to foster neuronal protection. Second, the overexpression of either SIRT1 or DN in neurons prevented apoptotic injury specifically in neurons expressing these proteins during oxidative stress, advancing the premise that DN and SIRT1 may employ similar pathways for neuronal protection. Third, inhibition of sirtuin activity with sirtinol was detrimental to neuronal survival during oxidative stress and prevented neuronal protection during overexpression of DN or SIRT1, further supporting that SIRT1 activity may be necessary for DN neuroprotection during oxidative stress. Implementation of further work to elucidate the cellular mechanisms that govern nicotinamidase activity in mammalian cells may offer novel avenues for the treatment of disorders tied to oxidative stress and cellular metabolic dysfunction.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine; Detroit, Michigan 48201, USA
| | | |
Collapse
|
21
|
Quiles I, Millán-Ariño L, Subtil-Rodríguez A, Miñana B, Spinedi N, Ballaré C, Beato M, Jordan A. Mutational analysis of progesterone receptor functional domains in stable cell lines delineates sets of genes regulated by different mechanisms. Mol Endocrinol 2009; 23:809-26. [PMID: 19299443 DOI: 10.1210/me.2008-0454] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Steroid hormone receptors act directly in the nucleus on the chromatin organization and transcriptional activity of several promoters. Furthermore, they have an indirect effect on cytoplasmic signal transduction pathways, including MAPK, impacting ultimately on gene expression. We are interested in distinguishing between the two modes of action of progesterone receptor (PR) on the control of gene expression and cell proliferation. For this, we have stably expressed, in PR-negative breast cancer cells, tagged forms of the PR isoform B mutated at regions involved either in DNA binding (DNA-binding domain) or in its ability to interact with the estrogen receptor and to activate the c-Src/MAPK/Erk/Msk cascade (estrogen receptor-interacting domain). Both mutants impair PR-mediated activation of a well-understood model promoter in response to progestin, as well as hormone-induced cell proliferation. Additional mutants affecting transactivation activity of PR (activation function 2) or a zinc-finger implicated in dimerization (D-box) have also been tested. Microarrays and gene expression experiments on these cell lines define the subsets of hormone-responsive genes regulated by different modes of action of PR isoform B, as well as genes in which the nuclear and nongenomic pathways cooperate. Correlation between CCND1 expression in the different cell lines and their ability to support cell proliferation confirms CCND1 as a key controller gene.
Collapse
Affiliation(s)
- Ignacio Quiles
- Centre de Regulació Genòmica, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The etiology of multiple sclerosis (MS) is unknown but it manifests as a chronic inflammatory demyelinating disease in the central nervous system (CNS). During chronic CNS inflammation, nicotinamide adenine dinucleotide (NAD) concentrations are altered by (T helper) Th1-derived cytokines through the coordinated induction of both indoleamine 2,3-dioxygenase (IDO) and the ADP cyclase CD38 in pathogenic microglia and lymphocytes. While IDO activation may keep auto-reactive T cells in check, hyper-activation of IDO can leave neuronal CNS cells starving for extracellular sources of NAD. Existing data indicate that glia may serve critical functions as an essential supplier of NAD to neurons during times of stress. Administration of pharmacological doses of non-tryptophan NAD precursors ameliorates pathogenesis in animal models of MS. Animal models of MS involve artificially stimulated autoimmune attack of myelin by experimental autoimmune encephalomyelitis (EAE) or by viral-mediated demyelination using Thieler's murine encephalomyelitis virus (TMEV). The Wld(S) mouse dramatically resists razor axotomy mediated axonal degeneration. This resistance is due to increased efficiency of NAD biosynthesis that delays stress-induced depletion of axonal NAD and ATP. Although the Wld(S) genotype protects against EAE pathogenesis, TMEV-mediated pathogenesis is exacerbated. In this review, we contrast the role of NAD in EAE versus TMEV demyelinating pathogenesis to increase our understanding of the pharmacotherapeutic potential of NAD signal transduction pathways. We speculate on the importance of increased SIRT1 activity in both PARP-1 inhibition and the potentially integral role of neuronal CD200 interactions through glial CD200R with induction of IDO in MS pathogenesis. A comprehensive review of immunomodulatory control of NAD biosynthesis and degradation in MS pathogenesis is presented. Distinctive pharmacological approaches designed for NAD-complementation or targeting NAD-centric proteins (SIRT1, SIRT2, PARP-1, GPR109a, and CD38) are outlined towards determining which approach may work best in the context of clinical application.
Collapse
Affiliation(s)
- W Todd Penberthy
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, Ohio 45237, USA.
| | | |
Collapse
|
23
|
Maiese K. Triple play: promoting neurovascular longevity with nicotinamide, WNT, and erythropoietin in diabetes mellitus. Biomed Pharmacother 2008; 62:218-32. [PMID: 18342481 PMCID: PMC2431130 DOI: 10.1016/j.biopha.2008.01.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Accepted: 01/23/2008] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress is a principal pathway for the dysfunction and ultimate destruction of cells in the neuronal and vascular systems for several disease entities, not promoting the ravages of oxidative stress to any less of a degree than diabetes mellitus. Diabetes mellitus is increasing in incidence as a result of changes in human behavior that relate to diet and daily exercise and is predicted to affect almost 400 million individuals worldwide in another two decades. Furthermore, both type 1 and type 2 diabetes mellitus can lead to significant disability in the nervous and cardiovascular systems, such as cognitive loss and cardiac insufficiency. As a result, innovative strategies that directly target oxidative stress to preserve neuronal and vascular longevity could offer viable therapeutic options to diabetic patients in addition to more conventional treatments that are designed to control serum glucose levels. Here we discuss the novel application of nicotinamide, Wnt signaling, and erythropoietin that modulate cellular oxidative stress and offer significant promise for the prevention of diabetic complications in the nervous and vascular systems. Essential to this process is the precise focus upon diverse as well as common cellular pathways governed by nicotinamide, Wnt signaling, and erythropoietin to outline not only the potential benefits, but also the challenges and possible detriments of these therapies. In this way, new avenues of investigation can hopefully bypass toxic complications, or at the very least, avoid contraindications that may limit care and offer both safe and robust clinical treatment for patients.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
24
|
p53-, SIRT1-, and PARP-1-independent downregulation of p21WAF1 expression in nicotinamide-treated cells. Biochem Biophys Res Commun 2008; 368:298-304. [DOI: 10.1016/j.bbrc.2008.01.082] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 01/13/2008] [Indexed: 11/20/2022]
|