1
|
Faria M, Domingues R, Bugalho MJ, Silva AL, Matos P. Analysis of NIS Plasma Membrane Interactors Discloses Key Regulation by a SRC/RAC1/PAK1/PIP5K/EZRIN Pathway with Potential Implications for Radioiodine Re-Sensitization Therapy in Thyroid Cancer. Cancers (Basel) 2021; 13:5460. [PMID: 34771624 PMCID: PMC8582450 DOI: 10.3390/cancers13215460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 10/27/2021] [Indexed: 12/25/2022] Open
Abstract
The functional expression of the sodium-iodide symporter (NIS) at the membrane of differentiated thyroid cancer (DTC) cells is the cornerstone for the use of radioiodine (RAI) therapy in these malignancies. However, NIS gene expression is frequently downregulated in malignant thyroid tissue, and 30% to 50% of metastatic DTCs become refractory to RAI treatment, which dramatically decreases patient survival. Several strategies have been attempted to increase the NIS mRNA levels in refractory DTC cells, so as to re-sensitize refractory tumors to RAI. However, there are many RAI-refractory DTCs in which the NIS mRNA and protein levels are relatively abundant but only reduced levels of iodide uptake are detected, suggesting a posttranslational failure in the delivery of NIS to the plasma membrane (PM), or an impaired residency at the PM. Because little is known about the molecules and pathways regulating NIS delivery to, and residency at, the PM of thyroid cells, we here employed an intact-cell labeling/immunoprecipitation methodology to selectively purify NIS-containing macromolecular complexes from the PM. Using mass spectrometry, we characterized and compared the composition of NIS PM complexes to that of NIS complexes isolated from whole cell (WC) lysates. Applying gene ontology analysis to the obtained MS data, we found that while both the PM-NIS and WC-NIS datasets had in common a considerable number of proteins involved in vesicle transport and protein trafficking, the NIS PM complexes were particularly enriched in proteins associated with the regulation of the actin cytoskeleton. Through a systematic validation of the detected interactions by co-immunoprecipitation and Western blot, followed by the biochemical and functional characterization of the contribution of each interactor to NIS PM residency and iodide uptake, we were able to identify a pathway by which the PM localization and function of NIS depends on its binding to SRC kinase, which leads to the recruitment and activation of the small GTPase RAC1. RAC1 signals through PAK1 and PIP5K to promote ARP2/3-mediated actin polymerization, and the recruitment and binding of the actin anchoring protein EZRIN to NIS, promoting its residency and function at the PM of normal and TC cells. Besides providing novel insights into the regulation of NIS localization and function at the PM of TC cells, our results open new venues for therapeutic intervention in TC, namely the possibility of modulating abnormal SRC signaling in refractory TC from a proliferative/invasive effect to the re-sensitization of these tumors to RAI therapy by inducing NIS retention at the PM.
Collapse
Affiliation(s)
- Márcia Faria
- Serviço de Endocrinologia, Diabetes e Metabolismo do CHULN-Hospital Santa Maria, 1649-028 Lisboa, Portugal; (M.F.); (R.D.); (M.J.B.); (A.L.S.)
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
| | - Rita Domingues
- Serviço de Endocrinologia, Diabetes e Metabolismo do CHULN-Hospital Santa Maria, 1649-028 Lisboa, Portugal; (M.F.); (R.D.); (M.J.B.); (A.L.S.)
- ISAMB-Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Maria João Bugalho
- Serviço de Endocrinologia, Diabetes e Metabolismo do CHULN-Hospital Santa Maria, 1649-028 Lisboa, Portugal; (M.F.); (R.D.); (M.J.B.); (A.L.S.)
- Serviço de Endocrinologia, Diabetes e Metabolismo, CHULN and Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana Luísa Silva
- Serviço de Endocrinologia, Diabetes e Metabolismo do CHULN-Hospital Santa Maria, 1649-028 Lisboa, Portugal; (M.F.); (R.D.); (M.J.B.); (A.L.S.)
- ISAMB-Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Serviço de Endocrinologia, Diabetes e Metabolismo, CHULN and Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Paulo Matos
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
| |
Collapse
|
2
|
Abstract
Chronic inflammation is one of the most evident and common pathological conditions leading to deregulated osteoclastogenesis and bone remodeling. Tumor necrosis factor (TNF) as a pleiotropic cytokine plays a key role, not only in inflammation, but also in bone erosion in diseases associated with bone loss. TNF can stimulate the proliferation of osteoclast precursors and, in most conditions, act together with other cytokines and growth factors such as receptor activator of nuclear factor (NF)-[kappa]B ligand (RANKL), interleukin-6, and transforming growth factor beta to synergistically promote osteoclast formation and bone resorption in vivo. A longstanding enigma in the field is why TNF alone is not able to induce osteoclast differentiation as effectively as the same superfamily member RANKL, a physiological master osteoclastogenic cytokine. Recent studies have highlighted several lines of evidence showing the intrinsic mechanisms through RBP-J, NF-[kappa]B p100/TNF receptor-associated factor 3, or interferon regulatory factor-8 that restrain TNF-induced osteoclast differentiation and bone resorption. These feedback inhibitory mechanisms driven by TNF shed light into the current paradigm of osteoclastogenesis and would provide novel therapeutic implications on controlling inflammatory bone resorption.
Collapse
Affiliation(s)
- Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, Graduate Program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, and Department of Medicine, Weill Cornell Medical College, 535 E. 70th Street New York, New York 10021
| |
Collapse
|
3
|
Melzer C, Hass R, Lehnert H, Ungefroren H. RAC1B: A Rho GTPase with Versatile Functions in Malignant Transformation and Tumor Progression. Cells 2019; 8:21. [PMID: 30621237 PMCID: PMC6356296 DOI: 10.3390/cells8010021] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/28/2018] [Accepted: 01/02/2019] [Indexed: 02/07/2023] Open
Abstract
RAC1B is an alternatively spliced isoform of the monomeric GTPase RAC1. It differs from RAC1 by a 19 amino acid in frame insertion, termed exon 3b, resulting in an accelerated GDP/GTP-exchange and an impaired GTP-hydrolysis. Although RAC1B has been ascribed several protumorigenic functions such as cell cycle progression and apoptosis resistance, its role in malignant transformation, and other functions driving tumor progression like epithelial-mesenchymal transition, migration/invasion and metastasis are less clear. Insertion of exon 3b endows RAC1B with specific biochemical properties that, when compared to RAC1, encompass both loss-of-functions and gain-of-functions with respect to the type of upstream activators, downstream targets, and binding partners. In its extreme, this may result in RAC1B and RAC1 acting in an antagonistic fashion in regulating a specific cellular response with RAC1B behaving as an endogenous inhibitor of RAC1. In this review, we strive to provide the reader with a comprehensive overview, rather than critical discussions, on various aspects of RAC1B biology in eukaryotic cells.
Collapse
Affiliation(s)
- Catharina Melzer
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany.
| | - Ralf Hass
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany.
| | - Hendrik Lehnert
- First Department of Medicine, UKSH, Campus Lübeck, 23538 Lübeck, Germany.
| | - Hendrik Ungefroren
- First Department of Medicine, UKSH, Campus Lübeck, 23538 Lübeck, Germany.
- Department of General and Thoracic Surgery, UKSH, Campus Kiel, 24105 Kiel, Germany.
| |
Collapse
|
4
|
Ushijima M, Uruno T, Nishikimi A, Sanematsu F, Kamikaseda Y, Kunimura K, Sakata D, Okada T, Fukui Y. The Rac Activator DOCK2 Mediates Plasma Cell Differentiation and IgG Antibody Production. Front Immunol 2018; 9:243. [PMID: 29503648 PMCID: PMC5820292 DOI: 10.3389/fimmu.2018.00243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/29/2018] [Indexed: 12/12/2022] Open
Abstract
A hallmark of humoral immune responses is the production of antibodies. This process involves a complex cascade of molecular and cellular interactions, including recognition of specific antigen by the B cell receptor (BCR), which triggers activation of B cells and differentiation into plasma cells (PCs). Although activation of the small GTPase Rac has been implicated in BCR-mediated antigen recognition, its precise role in humoral immunity and the upstream regulator remain elusive. DOCK2 is a Rac-specific guanine nucleotide exchange factor predominantly expressed in hematopoietic cells. We found that BCR-mediated Rac activation was almost completely lost in DOCK2-deficient B cells, resulting in defects in B cell spreading over the target cell-membrane and sustained growth of BCR microclusters at the interface. When wild-type B cells were stimulated in vitro with anti-IgM F(ab′)2 antibody in the presence of IL-4 and IL-5, they differentiated efficiently into PCs. However, BCR-mediated PC differentiation was severely impaired in the case of DOCK2-deficient B cells. Similar results were obtained in vivo when DOCK2-deficient B cells expressing a defined BCR specificity were adoptively transferred into mice and challenged with the cognate antigen. In addition, by generating the conditional knockout mice, we found that DOCK2 expression in B-cell lineage is required to mount antigen-specific IgG antibody. These results highlight important role of the DOCK2–Rac axis in PC differentiation and IgG antibody responses.
Collapse
Affiliation(s)
- Miho Ushijima
- Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takehito Uruno
- Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Research Center for Advanced Immunology, Kyushu University, Fukuoka, Japan
| | - Akihiko Nishikimi
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Japan
| | - Fumiyuki Sanematsu
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yasuhisa Kamikaseda
- Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kazufumi Kunimura
- Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Daiji Sakata
- Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Research Center for Advanced Immunology, Kyushu University, Fukuoka, Japan
| | - Takaharu Okada
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoshinori Fukui
- Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Research Center for Advanced Immunology, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Faria M, Matos P, Pereira T, Cabrera R, Cardoso BA, Bugalho MJ, Silva AL. RAC1b overexpression stimulates proliferation and NF-kB-mediated anti-apoptotic signaling in thyroid cancer cells. PLoS One 2017; 12:e0172689. [PMID: 28234980 PMCID: PMC5325471 DOI: 10.1371/journal.pone.0172689] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 02/08/2017] [Indexed: 01/02/2023] Open
Abstract
Overexpression of tumor-associated RAC1b has been recently highlighted as one of the most promising targets for therapeutic intervention in colon, breast, lung and pancreatic cancer. RAC1b is a hyperactive variant of the small GTPase RAC1 and has been recently shown to be overexpressed in a subset of papillary thyroid carcinomas associated with unfavorable outcome. Using the K1 PTC derived cell line as an in vitro model, we observed that both RAC1 and RAC1b were able to induce a significant increase on NF-kB and cyclin D1 reporter activity. A clear p65 nuclear localization was found in cells transfected with RAC1b-WT, confirming NF-kB canonical pathway activation. Consistently, we observed a RAC1b-mediated decrease in IκBα (NF-kB inhibitor) protein levels. Moreover, we show that RAC1b overexpression stimulates G1/S progression and protects thyroid cells against induced apoptosis, the latter through a process involving the NF-kB pathway. Present data support previous findings suggesting an important role for RAC1b in the development of follicular cell-derived thyroid malignancies and point out NF-kB activation as one of the molecular mechanisms associated with the pro-tumorigenic advantage of RAC1b overexpression in thyroid carcinomas.
Collapse
Affiliation(s)
- Márcia Faria
- Unidade de Investigação de Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisboa, Portugal
| | - Paulo Matos
- BioISI–Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Portugal
- Instituto Nacional de Saúde, Doutor. Ricardo Jorge, Lisboa, Portugal
| | - Teresa Pereira
- Serviço de Anatomia Patológica, Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisboa, Portugal
| | - Rafael Cabrera
- Serviço de Anatomia Patológica, Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisboa, Portugal
| | - Bruno A. Cardoso
- Unidade de Investigação de Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisboa, Portugal
| | - Maria João Bugalho
- Serviço de Endocrinologia, Diabetes e Metabolismo, do CHLN—Hospital Santa Maria, Lisboa, Portugal
- ISAMB–Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Ana Luísa Silva
- Unidade de Investigação de Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisboa, Portugal
- Serviço de Endocrinologia, Diabetes e Metabolismo, do CHLN—Hospital Santa Maria, Lisboa, Portugal
- ISAMB–Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
6
|
Abstract
The limited regenerative capacity of neuronal cells requires tight orchestration of cell death and survival regulation in the context of longevity, age-associated diseases as well as during the development of the nervous system. Subordinate to genetic networks epigenetic mechanisms like DNA methylation and histone modifications are involved in the regulation of neuronal development, function and aging. DNA methylation by DNA methyltransferases (DNMTs), mostly correlated with gene silencing, is a dynamic and reversible process. In addition to their canonical actions performing cytosine methylation, DNMTs influence gene expression by interactions with histone modifying enzymes or complexes increasing the complexity of epigenetic transcriptional networks. DNMTs are expressed in neuronal progenitors, post-mitotic as well as adult neurons. In this review, we discuss the role and mode of actions of DNMTs including downstream networks in the regulation of neuronal survival in the developing and aging nervous system and its relevance for associated disorders.
Collapse
Affiliation(s)
- Judit Symmank
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Geraldine Zimmer
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| |
Collapse
|
7
|
Cruz OV, Prudnikova TY, Araiza-Olivera D, Perez-Plasencia C, Johnson N, Bernhardy AJ, Slifker M, Renner C, Chernoff J, Arias LE. Reduced PAK1 activity sensitizes FA/BRCA-proficient breast cancer cells to PARP inhibition. Oncotarget 2016; 7:76590-76603. [PMID: 27740936 PMCID: PMC5363532 DOI: 10.18632/oncotarget.12576] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/07/2016] [Indexed: 01/19/2023] Open
Abstract
Cells that are deficient in homologous recombination, such as those that have mutations in any of the Fanconi Anemia (FA)/BRCA genes, are hypersensitive to inhibition of poly(ADP-ribose) polymerase (PARP). However, FA/BRCA-deficient tumors represent a small fraction of breast cancers, which might restrict the therapeutic utility of PARP inhibitor monotherapy. The gene encoding the serine-threonine protein kinase p21-activated kinase 1 (PAK1) is amplified and/or overexpressed in several human cancer types including 25-30% of breast tumors. This enzyme controls many cellular processes by phosphorylating both cytoplasmic and nuclear substrates. Here, we show that depletion or pharmacological inhibition of PAK1 down-regulated the expression of genes involved in the FA/BRCA pathway and compromised the ability of cells to repair DNA by Homologous Recombination (HR), promoting apoptosis and reducing colony formation. Combined inhibition of PAK1 and PARP in PAK1 overexpressing breast cancer cells had a synergistic effect, enhancing apoptosis, suppressing colony formation, and delaying tumor growth in a xenograft setting. Because reduced PAK1 activity impaired FA/BRCA function, inhibition of this kinase in PAK1 amplified and/or overexpressing breast cancer cells represents a plausible strategy for expanding the utility of PARP inhibitors to FA/BRCA-proficient cancers.
Collapse
Affiliation(s)
- Olga Villamar Cruz
- UBIMED, Facultad de Estudios Superiores-Iztacala, UNAM, Tlalnepantla, Estado de México, Mexico
| | | | | | - Carlos Perez-Plasencia
- UBIMED, Facultad de Estudios Superiores-Iztacala, UNAM, Tlalnepantla, Estado de México, Mexico
| | - Neil Johnson
- Experimental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Andrea J. Bernhardy
- Experimental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Michael Slifker
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Catherine Renner
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Jonathan Chernoff
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Luis E. Arias
- UBIMED, Facultad de Estudios Superiores-Iztacala, UNAM, Tlalnepantla, Estado de México, Mexico
| |
Collapse
|
8
|
Tumor cell expression of MMP3 as a prognostic factor for poor survival in pancreatic, pulmonary, and mammary carcinoma. Genes Cancer 2016; 6:480-9. [PMID: 26807201 PMCID: PMC4701227 DOI: 10.18632/genesandcancer.90] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Breast, lung, and pancreatic cancers collectively represent one third of all diagnosed tumors and are responsible for almost 40% of overall cancer mortality. Despite improvements in current treatments, efforts to develop more specific therapeutic options are warranted. Here we identify matrix metalloproteinase 3 (MMP3) as a potential target within all three of these tumor types. MMP3 has previously been shown to induce expression of Rac1b, a tumorigenic splice isoform of Rac1. In this study we find that MMP3 and Rac1b proteins are both strongly expressed by the tumor cells of all three tumor types and that expression of MMP3 protein is prognostic of poor survival in pancreatic cancer patients. We also find that MMP3 gene expression can serve as a prognostic marker for patient survival in breast and lung cancer. These results suggest an oncogenic MMP3-Rac1b signaling axis as a driver of tumor progression in three common poor prognosis tumor types, further suggesting that new therapies to target these pathways could have substantial therapeutic benefit.
Collapse
|
9
|
Zheng B, Ye L, Zhou Y, Zhu S, Wang Q, Shi H, Chen D, Wei X, Wang Z, Li X, Xiao J, Xu H, Zhang H. Epidermal growth factor attenuates blood-spinal cord barrier disruption via PI3K/Akt/Rac1 pathway after acute spinal cord injury. J Cell Mol Med 2016; 20:1062-75. [PMID: 26769343 PMCID: PMC4882989 DOI: 10.1111/jcmm.12761] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/22/2015] [Indexed: 01/04/2023] Open
Abstract
After spinal cord injury (SCI), disruption of blood–spinal cord barrier (BSCB) elicits blood cell infiltration such as neutrophils and macrophages, contributing to permanent neurological disability. Previous studies show that epidermal growth factor (EGF) produces potent neuroprotective effects in SCI models. However, little is known that whether EGF contributes to the integrity of BSCB. The present study is performed to explore the mechanism of BSCB permeability changes which are induced by EGF treatment after SCI in rats. In this study, we demonstrate that EGF administration inhibits the disruption of BSCB permeability and improves the locomotor activity in SCI model rats. Inhibition of the PI3K/Akt pathways by a specific inhibitor, LY294002, suppresses EGF‐induced Rac1 activation as well as tight junction (TJ) and adherens junction (AJ) expression. Furthermore, the protective effect of EGF on BSCB is related to the activation of Rac1 both in vivo and in vitro. Blockade of Rac1 activation with Rac1 siRNA downregulates EGF‐induced TJ and AJ proteins expression in endothelial cells. Taken together, our results indicate that EGF treatment preserves BSCB integrity and improves functional recovery after SCI via PI3K‐Akt‐Rac1 signalling pathway.
Collapse
Affiliation(s)
- Binbin Zheng
- Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Libing Ye
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yulong Zhou
- Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingqing Wang
- Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongxue Shi
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Daqing Chen
- Emergency Department, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaojie Wei
- Department of Neurosurgery, Cixi People's Hospital, Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Zhouguang Wang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
10
|
Costa AM, Pinto F, Martinho O, Oliveira MJ, Jordan P, Reis RM. Silencing of the tumor suppressor gene WNK2 is associated with upregulation of MMP2 and JNK in gliomas. Oncotarget 2015; 6:1422-34. [PMID: 25596741 PMCID: PMC4359304 DOI: 10.18632/oncotarget.2805] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 11/25/2014] [Indexed: 11/25/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes that degrade extracellular matrix (ECM), thus assisting invasion. Upregulation of MMPs, frequently reported in gliomas, is associated with aggressive behavior. WNK2 is a tumor suppressor gene expressed in normal brain, and silenced by promoter methylation in gliomas. Patients without WNK2 exhibited poor prognosis, and its downregulation was associated with increased glioma cell invasion. Here we showed that MMP2 expression and activity are increased in glioma cell lines that do not express WNK2. Also, WNK2 inhibited JNK, a process associated with decreasing levels of MMP2. Thus, WNK2 promoter methylation and silencing in gliomas is associated with increased JNK activation and MMP2 expression and activity, thus explaining in part tumor cell invasion potential.
Collapse
Affiliation(s)
- Angela Margarida Costa
- ICVS-Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's - PT -Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Filipe Pinto
- ICVS-Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's - PT -Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Olga Martinho
- ICVS-Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's - PT -Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | | | - Peter Jordan
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisbon 1649-016, Portugal.,BioFig-Center of Biodiversity, Functional and Integrative Genomics, Lisbon 1649-016, Portugal
| | - Rui Manuel Reis
- ICVS-Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's - PT -Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal.,Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP 14784-400, Brazil
| |
Collapse
|
11
|
Park YS, Kang JW, Lee DH, Kim MS, Bak Y, Yang Y, Lee HG, Hong J, Yoon DY. Interleukin-32α downregulates the activity of the B-cell CLL/lymphoma 6 protein by inhibiting protein kinase Cε-dependent SUMO-2 modification. Oncotarget 2014; 5:8765-77. [PMID: 25245533 PMCID: PMC4226720 DOI: 10.18632/oncotarget.2364] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 08/14/2014] [Indexed: 11/25/2022] Open
Abstract
A proinflammatory cytokine IL-32 acts as an intracellular mediator. IL-32α interacts with many intracellular molecules, but there are no reports of interaction with a transcriptional repressor BCL6. In this study, we showed that PMA induces an interaction between IL-32α, PKCε, and BCL6, forming a trimer. To identify the mechanism of the interaction, we treated cells with various inhibitors. In HEK293 and THP-1 cell lines, treatment with a pan-PKC inhibitor, PKCε inhibitor, and PKCδ inhibitor decreased BCL6 and IL-32α protein expression. MAPK inhibitors and classical PKC inhibitor did not decrease PMA-induced BCL6 and IL-32α protein expression. Further, the pan-PKC inhibitor and PKCε inhibitor disrupted PMA-induced interaction between IL-32α and BCL6. These data demonstrate that the intracellular interaction between IL-32α and BCL6 is induced by PMA-activated PKCε. PMA induces post-translational modification of BCL6 by conjugation to SUMO-2, while IL-32α inhibits. PKCε inhibition eliminated PMA-induced SUMOylation of BCL6. Inhibition of BCL6 SUMOylation by IL-32α affected the cellular function and activity of the transcriptional repressor BCL6 in THP-1 cells. Thus, we showed that IL-32α is a negative regulator of the transcriptional repressor BCL6. IL-32α inhibits BCL6 SUMOylation by activating PKCε, resulting in the modulation of BCL6 target genes and cellular functions of BCL6.
Collapse
Affiliation(s)
- Yun Sun Park
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, South Korea
| | - Jeong-Woo Kang
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, South Korea
| | - Dong Hun Lee
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, South Korea
| | - Man Sub Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, South Korea
| | - Yesol Bak
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, South Korea
| | - Young Yang
- Research Center for Women's Disease, Department of Life Systems, Sookmyung Women's University, Seoul, South Korea
| | - Hee Gu Lee
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - JinTae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, South Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, South Korea
| |
Collapse
|
12
|
Rho protein GTPases and their interactions with NFκB: crossroads of inflammation and matrix biology. Biosci Rep 2014; 34:BSR20140021. [PMID: 24877606 PMCID: PMC4069681 DOI: 10.1042/bsr20140021] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The RhoGTPases, with RhoA, Cdc42 and Rac being major members, are a group of key ubiquitous proteins present in all eukaryotic organisms that subserve such important functions as cell migration, adhesion and differentiation. The NFκB (nuclear factor κB) is a family of constitutive and inducible transcription factors that through their diverse target genes, play a major role in processes such as cytokine expression, stress regulation, cell division and transformation. Research over the past decade has uncovered new molecular links between the RhoGTPases and the NFκB pathway, with the RhoGTPases playing a positive or negative regulatory role on NFκB activation depending on the context. The RhoA–NFκB interaction has been shown to be important in cytokine-activated NFκB processes, such as those induced by TNFα (tumour necrosis factor α). On the other hand, Rac is important for activating the NFκB response downstream of integrin activation, such as after phagocytosis. Specific residues of Rac1 are important for triggering NFκB activation, and mutations do obliterate this response. Other upstream triggers of the RhoGTPase–NFκB interactions include the suppressive p120 catenin, with implications for skin inflammation. The networks described here are not only important areas for further research, but are also significant for discovery of targets for translational medicine.
Collapse
|
13
|
Gonçalves V, Henriques A, Pereira J, Neves Costa A, Moyer MP, Moita LF, Gama-Carvalho M, Matos P, Jordan P. Phosphorylation of SRSF1 by SRPK1 regulates alternative splicing of tumor-related Rac1b in colorectal cells. RNA (NEW YORK, N.Y.) 2014; 20:474-82. [PMID: 24550521 PMCID: PMC3964909 DOI: 10.1261/rna.041376.113] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 01/07/2014] [Indexed: 05/28/2023]
Abstract
The premessenger RNA of the majority of human genes can generate various transcripts through alternative splicing, and different tissues or disease states show specific patterns of splicing variants. These patterns depend on the relative concentrations of the splicing factors present in the cell nucleus, either as a consequence of their expression levels or of post-translational modifications, such as protein phosphorylation, which are determined by signal transduction pathways. Here, we analyzed the contribution of protein kinases to the regulation of alternative splicing variant Rac1b that is overexpressed in certain tumor types. In colorectal cells, we found that depletion of AKT2, AKT3, GSK3β, and SRPK1 significantly decreased endogenous Rac1b levels. Although knockdown of AKT2 and AKT3 affected only Rac1b protein levels suggesting a post-splicing effect, the depletion of GSK3β or SRPK1 decreased Rac1b alternative splicing, an effect mediated through changes in splicing factor SRSF1. In particular, the knockdown of SRPK1 or inhibition of its catalytic activity reduced phosphorylation and subsequent translocation of SRSF1 to the nucleus, limiting its availability to promote the inclusion of alternative exon 3b into the Rac1 pre-mRNA. Altogether, the data identify SRSF1 as a prime regulator of Rac1b expression in colorectal cells and provide further mechanistic insight into how the regulation of alternative splicing events by protein kinases can contribute to sustain tumor cell survival.
Collapse
Affiliation(s)
- Vânia Gonçalves
- Department of Human Genetics, National Health Institute Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioFIG–Centre for Biodiversity, Functional and Integrative Genomics, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Andreia Henriques
- Department of Human Genetics, National Health Institute Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioFIG–Centre for Biodiversity, Functional and Integrative Genomics, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Joana Pereira
- Department of Human Genetics, National Health Institute Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioFIG–Centre for Biodiversity, Functional and Integrative Genomics, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Ana Neves Costa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | | | - Luís Ferreira Moita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Margarida Gama-Carvalho
- BioFIG–Centre for Biodiversity, Functional and Integrative Genomics, University of Lisbon, 1749-016 Lisbon, Portugal
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Paulo Matos
- Department of Human Genetics, National Health Institute Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioFIG–Centre for Biodiversity, Functional and Integrative Genomics, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Peter Jordan
- Department of Human Genetics, National Health Institute Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioFIG–Centre for Biodiversity, Functional and Integrative Genomics, University of Lisbon, 1749-016 Lisbon, Portugal
| |
Collapse
|
14
|
Buchberger E, El Harchi M, Payrhuber D, Zommer A, Schauer D, Simonitsch-Klupp I, Bilban M, Brostjan C. Overexpression of the transcriptional repressor complex BCL-6/BCoR leads to nuclear aggregates distinct from classical aggresomes. PLoS One 2013; 8:e76845. [PMID: 24146931 PMCID: PMC3795655 DOI: 10.1371/journal.pone.0076845] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 08/30/2013] [Indexed: 01/27/2023] Open
Abstract
Nuclear inclusions of aggregated proteins have primarily been characterized for molecules with aberrant poly-glutamine repeats and for mutated or structurally altered proteins. They were termed “nuclear aggresomes” and misfolding was shown to promote association with molecular chaperones and proteasomes. Here, we report that two components of a transcriptional repressor complex (BCL-6 and BCoR) of wildtype amino acid sequence can independently or jointly induce the formation of nuclear aggregates when overexpressed. The observation that the majority of cells rapidly downregulate BCL-6/BCoR levels, supports the notion that expression of these proteins is under tight control. The inclusions occur when BCL-6/BCoR expression exceeds 150-fold of endogenous levels. They preferentially develop in the nucleus by a gradual increase in aggregate size to form large, spheroid structures which are not associated with heat shock proteins or marked by ubiquitin. In contrast, we find the close association of BCL-6/BCoR inclusions with PML bodies and a reduction in aggregation upon the concomitant overexpression of histone deacetylases or heat shock protein 70. In summary, our data offer a perspective on nuclear aggregates distinct from classical “nuclear aggresomes”: Large complexes of spheroid structure can evolve in the nucleus without being marked by the cellular machinery for protein refolding and degradation. However, nuclear proteostasis can be restored by balancing the levels of chaperones.
Collapse
Affiliation(s)
- Elisabeth Buchberger
- Department of Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Miriam El Harchi
- Department of Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Dietmar Payrhuber
- Department of Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Anna Zommer
- Department of Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Dominic Schauer
- Department of Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Ingrid Simonitsch-Klupp
- Clinical Institute of Pathology, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Martin Bilban
- Core Facility Genomics, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Christine Brostjan
- Department of Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
- * E-mail:
| |
Collapse
|
15
|
Ramsey JE, Fontes JD. The zinc finger transcription factor ZXDC activates CCL2 gene expression by opposing BCL6-mediated repression. Mol Immunol 2013; 56:768-80. [PMID: 23954399 DOI: 10.1016/j.molimm.2013.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/28/2013] [Accepted: 07/04/2013] [Indexed: 12/12/2022]
Abstract
The zinc finger X-linked duplicated (ZXD) family of transcription factors has been implicated in regulating transcription of major histocompatibility complex class II genes in antigen presenting cells; roles beyond this function are not yet known. The expression of one gene in this family, ZXD family zinc finger C (ZXDC), is enriched in myeloid lineages and therefore we hypothesized that ZXDC may regulate myeloid-specific gene expression. Here we demonstrate that ZXDC regulates genes involved in myeloid cell differentiation and inflammation. Overexpression of the larger isoform of ZXDC, ZXDC1, activates expression of monocyte-specific markers of differentiation and synergizes with phorbol 12-myristate 13-acetate (which causes differentiation) in the human leukemic monoblast cell line U937. To identify additional gene targets of ZXDC1, we performed gene expression profiling which revealed multiple inflammatory gene clusters regulated by ZXDC1. Using a combination of approaches we show that ZXDC1 activates transcription of a gene within one of the regulated clusters, chemokine (C-C motif) ligand 2 (CCL2; monocyte chemoattractant protein 1; MCP1) via a previously defined distal regulatory element. Further, ZXDC1-dependent up-regulation of the gene involves eviction of the transcriptional repressor B-cell CLL/lymphoma 6 (BCL6), a factor known to be important in resolving inflammatory responses, from this region of the promoter. Collectively, our data show that ZXDC1 is a regulator in the process of myeloid function and that ZXDC1 is responsible for Ccl2 gene de-repression by BCL6.
Collapse
Affiliation(s)
- Jon E Ramsey
- Department of Biochemistry and Molecular Biology, University of Kansas School of Medicine, 3901 Rainbow Boulevard, MS3030, Kansas City, KS 66160, USA.
| | | |
Collapse
|
16
|
Han P, Luan Y, Liu Y, Yu Z, Li J, Sun Z, Chen G, Cui B. Small interfering RNA targeting Rac1 sensitizes colon cancer to dihydroartemisinin-induced cell cycle arrest and inhibited cell migration by suppressing NFκB activity. Mol Cell Biochem 2013; 379:171-80. [PMID: 23559092 DOI: 10.1007/s11010-013-1639-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 03/28/2013] [Indexed: 01/05/2023]
Abstract
Dihydroartemisinin (DHA) has recently shown antitumor activity in various cancer cells. The small GTPase Rac1 regulates many cellular processes, including cytoskeletal reorganization, cell migration, proliferation, and survival. In addition, Rac1 plays a major role in activating NFκB-mediated transcription. Both Rac1 and NFκB regulate many properties of the malignant phenotype, including anchorage-independent proliferation and survival, metastasis, and angiogenesis. In this study, for the first time, we demonstrated that Rac1 knockdown can enhance DHA-induced growth inhibition, cell cycle arrest, apoptosis, and migration in both HCT116 and RKO cell lines in vitro. The mechanism is due partially to DHA, and Rac1 siRNA deactivates NFκB activity, so as to decrease tremendously the expression of its target gene products, such as PCNA, cyclin D1, and CDK4; and increase the expression of p21, cleaved-caspase-3, and cleaved-PARP. In our in vivo studies, DHA also manifested remarkably enhanced antitumor effect when combined with Rac1 siRNA. We concluded that inhibition of NFκB activation is one of the mechanisms that Rac1 siRNA dramatically promotes DHAs antitumor effect on human colon cancer.
Collapse
Affiliation(s)
- Peng Han
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Barros P, Lam EWF, Jordan P, Matos P. Rac1 signalling modulates a STAT5/BCL-6 transcriptional switch on cell-cycle-associated target gene promoters. Nucleic Acids Res 2012; 40:7776-87. [PMID: 22723377 PMCID: PMC3439931 DOI: 10.1093/nar/gks571] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene expression depends on binding of transcriptional regulators to gene promoters, a process controlled by signalling pathways. The transcriptional repressor B-cell lymphoma (BCL)-6 downregulates genes involved in cell-cycle progression and becomes inactivated following phosphorylation by the Rac1 GTPase-activated protein kinase PAK1. Interestingly, the DNA motifs recognized by BCL-6 and signal transducers and activators of transcription 5 (STAT5) are similar. Because STAT5 stimulation in epithelial cells can also be triggered by Rac1 signalling, we asked whether both factors have opposing roles in transcriptional regulation and whether Rac1 signalling may coordinate a transcription factor switch. We used chromatin immunoprecipitation to show that active Rac1 promotes release of the repressor BCL-6 while increasing binding of STAT5A to a BCL-6-regulated reporter gene. We further show in colorectal cell lines that the endogenous activation status of the Rac1/PAK1 pathway correlated with the phosphorylation status of BCL-6 and STAT5A. Three cellular genes (cyclin D2, p15INK4B, small ubiquitin-like modifier 1) were identified to be inversely regulated by BCL-6 and STAT5A and responded to Rac1 signalling with increased expression and corresponding changes in promoter occupancy. Together, our data show that Rac1 signalling controls a group of target genes that are repressed by BCL-6 and activated by STAT5A, providing novel insights into the modulation of gene transcription by GTPase signalling.
Collapse
Affiliation(s)
- Patrícia Barros
- Department of Genetics, National Health Institute Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | | | | | | |
Collapse
|
18
|
Du J, Xu R, Hu Z, Tian Y, Zhu Y, Gu L, Zhou L. PI3K and ERK-induced Rac1 activation mediates hypoxia-induced HIF-1α expression in MCF-7 breast cancer cells. PLoS One 2011; 6:e25213. [PMID: 21980400 PMCID: PMC3181265 DOI: 10.1371/journal.pone.0025213] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 08/29/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hypoxia-inducible factor 1 (HIF-1α) expression induced by hypoxia plays a critical role in promoting tumor angiogenesis and metastasis. However, the molecular mechanisms underlying the induction of HIF-1α in tumor cells remain unknown. METHODOLOGY/PRINCIPAL FINDINGS In this study, we reported that hypoxia could induce HIF-1α and VEGF expression accompanied by Rac1 activation in MCF-7 breast cancer cells. Blockade of Rac1 activation with ectopic expression of an inactive mutant form of Rac1 (T17N) or Rac1 siRNA downregulated hypoxia-induced HIF-1α and VEGF expression. Furthermore, Hypoxia increased PI3K and ERK signaling activity. Both PI3K inhibitor LY294002 and ERK inhibitor U0126 suppressed hypoxia-induced Rac1 activation as well as HIF-1α expression. Moreover, hypoxia treatment resulted in a remarkable production of reactive oxygen species (ROS). N-acetyl-L-cysteine, a scavenger of ROS, inhibited hypoxia-induced ROS generation, PI3K, ERK and Rac1 activation as well as HIF-1α expression. CONCLUSIONS/SIGNIFICANCE Taken together, our study demonstrated that hypoxia-induced HIF-1α expression involves a cascade of signaling events including ROS generation, activation of PI3K and ERK signaling, and subsequent activation of Rac1.
Collapse
Affiliation(s)
- Jun Du
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Rui Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Zhenzhen Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yinhui Tian
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yichao Zhu
- Cancer Center, Nanjing Medical University, Nanjing, China
| | - Luo Gu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Cancer Center, Nanjing Medical University, Nanjing, China
| | - Lei Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Srivastava P, Vardhan H, Bhengraj AR, Jha R, Singh LC, Salhan S, Mittal A. Azithromycin Treatment Modulates the Extracellular Signal-Regulated Kinase Mediated Pathway and Inhibits Inflammatory Cytokines and Chemokines in Epithelial Cells from Infertile Women with RecurrentChlamydia trachomatisInfection. DNA Cell Biol 2011; 30:545-54. [DOI: 10.1089/dna.2010.1167] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pragya Srivastava
- Institute of Pathology, Indian Council of Medical Research, New Delhi, India
| | - Harsh Vardhan
- Institute of Pathology, Indian Council of Medical Research, New Delhi, India
| | | | - Rajneesh Jha
- Institute of Pathology, Indian Council of Medical Research, New Delhi, India
| | | | - Sudha Salhan
- Department of Gynecology and Obstetrics, Safdarjung Hospital, New Delhi, India
| | - Aruna Mittal
- Institute of Pathology, Indian Council of Medical Research, New Delhi, India
| |
Collapse
|
20
|
Verma SK, Lal H, Golden HB, Gerilechaogetu F, Smith M, Guleria RS, Foster DM, Lu G, Dostal DE. Rac1 and RhoA differentially regulate angiotensinogen gene expression in stretched cardiac fibroblasts. Cardiovasc Res 2010; 90:88-96. [PMID: 21131638 DOI: 10.1093/cvr/cvq385] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIMS Angiotensin II (Ang II) stimulates cardiac remodelling and fibrosis in the mechanically overloaded myocardium. Although Rho GTPases regulate several cellular processes, including myocardial remodelling, involvement in mediating mechanical stretch-induced regulation of angiotensinogen (Ao), the precursor to Ang II, remains to be determined. We, therefore, examined the role and associated signalling mechanisms of Rho GTPases (Rac1 and RhoA) in regulation of Ao gene expression in a stretch model of neonatal rat cardiac fibroblasts (CFs). METHODS AND RESULTS CFs were plated on deformable stretch membranes. Equiaxial mechanical stretch caused significant activation of both Rac1 and RhoA within 2-5 min. Rac1 activity returned to control levels after 4 h, whereas RhoA remained at a high level of activity until the end of the stretch period (24 h). Mechanical stretch initially caused a moderate decrease in Ao gene expression, but was significantly increased at 8-24 h. RhoA had a major role in mediating both the stretch-induced inhibition of Ao at 4 h and the subsequent upregulation of Ao expression at 24 h. β₁ integrin receptor blockade by Tac β₁ expression impaired acute (2 and 15 min) stretch-induced Rac1 activation, but increased RhoA activity. Molecular experiments revealed that Ao gene expression was inhibited by Rac1 through both JNK-dependent and independent mechanisms, and stimulated by RhoA through a p38-dependent mechanism. CONCLUSION These results indicate that stretch-induced activation of Rac1 and RhoA differentially regulates Ao gene expression by modulating p38 and JNK activation.
Collapse
Affiliation(s)
- Suresh K Verma
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Barish GD, Yu RT, Karunasiri M, Ocampo CB, Dixon J, Benner C, Dent AL, Tangirala RK, Evans RM. Bcl-6 and NF-kappaB cistromes mediate opposing regulation of the innate immune response. Genes Dev 2010; 24:2760-5. [PMID: 21106671 DOI: 10.1101/gad.1998010] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the macrophage, toll-like receptors (TLRs) are key sensors that trigger signaling cascades to activate inflammatory programs via the NF-κB gene network. However, the genomic network targeted by TLR/NF-κB activation and the molecular basis by which it is restrained to terminate activation and re-establish quiescence is poorly understood. Here, using chromatin immunoprecipitation sequencing (ChIP-seq), we define the NF-κB cistrome, which is comprised of 31,070 cis-acting binding sites responsive to lipopolysaccharide (LPS)-induced signaling. In addition, we demonstrate that the transcriptional repressor B-cell lymphoma 6 (Bcl-6) regulates nearly a third of the Tlr4-regulated transcriptome, and that 90% of the Bcl-6 cistrome is collapsed following Tlr4 activation. Bcl-6-deficient macrophages are acutely hypersensitive to LPS and, using comparative ChIP-seq analyses, we found that the Bcl-6 and NF-κB cistromes intersect, within nucleosomal distance, at nearly half of Bcl-6-binding sites in stimulated macrophages to promote opposing epigenetic modifications of the local chromatin. These results reveal a genomic strategy for controlling the innate immune response in which repressive and inductive cistromes establish a dynamic balance between macrophage quiescence and activation via epigenetically marked cis-regulatory elements.
Collapse
Affiliation(s)
- Grant D Barish
- Gene Expression Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|