1
|
Cohen A, Lubenski L, Mouzon A, Kupiec M, Weisman R. TORC2 is required for the accumulation of γH2A in response to DNA damage. J Biol Chem 2024; 300:107531. [PMID: 38971312 PMCID: PMC11321321 DOI: 10.1016/j.jbc.2024.107531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/08/2024] Open
Abstract
TOR protein kinases serve as the catalytic subunit of the TORC1 and TORC2 complexes, which regulate cellular growth, proliferation, and survival. In the fission yeast, Schizosaccharomyces pombe, cells lacking TORC2 or its downstream kinase Gad8 (AKT or SGK1 in human cells) exhibit sensitivity to a wide range of stress conditions, including DNA damage stress. One of the first responses to DNA damage is the phosphorylation of C-terminal serine residues within histone H2AX in human cells (γH2AX), or histone H2A in yeast cells (γH2A). The kinases responsible for γH2A in S. pombe are the two DNA damage checkpoint kinases Rad3 and Tel1 (ATR and ATM, respectively, in human cells). Here we report that TORC2-Gad8 signaling is required for accumulation of γH2A in response to DNA damage and during quiescence. Using the TOR-specific inhibitor, Torin1, we demonstrate that the effect of TORC2 on γH2A in response to DNA damage is immediate, rather than adaptive. The lack of γH2A is restored by deletion mutations of transcription and chromatin modification factors, including loss of components of Paf1C, SAGA, Mediator, and the bromo-domain proteins Bdf1/Bdf2. Thus, we suggest that TORC2-Gad8 may affect the accumulation of γH2A by regulating chromatin structure and function.
Collapse
Affiliation(s)
- Adiel Cohen
- Department of Natural Sciences, The Open University of Israel, Ranana, Israel
| | - Lea Lubenski
- The Shmunis School of Biomedicine & Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Ava Mouzon
- The Shmunis School of Biomedicine & Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Martin Kupiec
- The Shmunis School of Biomedicine & Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Weisman
- Department of Natural Sciences, The Open University of Israel, Ranana, Israel.
| |
Collapse
|
2
|
Zemlianski V, Marešová A, Princová J, Holič R, Häsler R, Ramos Del Río MJ, Lhoste L, Zarechyntsava M, Převorovský M. Nitrogen availability is important for preventing catastrophic mitosis in fission yeast. J Cell Sci 2024; 137:jcs262196. [PMID: 38780300 DOI: 10.1242/jcs.262196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Mitosis is a crucial stage in the cell cycle, controlled by a vast network of regulators responding to multiple internal and external factors. The fission yeast Schizosaccharomyces pombe demonstrates catastrophic mitotic phenotypes due to mutations or drug treatments. One of the factors provoking catastrophic mitosis is a disturbed lipid metabolism, resulting from, for example, mutations in the acetyl-CoA/biotin carboxylase (cut6), fatty acid synthase (fas2, also known as lsd1) or transcriptional regulator of lipid metabolism (cbf11) genes, as well as treatment with inhibitors of fatty acid synthesis. It has been previously shown that mitotic fidelity in lipid metabolism mutants can be partially rescued by ammonium chloride supplementation. In this study, we demonstrate that mitotic fidelity can be improved by multiple nitrogen sources. Moreover, this improvement is not limited to lipid metabolism disturbances but also applies to a number of unrelated mitotic mutants. Interestingly, the partial rescue is not achieved by restoring the lipid metabolism state, but rather indirectly. Our results highlight a novel role for nitrogen availability in mitotic fidelity.
Collapse
Affiliation(s)
- Viacheslav Zemlianski
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Anna Marešová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Jarmila Princová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Roman Holič
- Centre of Biosciences SAS, Institute of Animal Biochemistry and Genetics, Dúbravská cesta 9, 840 05 Bratislava, Slovak Republic
| | - Robert Häsler
- Center for Inflammatory Skin Diseases, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Straße 9, 24105 Kiel, Germany
| | - Manuel José Ramos Del Río
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Laurane Lhoste
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Maryia Zarechyntsava
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Martin Převorovský
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| |
Collapse
|
3
|
Peretz I, Kupiec M, Sharan R. A comparative analysis of telomere length maintenance circuits in fission and budding yeast. Front Genet 2022; 13:1033113. [DOI: 10.3389/fgene.2022.1033113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
The natural ends of the linear eukaryotic chromosomes are protected by telomeres, which also play an important role in aging and cancer development. Telomere length varies between species, but it is strictly controlled in all organisms. The process of Telomere Length Maintenance (TLM) involves many pathways, protein complexes and interactions that were first discovered in budding and fission yeast model organisms (Saccharomyces cerevisiae, Schizosaccharomyces pombe). In particular, large-scale systematic genetic screens in budding yeast uncovered a network of ≈500 genes that, when mutated, cause telomeres to lengthen or to shorten. In contrast, the TLM network in fission yeast remains largely unknown and systematic data is still lacking. In this work we try to close this gap and develop a unified interpretable machine learning framework for TLM gene discovery and phenotype prediction in both species. We demonstrate the utility of our framework in pinpointing the pathways by which TLM homeostasis is maintained and predicting novel TLM genes in fission yeast. The results of this study could be used for better understanding of telomere biology and serve as a step towards the adaptation of computational methods based on telomeric data for human prognosis.
Collapse
|
4
|
Cohen A, Pataki E, Kupiec M, Weisman R. TOR complex 2 contributes to regulation of gene expression via inhibiting Gcn5 recruitment to subtelomeric and DNA replication stress genes. PLoS Genet 2022; 18:e1010061. [PMID: 35157728 PMCID: PMC8880919 DOI: 10.1371/journal.pgen.1010061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/25/2022] [Accepted: 01/28/2022] [Indexed: 11/18/2022] Open
Abstract
The fission yeast TOR complex 2 (TORC2) is required for gene silencing at subtelomeric regions and for the induction of gene transcription in response to DNA replication stress. Thus, TORC2 affects transcription regulation both negatively and positively. Whether these two TORC2-dependent functions share a common molecular mechanism is currently unknown. Here, we show that Gad8 physically interacts with proteins that regulate transcription, including subunits of the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex and the BET bromodomain protein Bdf2. We demonstrate that in the absence of TORC2, Gcn5, the histone acetyltransferase subunit of SAGA, accumulates at subtelomeric genes and at non-induced promoters of DNA replication genes. Remarkably, the loss of Gcn5 in TORC2 mutant cells restores gene silencing as well as transcriptional induction in response to DNA replication stress. Loss of Bdf2 alleviates excess of Gcn5 binding in TORC2 mutant cells and also rescues the aberrant regulation of transcription in these cells. Furthermore, the loss of either SAGA or Bdf2 suppresses the sensitivity of TORC2 mutant cells to a variety of stresses, including DNA replication, DNA damage, temperature and nutrient stresses. We suggest a role of TORC2 in transcriptional regulation that is critical for gene silencing and gene induction in response to stress and involves the binding of Gcn5 to the chromatin.
Collapse
Affiliation(s)
- Adiel Cohen
- Department of Natural and Life Sciences, The Open University of Israel, Ra’anana, Israel
| | - Emese Pataki
- Department of Natural and Life Sciences, The Open University of Israel, Ra’anana, Israel
| | - Martin Kupiec
- The Shmunis School of Biomedicine & Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Weisman
- Department of Natural and Life Sciences, The Open University of Israel, Ra’anana, Israel
| |
Collapse
|
5
|
Alao JP, Legon L, Rallis C. Crosstalk between the mTOR and DNA Damage Response Pathways in Fission Yeast. Cells 2021; 10:cells10020305. [PMID: 33540829 PMCID: PMC7913062 DOI: 10.3390/cells10020305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
Cells have developed response systems to constantly monitor environmental changes and accordingly adjust growth, differentiation, and cellular stress programs. The evolutionarily conserved, nutrient-responsive, mechanistic target of rapamycin signaling (mTOR) pathway coordinates basic anabolic and catabolic cellular processes such as gene transcription, protein translation, autophagy, and metabolism, and is directly implicated in cellular and organismal aging as well as age-related diseases. mTOR mediates these processes in response to a broad range of inputs such as oxygen, amino acids, hormones, and energy levels, as well as stresses, including DNA damage. Here, we briefly summarize data relating to the interplays of the mTOR pathway with DNA damage response pathways in fission yeast, a favorite model in cell biology, and how these interactions shape cell decisions, growth, and cell-cycle progression. We, especially, comment on the roles of caffeine-mediated DNA-damage override. Understanding the biology of nutrient response, DNA damage and related pharmacological treatments can lead to the design of interventions towards improved cellular and organismal fitness, health, and survival.
Collapse
Affiliation(s)
- John-Patrick Alao
- ZEAB Therapeutic, University of East London, Stratford Campus, Water Lane, Stratford, London E15 4LZ, UK;
| | - Luc Legon
- School of Health, Sport and Bioscience, University of East London, Stratford Campus, Water Lane, Stratford, London E15 4LZ, UK;
| | - Charalampos Rallis
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
- Correspondence:
| |
Collapse
|
6
|
Nuclear F-actin counteracts nuclear deformation and promotes fork repair during replication stress. Nat Cell Biol 2020; 22:1460-1470. [PMID: 33257806 DOI: 10.1038/s41556-020-00605-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 10/26/2020] [Indexed: 12/25/2022]
Abstract
Filamentous actin (F-actin) provides cells with mechanical support and promotes the mobility of intracellular structures. Although F-actin is traditionally considered to be cytoplasmic, here we reveal that nuclear F-actin participates in the replication stress response. Using live and super-resolution imaging, we find that nuclear F-actin is polymerized in response to replication stress through a pathway regulated by ATR-dependent activation of mTORC1, and nucleation through IQGAP1, WASP and ARP2/3. During replication stress, nuclear F-actin increases the nuclear volume and sphericity to counteract nuclear deformation. Furthermore, F-actin and myosin II promote the mobility of stressed-replication foci to the nuclear periphery through increasingly diffusive motion and directed movements along the nuclear actin filaments. These actin functions promote replication stress repair and suppress chromosome and mitotic abnormalities. Moreover, we find that nuclear F-actin is polymerized in vivo in xenograft tumours after treatment with replication-stress-inducing chemotherapeutic agents, indicating that this pathway has a role in human disease.
Collapse
|
7
|
Ohtsuka H, Shimasaki T, Aiba H. Genes affecting the extension of chronological lifespan in Schizosaccharomyces pombe (fission yeast). Mol Microbiol 2020; 115:623-642. [PMID: 33064911 PMCID: PMC8246873 DOI: 10.1111/mmi.14627] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/17/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023]
Abstract
So far, more than 70 genes involved in the chronological lifespan (CLS) of Schizosaccharomyces pombe (fission yeast) have been reported. In this mini‐review, we arrange and summarize these genes based on the reported genetic interactions between them and the physical interactions between their products. We describe the signal transduction pathways that affect CLS in S. pombe: target of rapamycin complex 1, cAMP‐dependent protein kinase, Sty1, and Pmk1 pathways have important functions in the regulation of CLS extension. Furthermore, the Php transcription complex, Ecl1 family proteins, cyclin Clg1, and the cyclin‐dependent kinase Pef1 are important for the regulation of CLS extension in S. pombe. Most of the known genes involved in CLS extension are related to these pathways and genes. In this review, we focus on the individual genes regulating CLS extension in S. pombe and discuss the interactions among them.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
8
|
Pataki E, Simhaev L, Engel H, Cohen A, Kupiec M, Weisman R. TOR Complex 2- independent mutations in the regulatory PIF pocket of Gad8AKT1/SGK1 define separate branches of the stress response mechanisms in fission yeast. PLoS Genet 2020; 16:e1009196. [PMID: 33137119 PMCID: PMC7660925 DOI: 10.1371/journal.pgen.1009196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/12/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
The Target of rapamycin (TOR) protein kinase forms part of TOR complex 1 (TORC1) and TOR complex 2 (TORC2), two multi-subunit protein complexes that regulate growth, proliferation, survival and developmental processes by phosphorylation and activation of AGC-family kinases. In the fission yeast, Schizosaccharomyces pombe, TORC2 and its target, the AGC kinase Gad8 (an orthologue of human AKT or SGK1) are required for viability under stress conditions and for developmental processes in response to starvation cues. In this study, we describe the isolation of gad8 mutant alleles that bypass the requirement for TORC2 and reveal a separation of function of TORC2 and Gad8 under stress conditions. In particular, osmotic and nutritional stress responses appear to form a separate branch from genotoxic stress responses downstream of TORC2-Gad8. Interestingly, TORC2-independent mutations map into the regulatory PIF pocket of Gad8, a highly conserved motif in AGC kinases that regulates substrate binding in PDK1 (phosphoinositide dependent kinase-1) and kinase activity in several AGC kinases. Gad8 activation is thought to require a two-step mechanism, in which phosphorylation by TORC2 allows further phosphorylation and activation by Ksg1 (an orthologue of PDK1). We focus on the Gad8-K263C mutation and demonstrate that it renders the Gad8 kinase activity independent of TORC2 in vitro and independent of the phosphorylation sites of TORC2 in vivo. Molecular dynamics simulations of Gad8-K263C revealed abnormal high flexibility at T387, the phosphorylation site for Ksg1, suggesting a mechanism for the TORC2-independent Gad8 activity. Significantly, the K263 residue is highly conserved in the family of AGC-kinases, which may suggest a general way of keeping their activity in check when acting downstream of TOR complexes. Protein kinases catalyze the transfer of phosphate from high-energy, phosphate-donating molecules, such as ATP, to their substrates. This process is pivotal for regulation of almost any aspect of cellular biology. Many human diseases are associated with aberrant functions of protein kinases due to mutations. Accordingly, there is a growing number of kinase inhibitors that have been approved for clinical use. A better understanding of how protein kinases become active and how their activity is relayed to regulate their cellular functions is much needed for rational design of kinase inhibitors and for their optimal use in the clinic. The AGC-family of protein kinases play key roles in regulating cellular growth, proliferation and survival. In human cells, as well as in the fission yeast, our cellular model system, a subgroup of the AGC kinases is activated by the TOR protein kinases. Here we report the isolation of mutations in the AGC kinase Gad8 (AKT or SGK1 in human) that bypass the requirement for activation by TOR. Analyses of how these mutations affect cellular growth revealed separate branches of stress response mechanisms downstream of Gad8, while computer simulation methods suggested a molecular mechanism that keeps the activity of Gad8 in check.
Collapse
Affiliation(s)
- Emese Pataki
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, Israel
| | - Luba Simhaev
- Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv, Israel
| | - Hamutal Engel
- Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv, Israel
| | - Adiel Cohen
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, Israel
| | - Martin Kupiec
- The Shmunis School of Biomedicine & Cancer Research, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Ronit Weisman
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, Israel
- * E-mail:
| |
Collapse
|
9
|
Bjedov I, Rallis C. The Target of Rapamycin Signalling Pathway in Ageing and Lifespan Regulation. Genes (Basel) 2020; 11:E1043. [PMID: 32899412 PMCID: PMC7565554 DOI: 10.3390/genes11091043] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/11/2022] Open
Abstract
Ageing is a complex trait controlled by genes and the environment. The highly conserved mechanistic target of rapamycin signalling pathway (mTOR) is a major regulator of lifespan in all eukaryotes and is thought to be mediating some of the effects of dietary restriction. mTOR is a rheostat of energy sensing diverse inputs such as amino acids, oxygen, hormones, and stress and regulates lifespan by tuning cellular functions such as gene expression, ribosome biogenesis, proteostasis, and mitochondrial metabolism. Deregulation of the mTOR signalling pathway is implicated in multiple age-related diseases such as cancer, neurodegeneration, and auto-immunity. In this review, we briefly summarise some of the workings of mTOR in lifespan and ageing through the processes of transcription, translation, autophagy, and metabolism. A good understanding of the pathway's outputs and connectivity is paramount towards our ability for genetic and pharmacological interventions for healthy ageing and amelioration of age-related disease.
Collapse
Affiliation(s)
- Ivana Bjedov
- UCL Cancer Institute, Paul O’Gorman Building, 72 Huntley Street, London WC1E 6DD, UK
| | - Charalampos Rallis
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| |
Collapse
|
10
|
Laribee RN, Weisman R. Nuclear Functions of TOR: Impact on Transcription and the Epigenome. Genes (Basel) 2020; 11:E641. [PMID: 32532005 PMCID: PMC7349558 DOI: 10.3390/genes11060641] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
The target of rapamycin (TOR) protein kinase is at the core of growth factor- and nutrient-dependent signaling pathways that are well-known for their regulation of metabolism, growth, and proliferation. However, TOR is also involved in the regulation of gene expression, genomic and epigenomic stability. TOR affects nuclear functions indirectly through its activity in the cytoplasm, but also directly through active nuclear TOR pools. The mechanisms by which TOR regulates its nuclear functions are less well-understood compared with its cytoplasmic activities. TOR is an important pharmacological target for several diseases, including cancer, metabolic and neurological disorders. Thus, studies of the nuclear functions of TOR are important for our understanding of basic biological processes, as well as for clinical implications.
Collapse
Affiliation(s)
- R. Nicholas Laribee
- Department of Pathology and Laboratory Medicine, College of Medicine and Center for Cancer Research, University of Tennessee Health Science Center, 19 South Manassas, Cancer Research Building Rm 318, Memphis, TN 38163, USA
| | - Ronit Weisman
- Department of Natural and Life Sciences, The Open University of Israel, University Road 1, Ra’anana 4353701, Israel
| |
Collapse
|
11
|
Koubová J, Jehlík T, Kodrík D, Sábová M, Šima P, Sehadová H, Závodská R, Frydrychová RČ. Telomerase activity is upregulated in the fat bodies of pre-diapause bumblebee queens (Bombus terrestris). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 115:103241. [PMID: 31536769 DOI: 10.1016/j.ibmb.2019.103241] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
The attrition of telomeres, the ends of eukaryote chromosomes, and activity of telomerase, the enzyme that restores telomere length, play a role in the ageing process and act as indicators of biological age. A notable feature of advanced eusocial insects is the longevity of reproductive individuals (queens and kings) compared to those from non-reproductive castes (workers and soldiers) within a given species, with a proposed link towards upregulation of telomerase activity in the somatic tissues of reproductive individuals. Given this, eusocial insects provide excellent model systems for research into ageing. We tested telomerase activity and measured telomere length in Bombus terrestris, which is a primitively eusocial insect species with several distinct features compared to advanced social insects. In somatic tissues, telomerase activity was upregulated only in the fat bodies of pre-diapause queens, and this upregulation was linked to heightened DNA synthesis. Telomere length was shorter in old queens compared to that in younger queens or workers. We speculate that (1) the upregulation of telomerase activity, together with DNA synthesis, is the essential step for intensifying metabolic activity in the fat body to build up a sufficient energy reserve prior to diapause, and that (2) the lifespan differences between B. terrestris workers and queens are related to the long diapause period of the queen. A possible relationship between telomere length regulation and TOR, FOXO, and InR as cell signaling components, was tested.
Collapse
Affiliation(s)
- Justina Koubová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Tomáš Jehlík
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Dalibor Kodrík
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Michala Sábová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Peter Šima
- Koppert s.r.o., Komárňanská cesta 13, 940 01, Nové Zámky, Slovakia
| | - Hana Sehadová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Radka Závodská
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic; Faculty of Pedagogy, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Radmila Čapková Frydrychová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
12
|
Andreadis C, Hulme L, Wensley K, Liu JL. The TOR pathway modulates cytoophidium formation in Schizosaccharomyces pombe. J Biol Chem 2019; 294:14686-14703. [PMID: 31431504 PMCID: PMC6779450 DOI: 10.1074/jbc.ra119.009913] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/09/2019] [Indexed: 12/30/2022] Open
Abstract
CTP synthase (CTPS) has been demonstrated to form evolutionarily-conserved filamentous structures termed cytoophidia whose exact cellular functions remain unclear, but they may play a role in intracellular compartmentalization. We have previously shown that the mammalian target of rapamycin complex 1 (mTORC1)-S6K1 pathway mediates cytoophidium assembly in mammalian cells. Here, using the fission yeast Schizosaccharomyces pombe as a model of a unicellular eukaryote, we demonstrate that the target of rapamycin (TOR)-signaling pathway regulates cytoophidium formation (from the S. pombe CTPS ortholog Cts1) also in S. pombe Conducting a systematic analysis of all viable single TOR subunit-knockout mutants and of several major downstream effector proteins, we found that Cts1 cytoophidia are significantly shortened and often dissociate when TOR is defective. We also found that the activities of the downstream effector kinases of the TORC1 pathway, Sck1, Sck2, and Psk1 S6, as well as of the S6K/AGC kinase Gad8, the major downstream effector kinase of the TORC2 pathway, are necessary for proper cytoophidium filament formation. Interestingly, we observed that the Crf1 transcriptional corepressor for ribosomal genes is a strong effector of Cts1 filamentation. Our findings connect TOR signaling, a major pathway required for cell growth, with the compartmentalization of the essential nucleotide synthesis enzyme CTPS, and we uncover differences in the regulation of its filamentation among higher multicellular and unicellular eukaryotic systems.
Collapse
Affiliation(s)
- Christos Andreadis
- School of Life Sciences and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Lydia Hulme
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Katherine Wensley
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Ji-Long Liu
- School of Life Sciences and Technology, ShanghaiTech University, 201210 Shanghai, China .,MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
13
|
Li X, Jin X, Sharma S, Liu X, Zhang J, Niu Y, Li J, Li Z, Zhang J, Cao Q, Hou W, Du LL, Liu B, Lou H. Mck1 defines a key S-phase checkpoint effector in response to various degrees of replication threats. PLoS Genet 2019; 15:e1008136. [PMID: 31381575 PMCID: PMC6695201 DOI: 10.1371/journal.pgen.1008136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/15/2019] [Accepted: 07/19/2019] [Indexed: 01/23/2023] Open
Abstract
The S-phase checkpoint plays an essential role in regulation of the ribonucleotide reductase (RNR) activity to maintain the dNTP pools. How eukaryotic cells respond appropriately to different levels of replication threats remains elusive. Here, we have identified that a conserved GSK-3 kinase Mck1 cooperates with Dun1 in regulating this process. Deleting MCK1 sensitizes dun1Δ to hydroxyurea (HU) reminiscent of mec1Δ or rad53Δ. While Mck1 is downstream of Rad53, it does not participate in the post-translational regulation of RNR as Dun1 does. Mck1 phosphorylates and releases the Crt1 repressor from the promoters of DNA damage-inducible genes as RNR2-4 and HUG1. Hug1, an Rnr2 inhibitor normally silenced, is induced as a counterweight to excessive RNR. When cells suffer a more severe threat, Mck1 inhibits HUG1 transcription. Consistently, only a combined deletion of HUG1 and CRT1, confers a dramatic boost of dNTP levels and the survival of mck1Δdun1Δ or mec1Δ cells assaulted by a lethal dose of HU. These findings reveal the division-of-labor between Mck1 and Dun1 at the S-phase checkpoint pathway to fine-tune dNTP homeostasis.
Collapse
Affiliation(s)
- Xiaoli Li
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan, Gothenburg, Sweden
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Xiaojing Liu
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Jiaxin Zhang
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Yanling Niu
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Jiani Li
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Zhen Li
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Jingjing Zhang
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Qinhong Cao
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Wenya Hou
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing, China
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan, Gothenburg, Sweden
- * E-mail: (BL); (HL)
| | - Huiqiang Lou
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
- * E-mail: (BL); (HL)
| |
Collapse
|
14
|
Lamm N, Rogers S, Cesare AJ. The mTOR pathway: Implications for DNA replication. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 147:17-25. [PMID: 30991055 DOI: 10.1016/j.pbiomolbio.2019.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/01/2019] [Accepted: 04/09/2019] [Indexed: 12/22/2022]
Abstract
DNA replication plays a central role in genome health. Deleterious alteration of replication dynamics, or "replication stress", is a key driver of genome instability and oncogenesis. The replication stress response is regulated by the ATR kinase, which functions to mitigate replication abnormalities through coordinated efforts that arrest the cell cycle and repair damaged replication forks. mTOR kinase regulates signaling networks that control cell growth and metabolism in response to environmental cues and cell stress. In this review, we discuss interconnectivity between the ATR and mTOR pathways, and provide putative mechanisms for mTOR engagement in DNA replication and the replication stress response. Finally, we describe how connectivity between mTOR and replication stress may be exploited for cancer therapy.
Collapse
Affiliation(s)
- Noa Lamm
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, 2145, Australia
| | - Samuel Rogers
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, 2145, Australia
| | - Anthony J Cesare
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, 2145, Australia.
| |
Collapse
|
15
|
Esnault C, Lee M, Ham C, Levin HL. Transposable element insertions in fission yeast drive adaptation to environmental stress. Genome Res 2018; 29:85-95. [PMID: 30541785 PMCID: PMC6314160 DOI: 10.1101/gr.239699.118] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/15/2018] [Indexed: 01/06/2023]
Abstract
Cells are regularly exposed to a range of naturally occurring stress that can restrict growth or cause lethality. In response, cells activate expression networks with hundreds of genes that together increase resistance to common environmental insults. However, stress response networks can be insufficient to ensure survival, which raises the question of whether cells possess genetic programs that can promote adaptation to novel forms of stress. We found transposable element (TE) mobility in Schizosaccharomyces pombe was greatly increased when cells were exposed to unusual forms of stress such as heavy metals, caffeine, and the plasticizer phthalate. By subjecting TE-tagged cells to CoCl2, we found the TE integration provided the major path to resistance. Groups of insertions that provided resistance were linked to TOR regulation and metal response genes. We extended our study of adaptation by analyzing TE positions in 57 genetically distinct wild strains. The genomic positions of 1048 polymorphic LTRs were strongly associated with a range of stress response genes, indicating TE integration promotes adaptation in natural conditions. These data provide strong support for the idea, first proposed by Barbara McClintock, that TEs provide a system to modify the genome in response to stress.
Collapse
Affiliation(s)
- Caroline Esnault
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Michael Lee
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Chloe Ham
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Henry L Levin
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
16
|
Cohen A, Habib A, Laor D, Yadav S, Kupiec M, Weisman R. TOR complex 2 in fission yeast is required for chromatin-mediated gene silencing and assembly of heterochromatic domains at subtelomeres. J Biol Chem 2018; 293:8138-8150. [PMID: 29632066 DOI: 10.1074/jbc.ra118.002270] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/14/2018] [Indexed: 12/21/2022] Open
Abstract
The conserved serine/threonine protein kinase target of rapamycin (TOR) is a major regulator of eukaryotic cellular and organismal growth and a valuable target for drug therapy. TOR forms the core of two evolutionary conserved complexes, TOR complex 1 (TORC1) and TORC2. In the fission yeast Schizosaccharomyces pombe, TORC2 responds to glucose levels and, by activating the protein kinase Gad8 (an orthologue of human AKT), is required for well-regulated cell cycle progression, starvation responses, and cell survival. Here, we report that TORC2-Gad8 is also required for gene silencing and the formation of heterochromatin at the S. pombe mating-type locus and at subtelomeric regions. Deletion of TORC2-Gad8 resulted in loss of the heterochromatic modification of histone 3 lysine 9 dimethylation (H3K9me2) and an increase in euchromatic modifications, including histone 3 lysine 4 trimethylation (H3K4me3) and histone 4 lysine 16 acetylation (H4K16Ac). Accumulation of RNA polymerase II (Pol II) at subtelomeric genes in TORC2-Gad8 mutant cells indicated a defect in silencing at the transcriptional level. Moreover, a concurrent decrease in histone 4 lysine 20 dimethylation (H4K20me2) suggested elevated histone turnover. Loss of gene silencing in cells lacking TORC2-Gad8 is partially suppressed by loss of the anti-silencer Epe1 and fully suppressed by loss of the Pol II-associated Paf1 complex, two chromatin regulators that have been implicated in heterochromatin stability and spreading. Taken together, our findings suggest that TORC2-Gad8 signaling contributes to epigenetic stability at subtelomeric regions and the mating-type locus in S. pombe.
Collapse
Affiliation(s)
- Adiel Cohen
- Department of Natural and Life Sciences, Open University of Israel, University Road 1, 4353701 Ranana, Israel
| | - Aline Habib
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69977801, Tel Aviv, Israel
| | - Dana Laor
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69977801, Tel Aviv, Israel
| | - Sudhanshu Yadav
- Department of Natural and Life Sciences, Open University of Israel, University Road 1, 4353701 Ranana, Israel
| | - Martin Kupiec
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69977801, Tel Aviv, Israel
| | - Ronit Weisman
- Department of Natural and Life Sciences, Open University of Israel, University Road 1, 4353701 Ranana, Israel.
| |
Collapse
|
17
|
Abstract
All organisms can respond to the availability of nutrients by regulating their metabolism, growth, and cell division. Central to the regulation of growth in response to nutrient availability is the target of rapamycin (TOR) signaling that is composed of two structurally distinct complexes: TOR complex 1 (TORC1) and TOR complex 2 (TORC2). The TOR genes were first identified in yeast as target of rapamycin, a natural product of a soil bacterium, which proved beneficial as an immunosuppressive and anticancer drug and is currently being tested for a handful of other pathological conditions including diabetes, neurodegeneration, and age-related diseases. Studies of the TOR pathway unraveled a complex growth-regulating network. TOR regulates nutrient uptake, transcription, protein synthesis and degradation, as well as metabolic pathways, in a coordinated manner that ensures that cells grow or cease growth in response to nutrient availability. The identification of specific signals and mechanisms that stimulate TOR signaling is an active and exciting field of research that has already identified nitrogen and amino acids as key regulators of TORC1 activity. The signals, as well as the cellular functions of TORC2, are far less well understood. Additional open questions in the field concern the relationships between TORC1 and TORC2, as well as the links with other nutrient-responsive pathways. Here I review the main features of TORC1 and TORC2, with a particular focus on yeasts as model organisms.
Collapse
|
18
|
Pérez-Hidalgo L, Moreno S. Coupling TOR to the Cell Cycle by the Greatwall-Endosulfine-PP2A-B55 Pathway. Biomolecules 2017; 7:biom7030059. [PMID: 28777780 PMCID: PMC5618240 DOI: 10.3390/biom7030059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 01/14/2023] Open
Abstract
Cell growth and division are two processes tightly coupled in proliferating cells. While Target of Rapamycin (TOR) is the master regulator of growth, the cell cycle is dictated by the activity of the cyclin-dependent kinases (CDKs). A long-standing question in cell biology is how these processes may be connected. Recent work has highlighted that regulating the phosphatases that revert CDK phosphorylations is as important as regulating the CDKs for cell cycle progression. At mitosis, maintaining a low level of protein phosphatase 2A (PP2A)-B55 activity is essential for CDK substrates to achieve the correct level of phosphorylation. The conserved Greatwall–Endosulfine pathway has been shown to be required for PP2A-B55 inhibition at mitosis in yeasts and multicellular organisms. Interestingly, in yeasts, the Greatwall–Endosulfine pathway is negatively regulated by TOR Complex 1 (TORC1). Moreover, Greatwall–Endosulfine activation upon TORC1 inhibition has been shown to regulate the progression of the cell cycle at different points: the G1 phase in budding yeast, the G2/M transition and the differentiation response in fission yeast, and the entry into quiescence in both budding and fission yeasts. In this review, we discuss the recent findings on how the Greatwall–Endosulfine pathway may provide a connection between cell growth and the cell cycle machinery.
Collapse
Affiliation(s)
- Livia Pérez-Hidalgo
- Institute of Functional Biology and Genomics (IBFG), CSIC/University of Salamanca, 37007 Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain.
| | - Sergio Moreno
- Institute of Functional Biology and Genomics (IBFG), CSIC/University of Salamanca, 37007 Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
19
|
Abstract
The control of cell fate, growth and proliferation in response to nitrogen availability is a tightly controlled process, with the two TOR complexes (TORC1 and TORC2) and their effectors playing a central role. PP2A-B55Pab1 has recently been shown to be a key element in this response in fission yeast, where it regulates cell cycle progression and sexual differentiation. Importantly, a recent study from our group has shown that PP2A-B55Pab1 acts as a mediator between the activities of the two TOR signaling modules, enabling a crosstalk that is required to engage in the differentiation program. In this review, we recapitulate the studies that have led to our current understanding of the interplay between TOR complexes. Moreover, we discuss several aspects of the response to nitrogen availability that still require further attention, and which will be important in the future to fully realize the implications of phosphatase activity in the context of TOR signaling.
Collapse
Affiliation(s)
- Ruth Martín
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Gaustadalleen 21, 0349, Oslo, Norway
| | - Sandra Lopez-Aviles
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Gaustadalleen 21, 0349, Oslo, Norway.
| |
Collapse
|
20
|
mTORC1 and -2 Coordinate Transcriptional and Translational Reprogramming in Resistance to DNA Damage and Replicative Stress in Breast Cancer Cells. Mol Cell Biol 2017; 37:MCB.00577-16. [PMID: 27956700 DOI: 10.1128/mcb.00577-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/02/2016] [Indexed: 01/04/2023] Open
Abstract
mTOR coordinates growth signals with metabolic pathways and protein synthesis and is hyperactivated in many human cancers. mTOR exists in two complexes: mTORC1, which stimulates protein, lipid, and ribosome biosynthesis, and mTORC2, which regulates cytoskeleton functions. While mTOR is known to be involved in the DNA damage response, little is actually known regarding the functions of mTORC1 compared to mTORC2 in this regard or the respective impacts on transcriptional versus translational regulation. We show that mTORC1 and mTORC2 are both required to enact DNA damage repair and cell survival, resulting in increased cancer cell survival during DNA damage. Together mTORC1 and -2 enact coordinated transcription and translation of protective cell cycle and DNA replication, recombination, and repair genes. This coordinated transcriptional-translational response to DNA damage was not impaired by rapalog inhibition of mTORC1 or independent inhibition of mTORC1 or mTORC2 but was blocked by inhibition of mTORC1/2. Only mTORC1/2 inhibition reversed cancer cell resistance to DNA damage and replicative stress and increased tumor cell killing and tumor control by DNA damage therapies in animal models. When combined with DNA damage, inhibition of mTORC1/2 blocked transcriptional induction more strongly than translation of DNA replication, survival, and DNA damage response mRNAs.
Collapse
|
21
|
Martín R, Portantier M, Chica N, Nyquist-Andersen M, Mata J, Lopez-Aviles S. A PP2A-B55-Mediated Crosstalk between TORC1 and TORC2 Regulates the Differentiation Response in Fission Yeast. Curr Biol 2016; 27:175-188. [PMID: 28041796 PMCID: PMC5266790 DOI: 10.1016/j.cub.2016.11.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 09/20/2016] [Accepted: 11/14/2016] [Indexed: 12/20/2022]
Abstract
Extracellular cues regulate cell fate, and this is mainly achieved through the engagement of specific transcriptional programs. The TORC1 and TORC2 complexes mediate the integration of nutritional cues to cellular behavior, but their interplay is poorly understood. Here, we use fission yeast to investigate how phosphatase activity participates in this interplay during the switch from proliferation to sexual differentiation. We find that loss of PP2A-B55Pab1 enhances the expression of differentiation-specific genes and leads to premature conjugation. pab1 deletion brings about a transcriptional profile similar to TORC1 inactivation, and deletion of pab1 overcomes the repression of differentiation genes in cells overexpressing TORC1. Importantly, we show that this effect is mediated by an increased TORC2-AKT (Gad8) signaling. Under nutrient-rich conditions, PP2A-B55Pab1 dephosphorylates Gad8 Ser546, repressing its activity. Conversely, TORC1 inactivation upon starvation leads to the inactivation of PP2A-B55Pab1 through the Greatwall-Endosulfin pathway. This results in the activation of Gad8 and the commitment to differentiation. Thus, PP2A-B55Pab1 enables a crosstalk between the two TOR complexes that controls cell-fate decisions in response to nutrient availability. PP2A-B55Pab1 regulates the differentiation response of fission yeast cells PP2A-B55Pab1 enables a crosstalk between TORC1 and TORC2 TORC1 favors PP2A-B55Pab1 activity to prevent the hyperphosphorylation of Gad8 TORC1 inactivation leads to PP2A-B55Pab1 inhibition, activation of Gad8, and differentiation
Collapse
Affiliation(s)
- Ruth Martín
- The Biotechnology Centre of Oslo, University of Oslo, Gaustadalléen 21, Oslo 0349, Norway
| | - Marina Portantier
- The Biotechnology Centre of Oslo, University of Oslo, Gaustadalléen 21, Oslo 0349, Norway
| | - Nathalia Chica
- The Biotechnology Centre of Oslo, University of Oslo, Gaustadalléen 21, Oslo 0349, Norway
| | - Mari Nyquist-Andersen
- The Biotechnology Centre of Oslo, University of Oslo, Gaustadalléen 21, Oslo 0349, Norway
| | - Juan Mata
- Department of Biochemistry, University of Cambridge, Building O, Downing Site, Cambridge CB2 1QW, UK
| | - Sandra Lopez-Aviles
- The Biotechnology Centre of Oslo, University of Oslo, Gaustadalléen 21, Oslo 0349, Norway.
| |
Collapse
|
22
|
fhl1 gene of the fission yeast regulates transcription of meiotic genes and nitrogen starvation response, downstream of the TORC1 pathway. Curr Genet 2016; 63:91-101. [PMID: 27165118 DOI: 10.1007/s00294-016-0607-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 01/07/2023]
Abstract
Environmental changes, such as nutrient limitation or starvation induce different signal transducing pathways, which require coordinated cooperation of several genes. Our previous data revealed that the fhl1 fork-head type transcription factor of the fission yeast could be involved in sporulation, which was typically induced under poor conditions. Since the exact role of Fhl1 in this process was not known, we wanted to identify its downstream targets and to investigate its possible cooperation with another known regulator of sporulation. Gene expression and Northern blot analysis of the fhl1∆ mutant strain revealed the target genes involved in mating and sporulation. Our results also showed that Fhl1 could regulate nutrient sensing, the transporter and permease genes. Since the majority of these genes belonged to the nitrogen starvation response, the possible cooperation of fhl1 and tor2 was also investigated. Comparison of their microarray data and the expression of fhl1 + from a strong promoter in the tor2-ts mutant cells suggested that one part of the target genes are commonly regulated by Fhl1 and Tor2. Since the expression of fhl1 + from a strong promoter could rescue rapamycin and temperature sensitivity and suppressed the hyper-sporulation defect of the tor2-ts mutant cells, we believe that Fhl1 acts in TOR signaling, downstream of Tor2. Thus, this work shed light on certain novel details of the regulation of the sexual processes and a new member of the TOR pathway, but further experiments are needed to confirm the involvement of Fhl1 in nutrient sensing.
Collapse
|
23
|
Cohen A, Kupiec M, Weisman R. Gad8 Protein Is Found in the Nucleus Where It Interacts with the MluI Cell Cycle Box-binding Factor (MBF) Transcriptional Complex to Regulate the Response to DNA Replication Stress. J Biol Chem 2016; 291:9371-81. [PMID: 26912660 DOI: 10.1074/jbc.m115.705251] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Indexed: 12/31/2022] Open
Abstract
The target of rapamycin (TOR) kinase is found at the core of two evolutionarily conserved complexes known as TOR complexes 1 and 2 (TORC1 and TORC2). In fission yeast, TORC2 is dispensable for proliferation under optimal growth conditions but is required for starvation and stress responses. We have previously reported that loss of function of TORC2 renders cells highly sensitive to DNA replication stress; however, the mechanism underlying this sensitivity is unknown. TORC2 has one known direct substrate, the kinase Gad8, which is related to AKT in human cells. Here we show that both TORC2 and its substrate Gad8 are found in the nucleus and are bound to the chromatin. We also demonstrate that Gad8 physically interacts with the MluI cell cycle box-binding factor (MBF) transcription complex that regulates the G1/S progression and the response to DNA stress. In mutant cells lacking TORC2 or Gad8, the binding of the MBF complex to its cognate promoters is compromised, and the induction of MBF target genes in response to DNA replication stress is reduced. Consistently, the protein levels of Cdt2 and Cig2, two MBF target genes, are reduced in the absence of TORC2-Gad8 signaling. Taken together, our findings highlight critical functions of TORC2 in the nucleus and suggest a role in surviving DNA replication stress via transcriptional regulation of MBF target genes.
Collapse
Affiliation(s)
- Adiel Cohen
- From the Department of Natural and Life Sciences, The Open University of Israel, University Road 1, 4353701 Raanana, Israel and
| | - Martin Kupiec
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Ronit Weisman
- From the Department of Natural and Life Sciences, The Open University of Israel, University Road 1, 4353701 Raanana, Israel and
| |
Collapse
|
24
|
Bond ME, Brown R, Rallis C, Bähler J, Mole SE. A central role for TOR signalling in a yeast model for juvenile CLN3 disease. MICROBIAL CELL 2015; 2:466-480. [PMID: 28357272 PMCID: PMC5354605 DOI: 10.15698/mic2015.12.241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Yeasts provide an excellent genetically tractable eukaryotic system for investigating the function of genes in their biological context, and are especially relevant for those conserved genes that cause disease. We study the role of btn1, the orthologue of a human gene that underlies an early onset neurodegenerative disease (juvenile CLN3 disease, neuronal ceroid lipofuscinosis (NCLs) or Batten disease) in the fission yeast Schizosaccharomyces pombe. A global screen for genetic interactions with btn1 highlighted a conserved key signalling hub in which multiple components functionally relate to this conserved disease gene. This signalling hub includes two major mitogen-activated protein kinase (MAPK) cascades, and centers on the Tor kinase complexes TORC1 and TORC2. We confirmed that yeast cells modelling CLN3 disease exhibit features consistent with dysfunction in the TORC pathways, and showed that modulating TORC function leads to a comprehensive rescue of defects in this yeast disease model. The same pathways may be novel targets in the development of therapies for the NCLs and related diseases.
Collapse
Affiliation(s)
- Michael E Bond
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Rachel Brown
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Charalampos Rallis
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK. ; Institute of Healthy Ageing, University College London, London WC1E 6BT, UK
| | - Jürg Bähler
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK. ; Institute of Healthy Ageing, University College London, London WC1E 6BT, UK
| | - Sara E Mole
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK. ; UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK. ; Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| |
Collapse
|
25
|
TORC1 Regulates Developmental Responses to Nitrogen Stress via Regulation of the GATA Transcription Factor Gaf1. mBio 2015; 6:e00959. [PMID: 26152587 PMCID: PMC4488950 DOI: 10.1128/mbio.00959-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The TOR (target of rapamycin [sirolimus]) is a universally conserved kinase that couples nutrient availability to cell growth. TOR complex 1 (TORC1) in Schizosaccharomyces pombe positively regulates growth in response to nitrogen availability while suppressing cellular responses to nitrogen stress. Here we report the identification of the GATA transcription factor Gaf1 as a positive regulator of the nitrogen stress-induced gene isp7+, via three canonical GATA motifs. We show that under nitrogen-rich conditions, TORC1 positively regulates the phosphorylation and cytoplasmic retention of Gaf1 via the PP2A-like phosphatase Ppe1. Under nitrogen stress conditions when TORC1 is inactivated, Gaf1 becomes dephosphorylated and enters the nucleus. Gaf1 was recently shown to negatively regulate the transcription induction of ste11+, a major regulator of sexual development. Our findings support a model of a two-faceted role of Gaf1 during nitrogen stress. Gaf1 positively regulates genes that are induced early in the response to nitrogen stress, while inhibiting later responses, such as sexual development. Taking these results together, we identify Gaf1 as a novel target for TORC1 signaling and a step-like mechanism to modulate the nitrogen stress response. TOR complex 1 (TORC1) is an evolutionary conserved protein complex that positively regulates growth and proliferation, while inhibiting starvation responses. In fission yeast, the activity of TORC1 is downregulated in response to nitrogen starvation, and cells reprogram their transcriptional profile and prepare for sexual development. We identify Gaf1, a GATA-like transcription factor that regulates transcription and sexual development in response to starvation, as a downstream target for TORC1 signaling. Under nitrogen-rich conditions, TORC1 positively regulates the phosphorylation and cytoplasmic retention of Gaf1 via the PP2A-like phosphatase Ppe1. Under nitrogen stress conditions when TORC1 is inactivated, Gaf1 becomes dephosphorylated and enters the nucleus. Budding yeast TORC1 regulates GATA transcription factors via the phosphatase Sit4, a structural homologue of Ppe1. Thus, the TORC1-GATA transcription module appears to be conserved in evolution and may also be found in higher eukaryotes.
Collapse
|
26
|
Jevtov I, Zacharogianni M, van Oorschot MM, van Zadelhoff G, Aguilera-Gomez A, Vuillez I, Braakman I, Hafen E, Stocker H, Rabouille C. TORC2 mediates the heat stress response in Drosophila by promoting the formation of stress granules. J Cell Sci 2015; 128:2497-508. [PMID: 26054799 PMCID: PMC4510851 DOI: 10.1242/jcs.168724] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 06/03/2015] [Indexed: 12/29/2022] Open
Abstract
The kinase TOR is found in two complexes, TORC1, which is involved in growth control, and TORC2, whose roles are less well defined. Here, we asked whether TORC2 has a role in sustaining cellular stress. We show that TORC2 inhibition in Drosophila melanogaster leads to a reduced tolerance to heat stress, whereas sensitivity to other stresses is not affected. Accordingly, we show that upon heat stress, both in the animal and Drosophila cultured S2 cells, TORC2 is activated and is required for maintaining the level of its known target, Akt1 (also known as PKB). We show that the phosphorylation of the stress-activated protein kinases is not modulated by TORC2 nor is the heat-induced upregulation of heat-shock proteins. Instead, we show, both in vivo and in cultured cells, that TORC2 is required for the assembly of heat-induced cytoprotective ribonucleoprotein particles, the pro-survival stress granules. These granules are formed in response to protein translation inhibition imposed by heat stress that appears to be less efficient in the absence of TORC2 function. We propose that TORC2 mediates heat resistance in Drosophila by promoting the cell autonomous formation of stress granules.
Collapse
Affiliation(s)
- Irena Jevtov
- Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | | | - Marinke M van Oorschot
- Hubrecht Institute of the KNAW and UMC Utrecht, Uppsalalaan 8, Utrecht 3584 CT, Netherlands
| | - Guus van Zadelhoff
- Cellular Protein Chemistry, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | | | - Igor Vuillez
- Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Ineke Braakman
- Cellular Protein Chemistry, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Ernst Hafen
- Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Hugo Stocker
- Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Catherine Rabouille
- Hubrecht Institute of the KNAW and UMC Utrecht, Uppsalalaan 8, Utrecht 3584 CT, Netherlands Department of Cell Biology, UMC Utrecht, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands
| |
Collapse
|
27
|
Kupiec M, Weisman R. TOR links starvation responses to telomere length maintenance. Cell Cycle 2014; 11:2268-71. [DOI: 10.4161/cc.20401] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
28
|
Abstract
The inhibition of the central growth regulatory kinase TOR, which participates in two complexes, TORC1 and TORC2, has been a focus of metabolic and cancer studies for many years. Most studies have dealt with TORC1, the canonical target of rapamycin, and the role of this complex in autophagy, protein synthesis, and cell growth control. Recent work on TORC2 in budding and fission yeast species points to a conserved role of this lesser-known TOR complex in the survival of DNA damage. In budding yeast, TORC2 controls lipid biosynthesis and actin cytoskeleton through downstream AGC kinases, which are now, surprisingly, implicated in the survival of oxidative DNA damage. Preliminary data from mTORC2 modulation in cancer cells suggest that an extension to human chemotherapy is worth exploring.
Collapse
Affiliation(s)
- Ronit Weisman
- Department of Natural and Life Sciences, The Open University of Israel, Raanana, Israel
| | - Adiel Cohen
- Department of Natural and Life Sciences, The Open University of Israel, Raanana, Israel
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| |
Collapse
|
29
|
Aramburu J, Ortells MC, Tejedor S, Buxadé M, López-Rodríguez C. Transcriptional regulation of the stress response by mTOR. Sci Signal 2014; 7:re2. [PMID: 24985347 DOI: 10.1126/scisignal.2005326] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The kinase mammalian target of rapamycin (mTOR) is a central regulator of cell growth and proliferation that integrates inputs from growth factor receptors, nutrient availability, intracellular ATP (adenosine 5'-triphosphate), and a variety of stressors. Since early works in the mid-1990s uncovered the role of mTOR in stimulating protein translation, this kinase has emerged as a rather multifaceted regulator of numerous processes. Whereas mTOR is generally activated by growth- and proliferation-stimulating signals, its activity can be reduced and even suppressed when cells are exposed to a variety of stress conditions. However, cells can also adapt to stress while maintaining their growth capacity and mTOR function. Despite knowledge accumulated on how stress represses mTOR, less is known about mTOR influencing stress responses. In this review, we discuss the capability of mTOR, in particular mTOR complex 1 (mTORC1), to activate stress-responsive transcription factors, and we outline open questions for future investigation.
Collapse
Affiliation(s)
- Jose Aramburu
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain.
| | - M Carmen Ortells
- Centre for Genomic Regulation and Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Sonia Tejedor
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Maria Buxadé
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Cristina López-Rodríguez
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain.
| |
Collapse
|
30
|
Cohen A, Kupiec M, Weisman R. Glucose activates TORC2-Gad8 protein via positive regulation of the cAMP/cAMP-dependent protein kinase A (PKA) pathway and negative regulation of the Pmk1 protein-mitogen-activated protein kinase pathway. J Biol Chem 2014; 289:21727-37. [PMID: 24928510 DOI: 10.1074/jbc.m114.573824] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The target of rapamycin (TOR) kinase belongs to the highly conserved eukaryotic family of phosphatidylinositol 3-kinase-related kinases. TOR proteins are found at the core of two evolutionary conserved complexes, known as TORC1 and TORC2. In fission yeast, TORC2 is dispensable for proliferation under optimal growth conditions but is required for starvation and stress responses. TORC2 has been implicated in a wide variety of functions; however, the signals that regulate TORC2 activity have so far remained obscure. TORC2 has one known direct substrate, the AGC kinase Gad8, which is related to AKT in human cells. Gad8 is phosphorylated by TORC2 at Ser-546 (equivalent to AKT Ser-473), leading to its activation. Here, we show that glucose is necessary and sufficient to induce Gad8 Ser-546 phosphorylation in vivo and Gad8 kinase activity in vitro. The glucose signal that activates TORC2-Gad8 is mediated via the cAMP/PKA pathway, a major glucose-sensing pathway. By contrast, Pmk1, similar to human extracellular signal-regulated kinases and a major stress-induced mitogen activated protein kinase (MAPK) in fission yeast, inhibits TORC2-dependent Gad8 phosphorylation and activation. Inhibition of TORC2-Gad8 also occurs in response to ionic or osmotic stress, in a manner dependent on the cAMP/PKA and Pmk1-MAPK signaling pathways. Our findings highlight the significance of glucose availability in regulation of TORC2-Gad8 and indicate a novel link between the cAMP/PKA, Pmk1/MAPK, and TORC2-Gad8 signaling.
Collapse
Affiliation(s)
- Adiel Cohen
- From the Department of Natural and Life Sciences, Open University of Israel, University Road 1, 4353701 Ranana and
| | - Martin Kupiec
- the Department of Molecular Microbiology and Biotechnology, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Ronit Weisman
- From the Department of Natural and Life Sciences, Open University of Israel, University Road 1, 4353701 Ranana and
| |
Collapse
|
31
|
Ding L, Laor D, Weisman R, Forsburg SL. Rapid regulation of nuclear proteins by rapamycin-induced translocation in fission yeast. Yeast 2014; 31:253-64. [PMID: 24733494 DOI: 10.1002/yea.3014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 11/10/2022] Open
Abstract
Genetic analysis of protein function requires a rapid means of inactivating the gene under study. Typically, this exploits temperature-sensitive mutations or promoter shut-off techniques. We report the adaptation to Schizosaccharomyces pombe of the anchor-away technique, originally designed in budding yeast by Laemmli lab. This method relies on a rapamycin-mediated interaction between the FRB- and FKBP12-binding domains to relocalize nuclear proteins of interest to the cytoplasm. We demonstrate a rapid nuclear depletion of abundant proteins as proof of principle.
Collapse
Affiliation(s)
- Lin Ding
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
32
|
Myc induced replicative stress response: How to cope with it and exploit it. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:517-24. [PMID: 24735945 DOI: 10.1016/j.bbagrm.2014.04.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 11/21/2022]
Abstract
Myc is a cellular oncogene frequently deregulated in cancer that has the ability to stimulate cellular growth by promoting a number of proliferative and pro-survival pathways. Here we will focus on how Myc controls a number of diverse cellular processes that converge to ensure processivity and robustness of DNA synthesis, thus preventing the inherent replicative stress responses usually evoked by oncogenic lesions. While these processes provide cancer cells with a long-term proliferative advantage, they also represent cancer liabilities that can be exploited to devise innovative therapeutic approaches to target Myc overexpressing tumors. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.
Collapse
|
33
|
Isp7 is a novel regulator of amino acid uptake in the TOR signaling pathway. Mol Cell Biol 2013; 34:794-806. [PMID: 24344203 DOI: 10.1128/mcb.01473-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TOR proteins reside in two distinct complexes, TOR complexes 1 and 2 (TORC1 and TORC2), that are central for the regulation of cellular growth, proliferation, and survival. TOR is also the target for the immunosuppressive and anticancer drug rapamycin. In Schizosaccharomyces pombe, disruption of the TSC complex, mutations in which can lead to the tuberous sclerosis syndrome in humans, results in a rapamycin-sensitive phenotype under poor nitrogen conditions. We show here that the sensitivity to rapamycin is mediated via inhibition of TORC1 and suppressed by overexpression of isp7(+), a member of the family of 2-oxoglutarate-Fe(II)-dependent oxygenase genes. The transcript level of isp7(+) is negatively regulated by TORC1 but positively regulated by TORC2. Yet we find extensive similarity between the transcriptome of cells disrupted for isp7(+) and cells mutated in the catalytic subunit of TORC1. Moreover, Isp7 regulates amino acid permease expression in a fashion similar to that of TORC1 and opposite that of TORC2. Overexpression of isp7(+) induces TORC1-dependent phosphorylation of ribosomal protein Rps6 while inhibiting TORC2-dependent phosphorylation and activation of the AGC-like kinase Gad8. Taken together, our findings suggest a central role for Isp7 in amino acid homeostasis and the presence of isp7(+)-dependent regulatory loops that affect both TORC1 and TORC2.
Collapse
|
34
|
Rødland GE, Tvegård T, Boye E, Grallert B. Crosstalk between the Tor and Gcn2 pathways in response to different stresses. Cell Cycle 2013; 13:453-61. [PMID: 24280780 DOI: 10.4161/cc.27270] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Regulating growth and the cell cycle in response to environmental fluctuations is important for all organisms in order to maintain viability. Two major pathways for translational regulation are found in higher eukaryotes: the Tor signaling pathway and those operating through the eIF2α kinases. Studies from several organisms indicate that the two pathways are interlinked, in that Tor complex 1 (TORC1) negatively regulates the Gcn2 kinase. Furthermore, inactivation of TORC1 may be required for activation of Gcn2 in response to stress. Here, we use the model organism Schizosaccharomyces pombe to investigate this crosstalk further. We find that the relationship is more complex than previously thought. First, in response to UV irradiation and oxidative stress, Gcn2 is fully activated in the presence of TORC1 signaling. Second, during amino-acid starvation, activation of Gcn2 is dependent on Tor2 activity, and Gcn2 is required for timely inactivation of the Tor pathway. Our data show that the crosstalk between the two pathways varies with the actual stress applied.
Collapse
Affiliation(s)
- Gro Elise Rødland
- Department of Cell Biology; Institute for Cancer Research; Oslo University Hospital; Oslo, Norway
| | - Tonje Tvegård
- Department of Cell Biology; Institute for Cancer Research; Oslo University Hospital; Oslo, Norway
| | - Erik Boye
- Department of Cell Biology; Institute for Cancer Research; Oslo University Hospital; Oslo, Norway; Institute for Molecular Biosciences; University of Oslo; Oslo, Norway
| | - Beáta Grallert
- Department of Cell Biology; Institute for Cancer Research; Oslo University Hospital; Oslo, Norway
| |
Collapse
|
35
|
Shimada K, Filipuzzi I, Stahl M, Helliwell SB, Studer C, Hoepfner D, Seeber A, Loewith R, Movva NR, Gasser SM. TORC2 signaling pathway guarantees genome stability in the face of DNA strand breaks. Mol Cell 2013; 51:829-39. [PMID: 24035500 DOI: 10.1016/j.molcel.2013.08.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 07/05/2013] [Accepted: 08/08/2013] [Indexed: 11/16/2022]
Abstract
A chemicogenetic screen was performed in budding yeast mutants that have a weakened replication stress response. This identified an inhibitor of target of rapamycin (TOR) complexes 1 and 2 that selectively enhances the sensitivity of sgs1Δ cells to hydroxyurea and camptothecin. More importantly, the inhibitor has strong synthetic lethality in combination with either the break-inducing antibiotic Zeocin or ionizing radiation, independent of the strain background. Lethality correlates with a rapid fragmentation of chromosomes that occurs only when TORC2, but not TORC1, is repressed. Genetic inhibition of Tor2 kinase, or its downstream effector kinases Ypk1/Ypk2, conferred similar synergistic effects in the presence of Zeocin. Given that Ypk1/Ypk2 controls the actin cytoskeleton, we tested the effects of actin modulators latrunculin A and jasplakinolide. These phenocopy TORC2 inhibition on Zeocin, although modulation of calcineurin-sensitive transcription does not. These results implicate TORC2-mediated actin filament regulation in the survival of low levels of DNA damage.
Collapse
Affiliation(s)
- Kenji Shimada
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Webster CM, Wu L, Douglas D, Soukas AA. A non-canonical role for the C. elegans dosage compensation complex in growth and metabolic regulation downstream of TOR complex 2. Development 2013; 140:3601-12. [PMID: 23884442 DOI: 10.1242/dev.094292] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The target of rapamycin complex 2 (TORC2) pathway is evolutionarily conserved and regulates cellular energetics, growth and metabolism. Loss of function of the essential TORC2 subunit Rictor (RICT-1) in Caenorhabditis elegans results in slow developmental rate, reduced brood size, small body size, increased fat mass and truncated lifespan. We performed a rict-1 suppressor RNAi screen of genes encoding proteins that possess the phosphorylation sequence of the AGC family kinase SGK, a key downstream effector of TORC2. Only RNAi to dpy-21 suppressed rict-1 slow developmental rate. DPY-21 functions canonically in the ten-protein dosage compensation complex (DCC) to downregulate the expression of X-linked genes only in hermaphroditic worms. However, we find that dpy-21 functions outside of its canonical role, as RNAi to dpy-21 suppresses TORC2 mutant developmental delay in rict-1 males and hermaphrodites. RNAi to dpy-21 normalized brood size and fat storage phenotypes in rict-1 mutants, but failed to restore normal body size and normal lifespan. Further dissection of the DCC via RNAi revealed that other complex members phenocopy the dpy-21 suppression of rict-1, as did RNAi to the DCC effectors set-1 and set-4, which methylate histone 4 on lysine 20 (H4K20). TORC2/rict-1 animals show dysregulation of H4K20 mono- and tri-methyl silencing epigenetic marks, evidence of altered DCC, SET-1 and SET-4 activity. DPY-21 protein physically interacts with the protein kinase SGK-1, suggesting that TORC2 directly regulates the DCC. Together, the data suggest non-canonical, negative regulation of growth and reproduction by DPY-21 via DCC, SET-1 and SET-4 downstream of TORC2 in C. elegans.
Collapse
Affiliation(s)
- Christopher M Webster
- Center for Human Genetic Research and Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
37
|
Beuzelin C, Evnouchidou I, Rigolet P, Cauvet-Burgevin A, Girard PM, Dardalhon D, Culina S, Gdoura A, van Endert P, Francesconi S. Deletion of the fission yeast homologue of human insulinase reveals a TORC1-dependent pathway mediating resistance to proteotoxic stress. PLoS One 2013; 8:e67705. [PMID: 23826334 PMCID: PMC3691139 DOI: 10.1371/journal.pone.0067705] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/21/2013] [Indexed: 01/06/2023] Open
Abstract
Insulin Degrading Enzyme (IDE) is a protease conserved through evolution with a role in diabetes and Alzheimer's disease. The reason underlying its ubiquitous expression including cells lacking identified IDE substrates remains unknown. Here we show that the fission yeast IDE homologue (Iph1) modulates cellular sensitivity to endoplasmic reticulum (ER) stress in a manner dependent on TORC1 (Target of Rapamycin Complex 1). Reduced sensitivity to tunicamycin was associated with a smaller number of cells undergoing apoptosis. Wild type levels of tunicamycin sensitivity were restored in iph1 null cells when the TORC1 complex was inhibited by rapamycin or by heat inactivation of the Tor2 kinase. Although Iph1 cleaved hallmark IDE substrates including insulin efficiently, its role in the ER stress response was independent of its catalytic activity since expression of inactive Iph1 restored normal sensitivity. Importantly, wild type as well as inactive human IDE complemented gene-invalidated yeast cells when expressed at the genomic locus under the control of iph1+ promoter. These results suggest that IDE has a previously unknown function unrelated to substrate cleavage, which links sensitivity to ER stress to a pro-survival role of the TORC1 pathway.
Collapse
Affiliation(s)
- Clémentine Beuzelin
- Institut Curie, Centre de Recherche, Orsay, France
- Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche 3348, Centre Universitaire, Orsay, France
- Université Paris-sud XI, Orsay, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Unité 1013, Paris, France
| | - Irini Evnouchidou
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Unité 1013, Paris, France
| | - Pascal Rigolet
- Institut Curie, Centre de Recherche, Orsay, France
- Université Paris-sud XI, Orsay, France
| | - Anne Cauvet-Burgevin
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Unité 1013, Paris, France
| | - Pierre-Marie Girard
- Institut Curie, Centre de Recherche, Orsay, France
- Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche 3348, Centre Universitaire, Orsay, France
| | - Delphine Dardalhon
- Institut Curie, Centre de Recherche, Orsay, France
- Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche 3348, Centre Universitaire, Orsay, France
| | - Slobodan Culina
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Unité 1013, Paris, France
| | - Abdelaziz Gdoura
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Unité 1013, Paris, France
| | - Peter van Endert
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Unité 1013, Paris, France
| | - Stefania Francesconi
- Institut Curie, Centre de Recherche, Orsay, France
- Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche 3348, Centre Universitaire, Orsay, France
- * E-mail:
| |
Collapse
|
38
|
Ikai N, Nakazawa N, Hayashi T, Yanagida M. The reverse, but coordinated, roles of Tor2 (TORC1) and Tor1 (TORC2) kinases for growth, cell cycle and separase-mediated mitosis in Schizosaccharomyces pombe. Open Biol 2013; 1:110007. [PMID: 22645648 PMCID: PMC3352084 DOI: 10.1098/rsob.110007] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 10/20/2011] [Indexed: 11/12/2022] Open
Abstract
Target of rapamycin complexes (TORCs), which are vital for nutrient utilization, contain a catalytic subunit with the phosphatidyl inositol kinase-related kinase (PIKK) motif. TORC1 is required for cell growth, while the functions of TORC2 are less well understood. We show here that the fission yeast Schizosaccharomyces pombe TORC2 has a cell cycle role through determining the proper timing of Cdc2 Tyr15 dephosphorylation and the cell size under limited glucose, whereas TORC1 restrains mitosis and opposes securin–separase, which are essential for chromosome segregation. These results were obtained using the previously isolated TORC1 mutant tor2-L2048S in the phosphatidyl inositol kinase (PIK) domain and a new TORC2 mutant tor1-L2045D, which harbours a mutation in the same site. While mutated TORC1 and TORC2 displayed diminished kinase activity and FKBP12/Fkh1-dependent rapamycin sensitivity, their phenotypes were nearly opposite in mitosis. Premature mitosis and the G2–M delay occurred in TORC1 and TORC2 mutants, respectively. Surprisingly, separase/cut1—securin/cut2 mutants were rescued by TORC1/tor2-L2048S mutation or rapamycin addition or even Fkh1 deletion, whereas these mutants showed synthetic defect with TORC2/tor1-L2045D. TORC1 and TORC2 coordinate growth, mitosis and cell size control, such as Wee1 and Cdc25 do for the entry into mitosis.
Collapse
Affiliation(s)
- Nobuyasu Ikai
- Okinawa Institute of Science and Technology Promotion Corporation, 1919-1 Tancha, Onna, Okinawa 904-0412, Japan
| | | | | | | |
Collapse
|
39
|
Schonbrun M, Kolesnikov M, Kupiec M, Weisman R. TORC2 is required to maintain genome stability during S phase in fission yeast. J Biol Chem 2013; 288:19649-60. [PMID: 23703609 DOI: 10.1074/jbc.m113.464974] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA damage can occur due to environmental insults or intrinsic metabolic processes and is a major threat to genome stability. The DNA damage response is composed of a series of well coordinated cellular processes that include activation of the DNA damage checkpoint, transient cell cycle arrest, DNA damage repair, and reentry into the cell cycle. Here we demonstrate that mutant cells defective for TOR complex 2 (TORC2) or the downstream AGC-like kinase, Gad8, are highly sensitive to chronic replication stress but are insensitive to ionizing radiation. We show that in response to replication stress, TORC2 is dispensable for Chk1-mediated cell cycle arrest but is required for the return to cell cycle progression. Rad52 is a DNA repair and recombination protein that forms foci at DNA damage sites and stalled replication forks. TORC2 mutant cells show increased spontaneous nuclear Rad52 foci, particularly during S phase, suggesting that TORC2 protects cells from DNA damage that occurs during normal DNA replication. Consistently, the viability of TORC2-Gad8 mutant cells is dependent on the presence of the homologous recombination pathway and other proteins that are required for replication restart following fork replication stalling. Our findings indicate that TORC2 is required for genome integrity. This may be relevant for the growing amount of evidence implicating TORC2 in cancer development.
Collapse
Affiliation(s)
- Miriam Schonbrun
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | |
Collapse
|
40
|
Izumi N, Yamashita A, Ohno S. Integrated regulation of PIKK-mediated stress responses by AAA+ proteins RUVBL1 and RUVBL2. Nucleus 2012; 3:29-43. [PMID: 22540023 PMCID: PMC3337166 DOI: 10.4161/nucl.18926] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Proteins of the phosphatidylinositol 3-kinase-related protein kinase (PIKK) family are activated by various cellular stresses, including DNA damage, premature termination codon and nutritional status, and induce appropriate cellular responses. The importance of PIKK functions in the maintenance of genome integrity, accurate gene expression and the proper control of cell growth/proliferation is established. Recently, ATPase associated diverse cellular activities (AAA+) proteins RUVBL1 and RUVBL2 (RUVBL1/2) have been shown to be common regulators of PIKKs. The RUVBL1/2 complex regulates PIKK-mediated stress responses through physical interactions with PIKKs and by controlling PIKK mRNA levels. In this review, the functions of PIKKs in stress responses are outlined and the physiological significance of the integrated regulation of PIKKs by the RUVBL1/2 complex is presented. We also discuss a putative "PIKK regulatory chaperone complex" including other PIKK regulators, Hsp90 and the Tel2 complex.
Collapse
Affiliation(s)
- Natsuko Izumi
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama, Japan
| | | | | |
Collapse
|
41
|
Takahara T, Maeda T. TORC1 of fission yeast is rapamycin-sensitive. Genes Cells 2012; 17:698-708. [PMID: 22762302 DOI: 10.1111/j.1365-2443.2012.01618.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/04/2012] [Indexed: 11/30/2022]
Abstract
The target of rapamycin (TOR) protein kinase plays central roles in the regulation of cell growth in response to nutritional availability. TOR forms two distinct multiprotein complexes termed TOR complex 1 (TORC1) and TORC2. Typically, only the activity of TORC1 is inhibited by the immunosuppressant rapamycin. Although rapamycin strongly inhibits cell growth of the budding yeast Saccharomyces cerevisiae through inhibition of TORC1, growth of the fission yeast Schizosaccharomyces pombe appears to be resistant to rapamycin. Here, we demonstrate that rapamycin inhibits the kinase activity of S. pombe TORC1 in vitro in a similar manner to TORC1 of other organisms. We furthermore show that incomplete inhibition of TORC1 by rapamycin underlies the apparent rapamycin resistance of S. pombe. In the presence of caffeine, which potentially lowers TORC1 activity, the growth of wild-type S. pombe cells is sensitive to rapamycin in a TORC1-dependent manner. Moreover, treatment of S. pombe cells with rapamycin plus caffeine induces starvation-specific gene expression and autophagy, similarly to cells with reduced TORC1 activity. These results indicate that rapamycin does inhibit TORC1 in S. pombe, but the inhibition is not sufficient to cause a growth defect. These findings establish a universal action of rapamycin on TORC1 inhibition.
Collapse
Affiliation(s)
- Terunao Takahara
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | |
Collapse
|
42
|
Yanagida M, Ikai N, Shimanuki M, Sajiki K. Nutrient limitations alter cell division control and chromosome segregation through growth-related kinases and phosphatases. Philos Trans R Soc Lond B Biol Sci 2012; 366:3508-20. [PMID: 22084378 PMCID: PMC3203466 DOI: 10.1098/rstb.2011.0124] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In dividing fission yeast Schizosaccharomyces pombe cells, the balance between Wee1 kinase and Cdc25 phosphatase which control the cyclin-dependent kinase (CDK) at the G2-M transition determines the rod-shaped cell length. Under nitrogen source starvation or glucose limitation, however, cell size determination is considerably modulated, and cell size shortening occurs for wild-type cells. For several mutants of kinases or phosphatases, including CDK, target of rapamycin complex (TORC) 1 and 2, stress-responsive mitogen-activated protein kinase (MAPK) Sty1/Spc1, MAPK kinase Wis1, calcium- and calmodulin-dependent protein kinase kinase-like Ssp1, and type 2A and 2A-related phosphatases inhibitor Sds23, this cell shortening does not normally occur. In tor1 and ssp1 mutants, cell elongation is observed. Sds23 that binds to and inhibits 2A and 2A-related phosphatases is synergistic with Ssp1 in the cell size determination and survival under low glucose and nitrogen source. Tor2 (TORC1) is required for growth, whereas Tor1 (TORC2) is needed for determining division size according to different nutrient conditions. Surprisingly, in growth-diminished tor2 mutant or rapamycin-treated cells, the requirement of separase/Cut1-securin/Cut2 essential for chromosome segregation is greatly alleviated. By contrast, defects of tor1 with secruin/cut2 or overproduction of Cut1 are additive. While Tor1 and Tor2 are opposite in their apparent functions, both may actually coordinate cell division with growth in response to the changes in nutrients.
Collapse
Affiliation(s)
- Mitsuhiro Yanagida
- The G0 Cell Unit, Okinawa Institute of Science and Technology Promotion Corporation, Tancha 1919-1, Onna, Okinawa 904-0412, Japan.
| | | | | | | |
Collapse
|
43
|
Ungar L, Harari Y, Toren A, Kupiec M. Tor complex 1 controls telomere length by affecting the level of Ku. Curr Biol 2011; 21:2115-20. [PMID: 22169538 DOI: 10.1016/j.cub.2011.11.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 10/25/2011] [Accepted: 11/14/2011] [Indexed: 01/12/2023]
Abstract
Telomeres are specialized DNA-protein structures at the ends of eukaryotic chromosomes. Telomeric DNA is synthesized by telomerase, which is expressed only at the early stages of development [1, 2]. To become malignant, any cell has to be able to replenish telomeres [3]. Thus, understanding how telomere length is monitored has significant medical implications, especially in the fields of aging and cancer. In yeast, telomerase is constitutively active. A large network of genes participates in controlling telomere length [4-8]. Tor1 and Tor2 (targets of rapamycin [9]) are two similar kinases that regulate cell growth [10]. Both can be found as part of the TOR complex 1 (TORC1 [11]), which coordinates the response to nutrient starvation and is sensitive to rapamycin [12]. The rapamycin-insensitive TOR complex 2 (TORC2) contains only Tor2 and regulates actin cytoskeleton polarization [13]. Here we provide evidence for a role of TORC1 in telomere shortening upon starvation in yeast cells. The TORC1 signal is transduced by the Gln3/Gat1/Ure2 pathway, which controls the levels of the Ku heterodimer, a telomere regulator. We discuss the potential implications for the usage of rapamycin as a therapeutic agent against cancer and the effect that calorie restriction may have on telomere length.
Collapse
Affiliation(s)
- Lior Ungar
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | | | |
Collapse
|
44
|
Zakrzewska A, van Eikenhorst G, Burggraaff JEC, Vis DJ, Hoefsloot H, Delneri D, Oliver SG, Brul S, Smits GJ. Genome-wide analysis of yeast stress survival and tolerance acquisition to analyze the central trade-off between growth rate and cellular robustness. Mol Biol Cell 2011; 22:4435-46. [PMID: 21965291 PMCID: PMC3216668 DOI: 10.1091/mbc.e10-08-0721] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A genome-wide analysis of the acquisition of stress cross-tolerance shows that reduction of growth rate is an important determinant of severe stress survival. Cellular functions important for the coupling of growth rate to stress resistance are identified, as are those required for cross-tolerance acquisition independent of growth rate reduction. All organisms have evolved to cope with changes in environmental conditions, ensuring the optimal combination of proliferation and survival. In yeast, exposure to a mild stress leads to an increased tolerance for other stresses. This suggests that yeast uses information from the environment to prepare for future threats. We used the yeast knockout collection to systematically investigate the genes and functions involved in severe stress survival and in the acquisition of stress (cross-) tolerance. Besides genes and functions relevant for survival of heat, acid, and oxidative stress, we found an inverse correlation between mutant growth rate and stress survival. Using chemostat cultures, we confirmed that growth rate governs stress tolerance, with higher growth efficiency at low growth rates liberating the energy for these investments. Cellular functions required for stress tolerance acquisition, independent of the reduction in growth rate, were involved in vesicular transport, the Rpd3 histone deacetylase complex, and the mitotic cell cycle. Stress resistance and acquired stress tolerance in Saccharomyces cerevisiae are governed by a combination of stress-specific and general processes. The reduction of growth rate, irrespective of the cause of this reduction, leads to redistribution of resources toward stress tolerance functions, thus preparing the cells for impending change.
Collapse
Affiliation(s)
- Anna Zakrzewska
- Molecular Biology and Microbial Food Safety, University of Amsterdam, 1098 XH Amsterdam, Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Transcriptional activation of the general amino acid permease gene per1 by the histone deacetylase Clr6 Is regulated by Oca2 kinase. Mol Cell Biol 2010; 30:3396-410. [PMID: 20404084 DOI: 10.1128/mcb.00971-09] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Expression of nitrogen metabolism genes is regulated by the quality of the nitrogen supply. Here, we describe a mechanism for the transcriptional regulation of the general amino acid permease gene per1 in Schizosaccharomyces pombe. We show that when ammonia is used as the nitrogen source, low levels of per1 are transcribed and histones in the coding and surrounding regions of per1 are acetylated. In the presence of proline, per1 transcription is upregulated and initiates from a more upstream site, generating 5'-extended mRNAs. Concomitantly, histones at per1 are deacetylated in a Clr6-dependent manner, suggesting a positive role for Clr6 in transcriptional regulation of per1. Upstream initiation and histone deactylation of per1 are constitutive in cells lacking the serine/threonine kinase oca2, indicating that Oca2 is a repressor of per1. Oca2 interacts with a protein homologous to the Saccharomyces cerevisiae transcriptional activator Cha4 and with Ago1. Loss of Cha4 or Ago1 causes aberrant induction of per1 under noninducing conditions, suggesting that these proteins are also involved in per1 regulation and hence in nitrogen utilization.
Collapse
|
46
|
Marques FZ, Markus MA, Morris BJ. The molecular basis of longevity, and clinical implications. Maturitas 2010; 65:87-91. [PMID: 20056361 DOI: 10.1016/j.maturitas.2009.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 12/07/2009] [Accepted: 12/08/2009] [Indexed: 12/22/2022]
Abstract
The determinants of length of life are multifactorial and involve complex processes, most of which are not as yet understood completely. Tremendous advances have, however, been made in recent times in understanding some of the key molecular mechanisms that influence ageing and lifespan. Herein we highlight many of the more important findings and their potential clinical implications. Most of the intracellular factors involved in the ageing process, such as members of the sirtuin family, as well as insulin and insulin-like growth factor-I and their genes, are part of interconnected pathways. The manipulation of these and other genes in animal models can increase or decrease lifespan. Transcriptional and post-transcriptional regulatory mechanisms, some of which involve microRNAs, as well as modifications to chromatin and histones, can influence longevity. A decline in the function of stem cells might also be responsible for some aspects of mammalian ageing. Calorie restriction, polyphenols such as resveratrol, rapamycin, spermidine and angiotensin I converting enzyme inhibitor, are able to increase lifespan by modulation of branches of the longevity pathways. Molecular genetic studies of long-lived subjects have identified several potential candidate genes, but genetic research on ageing is in its infancy. Large genome-wide association studies should provide insights. Although new biomarkers for ageing and health, such as ones that might reveal telomere dysfunction, have been described, advances in the genetics and molecular biology of longevity will require interdisciplinary approaches if the much-hoped for success in alleviating the diseases of ageing, and an extension of both lifespan and healthspan is to be achieved.
Collapse
Affiliation(s)
- Francine Z Marques
- Basic & Clinical Genomics Laboratory, School of Medical Sciences and Bosch Institute, Building F13, The University of Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
47
|
Yanagida M. Cellular quiescence: are controlling genes conserved? Trends Cell Biol 2009; 19:705-15. [PMID: 19833516 DOI: 10.1016/j.tcb.2009.09.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 09/16/2009] [Accepted: 09/18/2009] [Indexed: 10/20/2022]
|
48
|
Bandhakavi S, Kim YM, Ro SH, Xie H, Onsongo G, Jun CB, Kim DH, Griffin TJ. Quantitative nuclear proteomics identifies mTOR regulation of DNA damage response. Mol Cell Proteomics 2009; 9:403-14. [PMID: 19955088 DOI: 10.1074/mcp.m900326-mcp200] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular nutritional and energy status regulates a wide range of nuclear processes important for cell growth, survival, and metabolic homeostasis. Mammalian target of rapamycin (mTOR) plays a key role in the cellular responses to nutrients. However, the nuclear processes governed by mTOR have not been clearly defined. Using isobaric peptide tagging coupled with linear ion trap mass spectrometry, we performed quantitative proteomics analysis to identify nuclear processes in human cells under control of mTOR. Within 3 h of inhibiting mTOR with rapamycin in HeLa cells, we observed down-regulation of nuclear abundance of many proteins involved in translation and RNA modification. Unexpectedly, mTOR inhibition also down-regulated several proteins functioning in chromosomal integrity and up-regulated those involved in DNA damage responses (DDRs) such as 53BP1. Consistent with these proteomic changes and DDR activation, mTOR inhibition enhanced interaction between 53BP1 and p53 and increased phosphorylation of ataxia telangiectasia mutated (ATM) kinase substrates. ATM substrate phosphorylation was also induced by inhibiting protein synthesis and suppressed by inhibiting proteasomal activity, suggesting that mTOR inhibition reduces steady-state (abundance) levels of proteins that function in cellular pathways of DDR activation. Finally, rapamycin-induced changes led to increased survival after radiation exposure in HeLa cells. These findings reveal a novel functional link between mTOR and DDR pathways in the nucleus potentially operating as a survival mechanism against unfavorable growth conditions.
Collapse
Affiliation(s)
- Sricharan Bandhakavi
- Department of Biochemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|