1
|
Shang G, Zhang W, Jia Y, Ji D, Wei E, Gao C, Zeng C, Wang C, Liu N, Ge P, Li Y, Zeng L. GAS41 promotes ITGA4-mediated PI3K/Akt/mTOR signaling pathway and glioma tumorigenesis. Biochem Pharmacol 2025; 233:116747. [PMID: 39788387 DOI: 10.1016/j.bcp.2025.116747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/09/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Glioma Amplified Sequence 41 (GAS41) is a chromatin-associated protein that belongs to the YEATS domain family of proteins and is frequently amplified in various tumors. However, its biological function and carcinogenic mechanism in gliomas are not fully understood. In this study, we revealed that GAS41 was upregulated in human glioma tissues and cell lines, and higher expression of GAS41 was significantly associated with poor clinical prognosis. Genetic depletion and chemical inhibition of GAS41 remarkably inhibited glioma cell proliferation and metastasis abilities and induced cellular apoptosis. Furthermore, functional annotation identified that GAS41 was involved in stimulating the expression of membrane protein ITGA4 to activate the downstream PI3K/Akt/mTOR signaling pathway in glioma cell lines. In addition, we synthesized and evaluated a series of small molecules targeting the GAS41 YEATS domain, which yielded effective anti-proliferative activities in glioma cells. Molecular docking revealed that these compounds bound to the GAS41 YEATS domain pocket in a manner similar to Compounds 9 and 3b, providing a structural basis for exploring the selective inhibition of GAS41 as part of an essential molecular framework. Overall, our study illustrates the crucial role of GAS41 in glioma progression and the malignant phenotype and suggests that targeting GAS41 may be a promising therapeutic treatment strategy for gliomas.
Collapse
Affiliation(s)
- Guanglei Shang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China; International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Wenju Zhang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China; International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Yanjie Jia
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Donglei Ji
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Enwei Wei
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China; International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Chunfeng Gao
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China; International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Caroline Zeng
- Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Nan Liu
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Pengfei Ge
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Yunqian Li
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Lei Zeng
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China; International Center of Future Science, Jilin University, Changchun, 130012, China.
| |
Collapse
|
2
|
Minne RL, Luo NY, Traynor AM, Huang M, DeTullio L, Godden J, Stoppler M, Kimple RJ, Baschnagel AM. Genomic and Immune Landscape Comparison of MET Exon 14 Skipping and MET-Amplified Non-small Cell Lung Cancer. Clin Lung Cancer 2024; 25:567-576.e1. [PMID: 38852006 PMCID: PMC12121485 DOI: 10.1016/j.cllc.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Mutation or amplification of the mesenchymal-epithelial transition (MET) tyrosine kinase receptor causes dysregulation of receptor function and stimulates tumor growth in non-small cell lung cancer (NSCLC) with the most common mutation being MET exon 14 (METex14). We sought to compare the genomic and immune landscape of MET-altered NSCLC with MET wild-type NSCLC. METHODS 18,047 NSCLC tumors were sequenced with Tempus xT assay. Tumors were categorized based on MET exon 14 (METex14) mutations; low MET amplification defined as a copy number gain (CNG) 6-9, high MET amplification defined as CNG ≥ 10, and MET other type mutations. Immuno-oncology (IO) biomarkers and the frequency of other somatic gene alterations were compared across MET-altered and MET wild-type groups. RESULTS 276 (1.53%) METex14, 138 (0.76%) high METamp, 63 (0.35%) low METamp, 27 (0.15%) MET other, and 17,543 (97%) MET wild-type were identified. Patients with any MET mutation including METex14 were older, while patients with METex14 were more frequently female and nonsmokers. MET gene expression was highest in METamp tumors. PD-L1 positivity rates were higher in MET-altered groups than MET wild-type. METex14 exhibited the lowest tumor mutational burden (TMB) and lowest neoantigen tumor burden (NTB). METamp exhibited the lowest proportion of CD4 T cells and the highest proportion of NK cells. There were significant differences in co-alterations between METamp and METex14. CONCLUSIONS METex14 tumors exhibited differences in IO biomarkers and the somatic landscape compared to non-METex14 NSCLC tumors. Variations in immune profiles can affect immunotherapy selection in MET-altered NSCLC and require further exploration.
Collapse
Affiliation(s)
- Rachel L Minne
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Natalie Y Luo
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Anne M Traynor
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | | | | | | | - Randall J Kimple
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Andrew M Baschnagel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
| |
Collapse
|
3
|
Zhou XP, Xing JP, Sun LB, Tian SQ, Luo R, Liu WH, Song XY, Gao SH. Molecular characteristics and systemic treatment options of liposarcoma: A systematic review. Biomed Pharmacother 2024; 178:117204. [PMID: 39067161 DOI: 10.1016/j.biopha.2024.117204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Liposarcoma (LPS) is a rare soft tissue sarcoma that develops from the differentiation of fat cells, typically occurring in the lower extremities and retroperitoneal space. Depending on its histological morphology and molecular changes, LPS can be divided into various subtypes, each exhibiting distinct biological behaviors. During treatment, especially for LPS arising in the retroperitoneum, the extent and quality of the initial surgery are critically important. Treatment strategies must be tailored to the specific type of LPS. Over the past few decades, the treatment of LPS has undergone numerous advancements, with new therapeutic approaches such as targeted drugs and immunotherapies continually emerging. This paper reviews the biological characteristics, molecular alterations, as well as surgical and pharmacological treatments of various LPS subtypes, with the aim of enhancing clinicians' understanding and emphasizing the importance of individualized precision therapy. With a deeper understanding of the biological characteristics and molecular alterations of LPS, future treatment trends are likely to focus more on developing personalized treatment plans to better address the various types of LPS.
Collapse
Affiliation(s)
- Xuan-Peng Zhou
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Jian-Peng Xing
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Luan-Biao Sun
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Sheng-Qi Tian
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Ran Luo
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Wen-Hao Liu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Xin-Yuan Song
- The Chinese University of Hong Kong, New Territories 999077, Hong Kong Special Administrative Region of China
| | - Shuo-Hui Gao
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China.
| |
Collapse
|
4
|
Wang Z, Zhao N, Zhang S, Wang D, Wang S, Liu N. YEATS domain-containing protein GAS41 regulates nuclear shape by working in concert with BRD2 and the mediator complex in colorectal cancer. Pharmacol Res 2024; 206:107283. [PMID: 38964523 DOI: 10.1016/j.phrs.2024.107283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/06/2024]
Abstract
The maintenance of nuclear shape is essential for cellular homeostasis and disruptions in this process have been linked to various pathological conditions, including cancer, laminopathies, and aging. Despite the significance of nuclear shape, the precise molecular mechanisms controlling it are not fully understood. In this study, we have identified the YEATS domain-containing protein 4 (GAS41) as a previously unidentified factor involved in regulating nuclear morphology. Genetic ablation of GAS41 in colorectal cancer cells resulted in significant abnormalities in nuclear shape and inhibited cancer cell proliferation both in vitro and in vivo. Restoration experiments revealed that wild-type GAS41, but not a YEATS domain mutant devoid of histone H3 lysine 27 acetylation or crotonylation (H3K27ac/cr) binding, rescued the aberrant nuclear phenotypes in GAS41-deficient cells, highlighting the importance of GAS41's binding to H3K27ac/cr in nuclear shape regulation. Further experiments showed that GAS41 interacts with H3K27ac/cr to regulate the expression of key nuclear shape regulators, including LMNB1, LMNB2, SYNE4, and LEMD2. Mechanistically, GAS41 recruited BRD2 and the Mediator complex to gene loci of these regulators, promoting their transcriptional activation. Disruption of GAS41-H3K27ac/cr binding caused BRD2, MED14 and MED23 to dissociate from gene loci, leading to nuclear shape abnormalities. Overall, our findings demonstrate that GAS41 collaborates with BRD2 and the Mediator complex to control the expression of crucial nuclear shape regulators.
Collapse
Affiliation(s)
- Zhengmin Wang
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China
| | - Nan Zhao
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Siwei Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130000, China
| | - Deyu Wang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Shuai Wang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Nan Liu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
5
|
Xie M, Zhou L, Li T, Lin Y, Zhang R, Zheng X, Zeng C, Zheng L, Zhong L, Huang X, Zou Y, Kang T, Wu Y. Targeting the KAT8/YEATS4 Axis Represses Tumor Growth and Increases Cisplatin Sensitivity in Bladder Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310146. [PMID: 38526153 PMCID: PMC11165526 DOI: 10.1002/advs.202310146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/13/2024] [Indexed: 03/26/2024]
Abstract
Bladder cancer (BC) is one of the most common tumors characterized by a high rate of relapse and a lack of targeted therapy. Here, YEATS domain-containing protein 4 (YEATS4) is an essential gene for BC cell viability using CRISPR-Cas9 library screening is reported, and that HUWE1 is an E3 ligase responsible for YEATS4 ubiquitination and proteasomal degradation by the Protein Stability Regulators Screening Assay. KAT8-mediated acetylation of YEATS4 impaired its interaction with HUWE1 and consequently prevented its ubiquitination and degradation. The protein levels of YEATS4 and KAT8 are positively correlated and high levels of these two proteins are associated with poor overall survival in BC patients. Importantly, suppression of YEATS4 acetylation with the KAT8 inhibitor MG149 decreased YEATS4 acetylation, reduced cell viability, and sensitized BC cells to cisplatin treatment. The findings reveal a critical role of the KAT8/YEATS4 axis in both tumor growth and cisplatin sensitivity in BC cells, potentially generating a novel therapeutic strategy for BC patients.
Collapse
Affiliation(s)
- Miner Xie
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
- Department of HematologyGuangzhou First People's HospitalSouth China University of TechnologyGuangzhou510060P. R. China
| | - Liwen Zhou
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Ting Li
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Yujie Lin
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Ruhua Zhang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Xianchong Zheng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Cuiling Zeng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Lisi Zheng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Li Zhong
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
- Center of Digestive DiseaseScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518107P. R. China
| | - Xiaodan Huang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Yezi Zou
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
- School of MedicineShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Yuanzhong Wu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| |
Collapse
|
6
|
Konuma T, Zhou MM. Distinct Histone H3 Lysine 27 Modifications Dictate Different Outcomes of Gene Transcription. J Mol Biol 2024; 436:168376. [PMID: 38056822 DOI: 10.1016/j.jmb.2023.168376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Site-specific histone modifications have long been recognized to play an important role in directing gene transcription in chromatin in biology of health and disease. However, concrete illustration of how different histone modifications in a site-specific manner dictate gene transcription outcomes, as postulated in the influential "Histone code hypothesis", introduced by Allis and colleagues in 2000, has been lacking. In this review, we summarize our latest understanding of the dynamic regulation of gene transcriptional activation, silence, and repression in chromatin that is directed distinctively by histone H3 lysine 27 acetylation, methylation, and crotonylation, respectively. This represents a special example of a long-anticipated verification of the "Histone code hypothesis."
Collapse
Affiliation(s)
- Tsuyoshi Konuma
- Graduate School of Medical Life Science, Yokohama 230-0045, Japan; School of Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
7
|
Wang Z, Yang X, Chen D, Liu Y, Li Z, Duan S, Zhang Z, Jiang X, Stockwell BR, Gu W. GAS41 modulates ferroptosis by anchoring NRF2 on chromatin. Nat Commun 2024; 15:2531. [PMID: 38514704 PMCID: PMC10957913 DOI: 10.1038/s41467-024-46857-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
YEATS domain-containing protein GAS41 is a histone reader and oncogene. Here, through genome-wide CRISPR-Cas9 screenings, we identify GAS41 as a repressor of ferroptosis. GAS41 interacts with NRF2 and is critical for NRF2 to activate its targets such as SLC7A11 for modulating ferroptosis. By recognizing the H3K27-acetylation (H3K27-ac) marker, GAS41 is recruited to the SLC7A11 promoter, independent of NRF2 binding. By bridging the interaction between NRF2 and the H3K27-ac marker, GAS41 acts as an anchor for NRF2 on chromatin in a promoter-specific manner for transcriptional activation. Moreover, the GAS41-mediated effect on ferroptosis contributes to its oncogenic role in vivo. These data demonstrate that GAS41 is a target for modulating tumor growth through ferroptosis. Our study reveals a mechanism for GAS41-mediated regulation in transcription by anchoring NRF2 on chromatin, and provides a model in which the DNA binding activity on chromatin by transcriptional factors (NRF2) can be directly regulated by histone markers (H3K27-ac).
Collapse
Affiliation(s)
- Zhe Wang
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Xin Yang
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Delin Chen
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Yanqing Liu
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zhiming Li
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Shoufu Duan
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Department of Pediatrics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Department of Genetics and Development, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Brent R Stockwell
- Department of Chemistry, Columbia University, New York, NY, USA
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Wei Gu
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
8
|
Prozzillo Y, Santopietro MV, Messina G, Dimitri P. Unconventional roles of chromatin remodelers and long non-coding RNAs in cell division. Cell Mol Life Sci 2023; 80:365. [PMID: 37982870 PMCID: PMC10661750 DOI: 10.1007/s00018-023-04949-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 11/21/2023]
Abstract
The aim of this review article is to focus on the unconventional roles of epigenetic players (chromatin remodelers and long non-coding RNAs) in cell division, beyond their well-characterized functions in chromatin regulation during cell differentiation and development. In the last two decades, diverse experimental evidence has shown that subunits of SRCAP and p400/TIP60 chromatin remodeling complexes in humans relocate from interphase nuclei to centrosomes, spindle or midbody, with their depletion yielding an array of aberrant outcomes of mitosis and cytokinesis. Remarkably, this behavior is shared by orthologous subunits of the Drosophila melanogaster DOM/TIP60 complex, despite fruit flies and humans diverged over 700 million years ago. In short, the available data support the view that subunits of these complexes are a new class of moonlighting proteins, in that they lead a "double life": during the interphase, they function in chromatin regulation within the nucleus, but as the cell progresses through mitosis, they interact with established mitotic factors, thus becoming integral components of the cell division apparatus. By doing so, they contribute to ensuring the correct distribution of chromosomes in the two daughter cells and, when dysfunctional, can cause genomic instability, a condition that can trigger tumorigenesis and developmental diseases. Research over the past few years has unveiled a major contribution of long non-coding RNAs (lncRNAs) in the epigenetics regulation of gene expression which also impacts on cell division control. Here, we focus on possible structural roles of lncRNAs in the execution of cytokinesis: in particular, we suggest that specific classes of lncRNAs relocate to the midbody to form an architectural scaffold ensuring its proper assembly and function during abscission. Drawing attention to experimental evidence for non-canonical extranuclear roles of chromatin factors and lncRNAs has direct implications on important and novel aspects concerning both the epigenetic regulation and the evolutionary dynamics of cell division with a significant impact on differentiation, development, and diseases.
Collapse
Affiliation(s)
- Yuri Prozzillo
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | | | - Giovanni Messina
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy.
- Universita degli Studi di Milano-Bicocca, Piazza dell' Ateneo Nuovo, 1, 20126, Milano, Italy.
| | - Patrizio Dimitri
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy.
| |
Collapse
|
9
|
Ji K, Li L, Liu H, Shen Y, Jiang J, Zhang M, Teng H, Yan X, Zhang Y, Cai Y, Zhou H. Unveiling the role of GAS41 in cancer progression. Cancer Cell Int 2023; 23:245. [PMID: 37853482 PMCID: PMC10583379 DOI: 10.1186/s12935-023-03098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
GAS41, a member of the human YEATS domain family, plays a pivotal role in human cancer development. It serves as a highly promising epigenetic reader, facilitating precise regulation of cell growth and development by recognizing essential histone modifications, including histone acetylation, benzoylation, succinylation, and crotonylation. Functional readouts of these histone modifications often coincide with cancer progression. In addition, GAS41 functions as a novel oncogene, participating in numerous signaling pathways. Here, we summarize the epigenetic functions of GAS41 and its role in the carcinoma progression. Moving forward, elucidating the downstream target oncogenes regulated by GAS41 and the developing small molecule inhibitors based on the distinctive YEATS recognition properties will be pivotal in advancing this research field.
Collapse
Affiliation(s)
- Kangkang Ji
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Li Li
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Hui Liu
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Yucheng Shen
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Jian Jiang
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Minglei Zhang
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Hongwei Teng
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Xun Yan
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Yanhua Zhang
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Yong Cai
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Hai Zhou
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China.
| |
Collapse
|
10
|
Liu N, Konuma T, Sharma R, Wang D, Zhao N, Cao L, Ju Y, Liu D, Wang S, Bosch A, Sun Y, Zhang S, Ji D, Nagatoishi S, Suzuki N, Kikuchi M, Wakamori M, Zhao C, Ren C, Zhou TJ, Xu Y, Meslamani J, Fu S, Umehara T, Tsumoto K, Akashi S, Zeng L, Roeder RG, Walsh MJ, Zhang Q, Zhou MM. Histone H3 lysine 27 crotonylation mediates gene transcriptional repression in chromatin. Mol Cell 2023; 83:2206-2221.e11. [PMID: 37311463 PMCID: PMC11138481 DOI: 10.1016/j.molcel.2023.05.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/22/2023] [Accepted: 05/16/2023] [Indexed: 06/15/2023]
Abstract
Histone lysine acylation, including acetylation and crotonylation, plays a pivotal role in gene transcription in health and diseases. However, our understanding of histone lysine acylation has been limited to gene transcriptional activation. Here, we report that histone H3 lysine 27 crotonylation (H3K27cr) directs gene transcriptional repression rather than activation. Specifically, H3K27cr in chromatin is selectively recognized by the YEATS domain of GAS41 in complex with SIN3A-HDAC1 co-repressors. Proto-oncogenic transcription factor MYC recruits GAS41/SIN3A-HDAC1 complex to repress genes in chromatin, including cell-cycle inhibitor p21. GAS41 knockout or H3K27cr-binding depletion results in p21 de-repression, cell-cycle arrest, and tumor growth inhibition in mice, explaining a causal relationship between GAS41 and MYC gene amplification and p21 downregulation in colorectal cancer. Our study suggests that H3K27 crotonylation signifies a previously unrecognized, distinct chromatin state for gene transcriptional repression in contrast to H3K27 trimethylation for transcriptional silencing and H3K27 acetylation for transcriptional activation.
Collapse
Affiliation(s)
- Nan Liu
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China; International Center of Future Science, Jilin University, Changchun 130012, China.
| | - Tsuyoshi Konuma
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan; School of Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Rajal Sharma
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Deyu Wang
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Nan Zhao
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Lingling Cao
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Ying Ju
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Di Liu
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Shuai Wang
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Almudena Bosch
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yifei Sun
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Siwei Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130000, China
| | - Donglei Ji
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Satoru Nagatoishi
- Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Noa Suzuki
- School of Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Masaki Kikuchi
- RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | | | - Chengcheng Zhao
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Chunyan Ren
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas Jiachi Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yaoyao Xu
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Jamel Meslamani
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shibo Fu
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China; International Center of Future Science, Jilin University, Changchun 130012, China
| | - Takashi Umehara
- RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Kouhei Tsumoto
- Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Satoko Akashi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan; School of Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Lei Zeng
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China; International Center of Future Science, Jilin University, Changchun 130012, China
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, the Rockefeller University, New Nork, NY 10065, USA
| | - Martin J Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Qiang Zhang
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China; International Center of Future Science, Jilin University, Changchun 130012, China.
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
11
|
Xian Q, Song Y, Gui C, Zhou Y. Mechanistic insights into genomic structure and functions of a novel oncogene YEATS4. Front Cell Dev Biol 2023; 11:1192139. [PMID: 37435030 PMCID: PMC10332269 DOI: 10.3389/fcell.2023.1192139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023] Open
Abstract
As a novel oncogene, the role of YEATS domain-containing protein 4 (YEATS4) in the occurrence, development, and treatment of tumors is now beginning to be appreciated. YEATS4 plays an important role in regulating DNA repair during replication. The upregulation of YEAST4 promotes DNA damage repair and prevents cell death, whereas its downregulation inhibits DNA replication and induces apoptosis. Additionally, accumulating evidence indicates that the aberrant activation of YEATS4 leads to changes in drug resistance, epithelial-mesenchymal transition and also in the migration and invasion capacity of tumor cells. Therefore, specific inhibition of the expression or activity of YEATS4 protein may be an effective strategy for inhibiting the proliferation, motility, differentiation, and/or survival of tumor cells. Taken together, YEATS4 has emerged as a potential target for multiple cancers and is an attractive protein for the development of small-molecule inhibitors. However, research on YEAST4 in tumor-related fields is limited and its biological functions, metabolism, and the regulatory mechanism of YEATS4 in numerous cancers remain undetermined. This review comprehensively and extensively summarizes the functions, structure and oncogenic roles of YEATS4 in cancer progression and aims to further contribute to the study of its underlying molecular mechanism and targeted drugs.
Collapse
Affiliation(s)
- Qingqing Xian
- Department of Clinical Laboratory Diagnosis, Shandong University, Jinan, Shandong, China
| | - Yiying Song
- Department of Clinical Laboratory Diagnosis, Shandong University, Jinan, Shandong, China
| | - Chengzhi Gui
- Department of Clinical Laboratory Diagnosis, Shandong First Medical University, Jinan, Shandong, China
| | - Yunying Zhou
- Department of Clinical Laboratory Diagnosis, Shandong University, Jinan, Shandong, China
- Department of Clinical Laboratory Diagnosis, Shandong First Medical University, Jinan, Shandong, China
- Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
12
|
Messina G, Prozzillo Y, Monache FD, Santopietro MV, Dimitri P. Evolutionary conserved relocation of chromatin remodeling complexes to the mitotic apparatus. BMC Biol 2022; 20:172. [PMID: 35922843 PMCID: PMC9351137 DOI: 10.1186/s12915-022-01365-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/29/2022] [Indexed: 01/02/2023] Open
Abstract
Background ATP-dependent chromatin remodeling complexes are multi-protein machines highly conserved across eukaryotic genomes. They control sliding and displacing of the nucleosomes, modulating histone-DNA interactions and making nucleosomal DNA more accessible to specific binding proteins during replication, transcription, and DNA repair, which are processes involved in cell division. The SRCAP and p400/Tip60 chromatin remodeling complexes in humans and the related Drosophila Tip60 complex belong to the evolutionary conserved INO80 family, whose main function is promoting the exchange of canonical histone H2A with the histone variant H2A in different eukaryotic species. Some subunits of these complexes were additionally shown to relocate to the mitotic apparatus and proposed to play direct roles in cell division in human cells. However, whether this phenomenon reflects a more general function of remodeling complex components and its evolutionary conservation remains unexplored. Results We have combined cell biology, reverse genetics, and biochemical approaches to study the subcellular distribution of a number of subunits belonging to the SRCAP and p400/Tip60 complexes and assess their involvement during cell division progression in HeLa cells. Interestingly, beyond their canonical chromatin localization, the subunits under investigation accumulate at different sites of the mitotic apparatus (centrosomes, spindle, and midbody), with their depletion yielding an array of aberrant outcomes of mitosis and cytokinesis, thus causing genomic instability. Importantly, this behavior was conserved by the Drosophila melanogaster orthologs tested, despite the evolutionary divergence between fly and humans has been estimated at approximately 780 million years ago. Conclusions Overall, our results support the existence of evolutionarily conserved diverse roles of chromatin remodeling complexes, whereby subunits of the SRCAP and p400/Tip60 complexes relocate from the interphase chromatin to the mitotic apparatus, playing moonlighting functions required for proper execution of cell division. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01365-5.
Collapse
Affiliation(s)
- Giovanni Messina
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy. .,Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Rome, Italy.
| | - Yuri Prozzillo
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Francesca Delle Monache
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | | | - Patrizio Dimitri
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy.
| |
Collapse
|
13
|
Yeewa R, Chaiya P, Jantrapirom S, Shotelersuk V, Lo Piccolo L. Multifaceted roles of YEATS domain-containing proteins and novel links to neurological diseases. Cell Mol Life Sci 2022; 79:183. [PMID: 35279775 PMCID: PMC11071958 DOI: 10.1007/s00018-022-04218-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022]
Abstract
The so-called Yaf9, ENL, AF9, Taf14, and Sas5 (YEATS) domain-containing proteins, hereafter referred to as YD proteins, take control over the transcription by multiple steps of regulation either involving epigenetic remodelling of chromatin or guiding the processivity of RNA polymerase II to facilitate elongation-coupled mRNA 3' processing. Interestingly, an increasing amount of evidence suggest a wider repertoire of YD protein's functions spanning from non-coding RNA regulation, RNA-binding proteins networking, post-translational regulation of a few signalling transduction proteins and the spindle pole formation. However, such a large set of non-canonical roles is still poorly characterized. Notably, four paralogous of human YEATS domain family members, namely eleven-nineteen-leukaemia (ENL), ALL1-fused gene from chromosome 9 protein (AF9), YEATS2 and glioma amplified sequence 41 (GAS41), have a strong link to cancer yet new findings also highlight a potential novel role in neurological diseases. Here, in an attempt to more comprehensively understand the complexity of four YD proteins and to gain more insight into the novel functions they may accomplish in the neurons, we summarized the YD protein's networks, systematically searched and reviewed the YD genetic variants associated with neurodevelopmental disorders and finally interrogated the model organism Drosophila melanogaster.
Collapse
Affiliation(s)
- Ranchana Yeewa
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pawita Chaiya
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Salinee Jantrapirom
- Drosophila Centre for Human Diseases and Drug Discovery (DHD), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Vorasuk Shotelersuk
- Centre of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Paediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Centre for Genomics and Precision Medicine, The Thai Red Cross Society, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - Luca Lo Piccolo
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Musculoskeletal Science and Translational Research Centre (MSTR), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai, 50200, Thailand.
| |
Collapse
|
14
|
Listunov D, Linhares BM, Kim E, Winkler A, Simes ML, Weaver S, Cho HJ, Rizo A, Zolov S, Keshamouni VG, Grembecka J, Cierpicki T. Development of potent dimeric inhibitors of GAS41 YEATS domain. Cell Chem Biol 2021; 28:1716-1727.e6. [PMID: 34289376 DOI: 10.1016/j.chembiol.2021.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/26/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022]
Abstract
GAS41 is an emerging oncogene overexpressed and implicated in multiple cancers, including non-small cell lung cancer (NSCLC). GAS41 is a dimeric protein that contains the YEATS domain, which is involved in the recognition of lysine-acylated histones. Here, we report the development of GAS41 YEATS inhibitors by employing a fragment-based screening approach. These inhibitors bind to GAS41 YEATS domain in a channel constituting a recognition site for acylated lysine on histone proteins. To enhance inhibitory activity, we developed a dimeric analog with nanomolar activity that blocks interactions of GAS41 with acetylated histone H3. Our lead compound engages GAS41 in cells, blocks proliferation of NSCLC cells, and modulates expression of GAS41-dependent genes, validating on-target mechanism of action. This study demonstrates that disruption of GAS41 protein-protein interactions may represent an attractive approach to target lung cancer cells. This work exemplifies the use of bivalent inhibitors as a general strategy to block challenging protein-protein interactions.
Collapse
Affiliation(s)
- Dymytrii Listunov
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA
| | - Brian M Linhares
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA
| | - EunGi Kim
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA
| | - Alyssa Winkler
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA
| | - Miranda L Simes
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA
| | - Sidney Weaver
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA
| | - Hyo Je Cho
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA
| | - Alexandrea Rizo
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA
| | - Sergey Zolov
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2670, USA
| | - Venkateshwar G Keshamouni
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2670, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA.
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA.
| |
Collapse
|
15
|
Lu J, Wood D, Ingley E, Koks S, Wong D. Update on genomic and molecular landscapes of well-differentiated liposarcoma and dedifferentiated liposarcoma. Mol Biol Rep 2021; 48:3637-3647. [PMID: 33893924 DOI: 10.1007/s11033-021-06362-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/16/2021] [Indexed: 01/13/2023]
Abstract
Well-differentiated liposarcoma (WDLPS) is the most frequent subtype of liposarcoma and may transform into dedifferentiated liposarcoma (DDLPS) which is a more aggressive subtype. Retroperitoneal lesions of WDLPS/DDLPS tend to recur repeatedly due to incomplete resections, and adjuvant chemotherapy and radiotherapy have little effect on patient survival. Consequently, identifying therapeutic targets and developing targeted drugs is critical for improving the outcome of WDLPS/DDLPS patients. In this review, we summarised the mutational landscape of WDLPS/DDLPS from recent studies focusing on potential oncogenic drivers and the development of molecular targeted drugs for DDLPS. Due to the limited number of studies on the molecular networks driving WDLPS to DDLPS development, we looked at other dedifferentiation-related tumours to identify potential parallel mechanisms that could be involved in the dedifferentiation process generating DDLPS.
Collapse
Affiliation(s)
- Jun Lu
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, 6009, Australia. .,Cell Signalling Group, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia.
| | - David Wood
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Evan Ingley
- Cell Signalling Group, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia.,Discipline of Medical, Molecular and Forensic Sciences, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6009, Australia
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, Perth, WA, 6009, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6009, Australia
| | - Daniel Wong
- Anatomical Pathology, PathWest, QEII Medical Centre, Perth, WA, 6009, Australia
| |
Collapse
|
16
|
Pan C, Zhu Y, Yu M, Zhao Y, Zhang C, Zhang X, Yao Y. Control Analysis of Protein-Protein Interaction Network Reveals Potential Regulatory Targets for MYCN. Front Oncol 2021; 11:633579. [PMID: 33968733 PMCID: PMC8096904 DOI: 10.3389/fonc.2021.633579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/04/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND MYCN is an oncogenic transcription factor of the MYC family and plays an important role in the formation of tissues and organs during development before birth. Due to the difficulty in drugging MYCN directly, revealing the molecules in MYCN regulatory networks will help to identify effective therapeutic targets. METHODS We utilized network controllability theory, a recent developed powerful tool, to identify the potential drug target around MYCN based on Protein-Protein interaction network of MYCN. First, we constructed a Protein-Protein interaction network of MYCN based on public databases. Second, network control analysis was applied on network to identify driver genes and indispensable genes of the MYCN regulatory network. Finally, we developed a novel integrated approach to identify potential drug targets for regulating the function of the MYCN regulatory network. RESULTS We constructed an MYCN regulatory network that has 79 genes and 129 interactions. Based on network controllability theory, we analyzed driver genes which capable to fully control the network. We found 10 indispensable genes whose alternation will significantly change the regulatory pathways of the MYCN network. We evaluated the stability and correlation analysis of these genes and found EGFR may be the potential drug target which closely associated with MYCN. CONCLUSION Together, our findings indicate that EGFR plays an important role in the regulatory network and pathways of MYCN and therefore may represent an attractive therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Chunyu Pan
- Northeastern University, Shenyang, China
- Joint Laboratory of Artificial Intelligence and Precision Medicine of China Medical University and Northeastern University, Shenyang, China
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yuyan Zhu
- Joint Laboratory of Artificial Intelligence and Precision Medicine of China Medical University and Northeastern University, Shenyang, China
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Meng Yu
- Department of Reproductive Biology and Transgenic Animal, China Medical University, Shenyang, China
| | - Yongkang Zhao
- National Institute of Health and Medical Big Data, China Medical University, Shenyang, China
| | | | - Xizhe Zhang
- Joint Laboratory of Artificial Intelligence and Precision Medicine of China Medical University and Northeastern University, Shenyang, China
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Yang Yao
- Department of Physiology, Shenyang Medical College, Shenyang, China
| |
Collapse
|
17
|
Li Y, Li L, Wu J, Qin J, Dai X, Jin T, Xu J. YEATS4 is associated with poor prognosis and promotes epithelial-to-mesenchymal transition and metastasis by regulating ZEB1 expression in breast cancer. Am J Cancer Res 2021; 11:416-440. [PMID: 33575079 PMCID: PMC7868763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023] Open
Abstract
YEATS domain-containing protein 4 (YEATS4) is implicated in several oncogenic signaling pathways, and its expression is involved in various types of cancer; regardless, the pathophysiologic effects of YEATS4 on breast cancer remain unclear. This study finds that YEATS4 is increasingly expressed with breast cancer progression, and its expression is related to poor outcome and distant metastasis. YEATS4 overexpression in breast cancer cells strengthens their malignant characteristics in vitro and in vivo, particularly inducing epithelial-to-mesenchymal transition (EMT) and consequently, metastatic capability in breast cancer cells. By contrast, deleting YEATS4 in breast cancer cells with high-grade malignancy reduced these characteristics. With regard to the molecular mechanism, YEATS4 mediates histone H3K27ac at specific sites of the ZEB1 promoter to regulate its expression at the transcription level. Depleting ZEB1 blocks YEATS4-induced EMT, migration, invasion, and metastasis. YEATS4 expression is also positively correlated with ZEB1 expression in patients with breast cancer. Co-expression of YEATS4 and ZEB1 correlates with the shortest distant metastasis-free period. Taken together, our data reveal the critical role of YEATS4 in the progression and metastasis of breast cancer, as well as support YEATS4 as a potential therapeutic target and prognostic biomarker for breast cancer.
Collapse
Affiliation(s)
- Yang Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200080, China
| | - Lei Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200080, China
| | - Junyi Wu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200080, China
| | - Jun Qin
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200080, China
| | - Xueming Dai
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200080, China
| | - Tao Jin
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200080, China
| | - Junming Xu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200080, China
| |
Collapse
|
18
|
Cho HJ, Li H, Linhares BM, Kim E, Ndoj J, Miao H, Grembecka J, Cierpicki T. GAS41 Recognizes Diacetylated Histone H3 through a Bivalent Binding Mode. ACS Chem Biol 2018; 13:2739-2746. [PMID: 30071723 DOI: 10.1021/acschembio.8b00674] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
GAS41 is a chromatin-associated protein that belongs to the YEATS family and is involved in the recognition of acetyl-lysine in histone proteins. A unique feature of GAS41 is the presence of a C-terminal coiled-coil domain, which is responsible for protein dimerization. Here, we characterized the specificity of the GAS41 YEATS domain and found that it preferentially binds to acetylated H3K18 and H3K27 peptides. Interestingly, we found that full-length, dimeric GAS41 binds to diacetylated H3 peptides with an enhanced affinity when compared to those for monoacetylated peptides, through a bivalent binding mode. We determined the crystal structure of the GAS41 YEATS domain with H3K23acK27ac to visualize the molecular basis of diacetylated histone binding. Our results suggest a unique binding mode in which full-length GAS41 is a reader of diacetylated histones.
Collapse
Affiliation(s)
- Hyo Je Cho
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hao Li
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brian M. Linhares
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - EunGi Kim
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Juliano Ndoj
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hongzhi Miao
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
19
|
Identification of the YEATS domain of GAS41 as a pH-dependent reader of histone succinylation. Proc Natl Acad Sci U S A 2018; 115:2365-2370. [PMID: 29463709 DOI: 10.1073/pnas.1717664115] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Lysine succinylation is a newly discovered posttranslational modification with distinctive physical properties. However, to date rarely have studies reported effectors capable of interpreting this modification on histones. Following our previous study of SIRT5 as an eraser of succinyl-lysine (Ksuc), here we identified the GAS41 YEATS domain as a reader of Ksuc on histones. Biochemical studies showed that the GAS41 YEATS domain presents significant binding affinity toward H3K122suc upon a protonated histidine residue. Furthermore, cellular studies showed that GAS41 had prominent interaction with H3K122suc on histones and also demonstrated the coenrichment of GAS41 and H3K122suc on the p21 promoter. To investigate the binding mechanism, we solved the crystal structure of the YEATS domain of Yaf9, the GAS41 homolog, in complex with an H3K122suc peptide that demonstrated the presence of a salt bridge formed when a protonated histidine residue (His39) recognizes the carboxyl terminal of the succinyl group. We also solved the apo structure of GAS41 YEATS domain, in which the conserved His43 residue superimposes well with His39 in the Yaf9 structure. Our findings identified a reader of succinyl-lysine, and the binding mechanism will provide insight into the development of specific regulators targeting GAS41.
Collapse
|
20
|
Hsu CC, Shi J, Yuan C, Zhao D, Jiang S, Lyu J, Wang X, Li H, Wen H, Li W, Shi X. Recognition of histone acetylation by the GAS41 YEATS domain promotes H2A.Z deposition in non-small cell lung cancer. Genes Dev 2018; 32:58-69. [PMID: 29437725 PMCID: PMC5828395 DOI: 10.1101/gad.303784.117] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/19/2017] [Indexed: 11/24/2022]
Abstract
Histone acetylation is associated with active transcription in eukaryotic cells. It helps to open up the chromatin by neutralizing the positive charge of histone lysine residues and providing binding platforms for "reader" proteins. The bromodomain (BRD) has long been thought to be the sole protein module that recognizes acetylated histones. Recently, we identified the YEATS domain of AF9 (ALL1 fused gene from chromosome 9) as a novel acetyl-lysine-binding module and showed that the ENL (eleven-nineteen leukemia) YEATS domain is an essential acetyl-histone reader in acute myeloid leukemias. The human genome encodes four YEATS domain proteins, including GAS41, a component of chromatin remodelers responsible for H2A.Z deposition onto chromatin; however, the importance of the GAS41 YEATS domain in human cancer remains largely unknown. Here we report that GAS41 is frequently amplified in human non-small cell lung cancer (NSCLC) and is required for cancer cell proliferation, survival, and transformation. Biochemical and crystal structural studies demonstrate that GAS41 binds to histone H3 acetylated on H3K27 and H3K14, a specificity that is distinct from that of AF9 or ENL. ChIP-seq (chromatin immunoprecipitation [ChIP] followed by high-throughput sequencing) analyses in lung cancer cells reveal that GAS41 colocalizes with H3K27ac and H3K14ac on the promoters of actively transcribed genes. Depletion of GAS41 or disruption of the interaction between its YEATS domain and acetylated histones impairs the association of histone variant H2A.Z with chromatin and consequently suppresses cancer cell growth and survival both in vitro and in vivo. Overall, our study identifies GAS41 as a histone acetylation reader that promotes histone H2A.Z deposition in NSCLC.
Collapse
Affiliation(s)
- Chih-Chao Hsu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jiejun Shi
- Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Chao Yuan
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Dan Zhao
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shiming Jiang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jie Lyu
- Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xiaolu Wang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hong Wen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Wei Li
- Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xiaobing Shi
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA
| |
Collapse
|
21
|
Johnsson M, Henriksen R, Höglund A, Fogelholm J, Jensen P, Wright D. Genetical genomics of growth in a chicken model. BMC Genomics 2018; 19:72. [PMID: 29361907 PMCID: PMC5782384 DOI: 10.1186/s12864-018-4441-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/08/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The genetics underlying body mass and growth are key to understanding a wide range of topics in biology, both evolutionary and developmental. Body mass and growth traits are affected by many genetic variants of small effect. This complicates genetic mapping of growth and body mass. Experimental intercrosses between individuals from divergent populations allows us to map naturally occurring genetic variants for selected traits, such as body mass by linkage mapping. By simultaneously measuring traits and intermediary molecular phenotypes, such as gene expression, one can use integrative genomics to search for potential causative genes. RESULTS In this study, we use linkage mapping approach to map growth traits (N = 471) and liver gene expression (N = 130) in an advanced intercross of wild Red Junglefowl and domestic White Leghorn layer chickens. We find 16 loci for growth traits, and 1463 loci for liver gene expression, as measured by microarrays. Of these, the genes TRAK1, OSBPL8, YEATS4, CEP55, and PIP4K2B are identified as strong candidates for growth loci in the chicken. We also show a high degree of sex-specific gene-regulation, with almost every gene expression locus exhibiting sex-interactions. Finally, several trans-regulatory hotspots were found, one of which coincides with a major growth locus. CONCLUSIONS These findings not only serve to identify several strong candidates affecting growth, but also show how sex-specificity and local gene-regulation affect growth regulation in the chicken.
Collapse
Affiliation(s)
- Martin Johnsson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, EH25 9RG, UK.,Department of Animal Breeding and Genetics, The Swedish University of Agricultural Sciences, Box 7023, 750 07, Uppsala, Sweden.,AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 581 83, Linköping, Sweden
| | - Rie Henriksen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 581 83, Linköping, Sweden
| | - Andrey Höglund
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 581 83, Linköping, Sweden
| | - Jesper Fogelholm
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 581 83, Linköping, Sweden
| | - Per Jensen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 581 83, Linköping, Sweden
| | - Dominic Wright
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 581 83, Linköping, Sweden.
| |
Collapse
|
22
|
Trino S, Iacobucci I, Erriquez D, Laurenzana I, De Luca L, Ferrari A, Ghelli Luserna Di Rorà A, Papayannidis C, Derenzini E, Simonetti G, Lonetti A, Venturi C, Cattina F, Ottaviani E, Abbenante MC, Russo D, Perini G, Musto P, Martinelli G. Targeting the p53-MDM2 interaction by the small-molecule MDM2 antagonist Nutlin-3a: a new challenged target therapy in adult Philadelphia positive acute lymphoblastic leukemia patients. Oncotarget 2017; 7:12951-61. [PMID: 26887044 PMCID: PMC4914334 DOI: 10.18632/oncotarget.7339] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 01/22/2016] [Indexed: 11/25/2022] Open
Abstract
MDM2 is an important negative regulator of p53 tumor suppressor. In this study, we sought to investigate the preclinical activity of the MDM2 antagonist, Nutlin-3a, in Philadelphia positive (Ph+) and negative (Ph-) leukemic cell line models, and primary B-acute lymphoblastic leukemia (ALL) patient samples. We demonstrated that Nutlin-3a treatment reduced viability and induced p53-mediated apoptosis in ALL cells with wild-type p53 protein, in a time and dose-dependent manner, resulting in the increased expression of pro-apoptotic proteins and key regulators of cell cycle arrest. The dose-dependent reduction in cell viability was confirmed in primary blast cells from B-ALL patients, including Ph+ ALL resistant patients carrying the T315I BCR-ABL1 mutation. Our findings provide a strong rational for further clinical investigation of Nutlin-3a in Ph+ and Ph- ALL.
Collapse
Affiliation(s)
- Stefania Trino
- Laboratory of Pre-Clinical and Translational Research, IRCCS Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Ilaria Iacobucci
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. and A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Daniela Erriquez
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Ilaria Laurenzana
- Laboratory of Pre-Clinical and Translational Research, IRCCS Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Luciana De Luca
- Laboratory of Pre-Clinical and Translational Research, IRCCS Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Anna Ferrari
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. and A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Andrea Ghelli Luserna Di Rorà
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. and A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Cristina Papayannidis
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. and A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Enrico Derenzini
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. and A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Giorgia Simonetti
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. and A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Annalisa Lonetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudia Venturi
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. and A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Federica Cattina
- Chair of Hematology and BMT Unit, University of Brescia, Brescia, Italy
| | - Emanuela Ottaviani
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. and A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Maria Chiara Abbenante
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. and A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Domenico Russo
- Chair of Hematology and BMT Unit, University of Brescia, Brescia, Italy
| | - Giovanni Perini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Pellegrino Musto
- Scientific Direction, IRCCS Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Giovanni Martinelli
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. and A. Seràgnoli", University of Bologna, Bologna, Italy
| |
Collapse
|
23
|
Ji S, Zhang Y, Yang B. YEATS Domain Containing 4 Promotes Gastric Cancer Cell Proliferation and Mediates Tumor Progression via Activating the Wnt/β-Catenin Signaling Pathway. Oncol Res 2017; 25:1633-1641. [PMID: 28251887 PMCID: PMC7841140 DOI: 10.3727/096504017x14878528144150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Increased expression of YEATS domain containing 4 (YEATS4) has been reported to have a correlation with progression in many types of cancer. However, the mechanism by which it promotes the development of gastric cancer (GC) is rarely reported. This study aimed to investigate the effect of YEATS4 on cell proliferation and tumor progression. The mRNA and protein expressions of YEATS4 in GC tissues and cell lines were analyzed. BGC-823 cells then overexpressed or silenced YEATS4 by transfection of different plasmids. The regulatory effect of YEATS on cell viability, colony formation, cell apoptosis, and tumor growth in vivo was evaluated. Finally, we explored the underlying regulatory mechanism of YEATS4 on the Wnt/β-catenin pathway. YEATS4 was highly expressed in GC tissues and cell lines. Furthermore, Kaplan-Meier survival analysis and qRT-PCR analysis showed that the increased expression of YEATS4 indicated poor prognosis and tumor progression. The overexpression of YEATS4 significantly promoted cell proliferation and inhibited cell apoptosis, whereas the opposite trends were found upon the downregulation of YEATS4. Western blot analysis showed that the downregulation of YEATS4 inhibited protein expression and phosphorylation of β-catenin. In addition, decreased expressions of c-Myc, CDK6, CDK4, cyclin D1, and Bcl-2 and increased expression of Bax were observed in YEATS4 knockdown cells. Our results showed that increased expression of YEATS4 might play a critical role in promoting GC cell proliferation and apoptosis by activating the Wnt/β-catenin signaling pathway, indicating that the control of YEATS4 expression might be used as a promising therapy for GC.
Collapse
Affiliation(s)
- Sheqing Ji
- *Department of Gastroenterology, Binzhou People’s Hospital, Binzhou, P.R. China
| | - Youxiang Zhang
- †Department of Pharmacy, Binzhou People’s Hospital, Binzhou, P.R. China
| | - Binhai Yang
- ‡Department of Gastroenterology, Second People’s Hospital of Binzhou, Binzhou, P.R. China
| |
Collapse
|
24
|
Ricciotti RW, Baraff AJ, Jour G, Kyriss M, Wu Y, Liu Y, Li SC, Hoch B, Liu YJ. High amplification levels of MDM2 and CDK4 correlate with poor outcome in patients with dedifferentiated liposarcoma: A cytogenomic microarray analysis of 47 cases. Cancer Genet 2017; 218-219:69-80. [PMID: 29153098 DOI: 10.1016/j.cancergen.2017.09.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/18/2017] [Accepted: 09/18/2017] [Indexed: 11/25/2022]
Abstract
Dedifferentiated liposarcoma (DDLS) is characterized at the molecular level by amplification of genes within 12q13-15 including MDM2 and CDK4. However, other than FNCLCC grade, prognostic markers are limited. We aim to identify molecular prognostic markers for DDLS to help risk stratify patients. To this end, we studied 49 cases of DDLS in our institutional archives and performed cytogenomic microarray analysis on 47 cases. Gene copy numbers for 12 loci were evaluated and correlated with outcome data retrieved from our institutional electronic medical records. Using cut point analysis and comparison of Kaplan-Meier survival curves by log rank tests, high amplification levels of MDM2 (>38 copies) and CDK4 (>30 copies) correlated with decreased disease free survival (DFS) (P = .0168 and 0.0169 respectively) and disease specific survival (DSS) (P = .0082 and 0.0140 respectively). Additionally, MDM2 and CDK4 showed evidence of a synergistic effect so that each additional copy of one enhances the effect on prognosis of each additional copy of the other for decreased DFS (P = .0227, 0.1% hazard). High amplification of JUN (>16 copies) also correlated with decreased DFS (P = .0217), but not DSS. The presence of copy number alteration at 3q29 correlated with decreased DSS (P = .0192). The presence of >10 mitoses per 10 high power fields and FNCLCC grade 3 also correlated with decreased DFS (P = .0310 and 0.0254 respectively). MDM2 and CDK4 gene amplification levels, along with JUN amplification and copy alterations at 3q29, can be utilized for predicting outcome in patients with DDLS.
Collapse
Affiliation(s)
- Robert W Ricciotti
- Department of Pathology, University of Washington School of Medicine, Seattle, WA
| | - Aaron J Baraff
- Department of BioStatistics, University of Washington School of Medicine, Seattle, WA
| | - George Jour
- Department of Pathology and Laboratory Medicine, MD Anderson Cancer Center at Cooper, Camden, NJ
| | | | - Yu Wu
- Department of Pathology, University of Washington School of Medicine, Seattle, WA
| | - Yuhua Liu
- Department of Pathology, University of Washington School of Medicine, Seattle, WA
| | - Shao-Chun Li
- Department of Pharmacology, School of Medicine, Hebei University, PR China
| | - Benjamin Hoch
- Department of Pathology, University of Washington School of Medicine, Seattle, WA.
| | - Yajuan J Liu
- Department of Pathology, University of Washington School of Medicine, Seattle, WA.
| |
Collapse
|
25
|
Smith RJ, Savoian MS, Weber LE, Park JH. Ataxia telangiectasia mutated (ATM) interacts with p400 ATPase for an efficient DNA damage response. BMC Mol Biol 2016; 17:22. [PMID: 27814680 PMCID: PMC5097431 DOI: 10.1186/s12867-016-0075-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 10/29/2016] [Indexed: 11/13/2022] Open
Abstract
Background Ataxia telangiectasia mutated (ATM) and TRRAP proteins belong to the phosphatidylinositol 3-kinase-related kinase family and are involved in DNA damage repair and chromatin remodeling. ATM is a checkpoint kinase that is recruited to sites of DNA double-strand breaks where it phosphorylates a diverse range of proteins that are part of the chromatin and DNA repair machinery. As an integral subunit of the TRRAP-TIP60 complexes, p400 ATPase is a chromatin remodeler that is also targeted to DNA double-strand break sites. While it is understood that DNA binding transcriptional activators recruit p400 ATPase into a regulatory region of the promoter, how p400 recognises and moves to DNA double-strand break sites is far less clear. Here we investigate a possibility whether ATM serves as a shuttle to deliver p400 to break sites. Results Our data indicate that p400 co-immunoprecipitates with ATM independently of DNA damage state and that the N-terminal domain of p400 is vital for this interaction. Heterologous expression studies using Sf9 cells revealed that the ATM-p400 complex can be reconstituted without other mammalian bridging proteins. Overexpression of ATM-interacting p400 regions in U2OS cells induced dominant negative effects including the inhibition of both DNA damage repair and cell proliferation. Consistent with the dominant negative effect, the stable expression of an N-terminal p400 fragment showed a decrease in the association of p400 with ATM, but did not alter the association of p400 with TRRAP. Conclusion Taken together, our findings suggest that a protein–protein interaction between ATM and p400 ATPase occurs independently of DNA damage and contributes to efficient DNA damage response and repair. Electronic supplementary material The online version of this article (doi:10.1186/s12867-016-0075-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rebecca J Smith
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Matthew S Savoian
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Lauren E Weber
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Jeong Hyeon Park
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
26
|
Fu Q, Cheng J, Zhang J, Zhang Y, Chen X, Xie J, Luo S. Downregulation of YEATS4 by miR-218 sensitizes colorectal cancer cells to L-OHP-induced cell apoptosis by inhibiting cytoprotective autophagy. Oncol Rep 2016; 36:3682-3690. [PMID: 27779719 DOI: 10.3892/or.2016.5195] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/10/2016] [Indexed: 11/06/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related death worldwide. Deregulation of microRNAs (miRNAs) has been reported to participate in CRC progression. In the present study, we observed downregulation of miR-218 and upregulation of YEATS domain containing 4 (YEATS4) in CRC tissues and in multidrug-resistant HCT-116/L-OHP cells compared with these levels in normal tissues and parental HCT-116 cells, respectively. The results indicated that miR-218 overexpression significantly decreased the IC50 value of oxaliplatin (L-OHP) in the HCT-116/L-OHP cells, and suppression of miR-218 significantly enhanced the IC50 of L-OHP in the HCT-116 cells. Flow cytometric analysis showed that miR-218 overexpression alone promoted cell apoptosis in the HCT-116/L-OHP cells, which was further enhanced in response to L-OHP, and miR-218 inhibition decreased cell apoptosis in the HCT-116 cells following treatment with L-OHP. Western blot analysis indicated that, compared with the small increase observed in HCT-116 cells, the relative LC3 II level in HCT-116/L-OHP cells after lysosome inhibition via chloroquine (CQ) was markedly upregulated following L-OHP treatment, suggesting induction of autophagy. Exposure of HCT-116/L-OHP cells to L-OHP after control mimic transfection increased autophagic flux, as reflected by increased LC3 II levels, while miR-218 overexpression partly reversed L-OHP-mediated LC3 II accumulation. Additionally, both miR-218 overexpression and CQ treatment promoted L-OHP-induced HCT-116/L-OHP cell apoptosis. Molecularly, our results confirmed that miR-218 directly targets the YEATS4 gene and inhibits YEATS4 expression. Furthermore, YEATS4 overexpression without the 3'-untranslated region (3'-UTR) restored miR-218-inhibited YEATS4 and LC3 II expression, and abolished miR-218-stimulated cell viability loss and cell apoptosis increase in response to L-OHP. In conclusion, miR-218 sensitized HCT-116/L-OHP cells to L-OHP-induced cell apoptosis via inhibition of cytoprotective autophagy by targeting YEATS4 expression.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Gastrointestinal Surgery, Tumor Hospital of Henan Province (The Affiliated Tumor Hospital of Zhengzhou University), Zhengzhou, Henan 450008, P.R. China
| | - Jing Cheng
- Department of Medical Oncology, Zhengzhou Central Hospital (The Affiliated Central Hospital of Zhengzhou University), Zhengzhou, Henan 450007, P.R. China
| | - Jindai Zhang
- Department of Gastrointestinal Surgery, Tumor Hospital of Henan Province (The Affiliated Tumor Hospital of Zhengzhou University), Zhengzhou, Henan 450008, P.R. China
| | - Yonglei Zhang
- Department of Gastrointestinal Surgery, Tumor Hospital of Henan Province (The Affiliated Tumor Hospital of Zhengzhou University), Zhengzhou, Henan 450008, P.R. China
| | - Xiaobing Chen
- Department of Digestive Oncology, Tumor Hospital of Henan Province (The Affiliated Tumor Hospital of Zhengzhou University), Zhengzhou, Henan 450008, P.R. China
| | - Jianguo Xie
- Department of Gastrointestinal Surgery, Tumor Hospital of Henan Province (The Affiliated Tumor Hospital of Zhengzhou University), Zhengzhou, Henan 450008, P.R. China
| | - Suxia Luo
- Department of Digestive Oncology, Tumor Hospital of Henan Province (The Affiliated Tumor Hospital of Zhengzhou University), Zhengzhou, Henan 450008, P.R. China
| |
Collapse
|
27
|
Kim YR, Park MS, Eum KH, Kim J, Lee JW, Bae T, Lee DH, Choi JW. Transcriptome analysis indicates TFEB1 and YEATS4 as regulatory transcription factors for drug resistance of ovarian cancer. Oncotarget 2016; 6:31030-8. [PMID: 26307679 PMCID: PMC4741586 DOI: 10.18632/oncotarget.5208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/08/2015] [Indexed: 01/24/2023] Open
Abstract
Ovarian cancer is an intractable disease because patients with ovarian cancer frequently develop drug resistance after long-term chemotherapy. Despite the availability of cumulative information on drug-resistant patients, strategies to reverse drug resistance have still not been established. In this study, we analyzed drug resistance-associated transcription factors (TFs) in ovarian cancer. Gene expression profiles of 15 drug-resistant and 11 drug-sensitive patients with ovarian cancer were compared. Our results showed that TFs TFEB1 and YEATS4 regulated the expression of downstream target genes. These 2 TFs have already been implicated in tumorigenesis or metastasis. To our knowledge, this is the first study to evaluate the involvement of these TFs in drug resistance of ovarian cancer. Interestingly, 70% knockdown of each of these TFs with siRNAs resulted in approximately 20%∼30% recovery of drug sensitivity. Further, combination treatment of ovarian cancer cells with TFEB1 and YEATS4 siRNAs resulted in 35% reversal of drug resistance. The effect of these TFs on chemoresistance seemed to be associated with intrinsic apoptosis-related pathways, such as p53 activation, and not with the suppression of drug transport. Thus, we suggest a novel approach to reverse chemoresistance of ovarian cancer by suppressing TFEB1 and YEATS4.
Collapse
Affiliation(s)
- Yi Rang Kim
- Department of Hemato-Oncology, Yuseong Sun Hospital, Daejeon, Republic of Korea
| | - Mi Sung Park
- Institute for Metabolic Disease, School of Medicine, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
| | - Ki Hwan Eum
- Wonkwang Institute of Interfused Biomedical Science and Dental Research Institute, School of Dentistry, Wonkwang University, Iksan, Chonbuk, Republic of Korea
| | - Juhee Kim
- Wonkwang Institute of Interfused Biomedical Science and Dental Research Institute, School of Dentistry, Wonkwang University, Iksan, Chonbuk, Republic of Korea
| | - Jeong Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Taejeong Bae
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Dae Ho Lee
- Department of Internal Medicine, Wonkwang University School of Medicine and Hospital, Iksan, Jeonbuk, Republic of Korea
| | - Jin Woo Choi
- Wonkwang Institute of Interfused Biomedical Science and Dental Research Institute, School of Dentistry, Wonkwang University, Iksan, Chonbuk, Republic of Korea.,Advanced Institute of Convergence Technology, Seoul National University Suwon Gyeonggi-do, Korea
| |
Collapse
|
28
|
A Chromatin-Focused siRNA Screen for Regulators of p53-Dependent Transcription. G3-GENES GENOMES GENETICS 2016; 6:2671-8. [PMID: 27334938 PMCID: PMC4978920 DOI: 10.1534/g3.116.031534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The protein product of the Homo sapiens TP53 gene is a transcription factor (p53) that regulates the expression of genes critical for the response to DNA damage and tumor suppression, including genes involved in cell cycle arrest, apoptosis, DNA repair, metabolism, and a number of other tumorigenesis-related pathways. Differential transcriptional regulation of these genes is believed to alter the balance between two p53-dependent cell fates: cell cycle arrest or apoptosis. A number of previously identified p53 cofactors covalently modify and alter the function of both the p53 protein and histone proteins. Both gain- and loss-of-function mutations in chromatin modifiers have been strongly implicated in cancer development; thus, we sought to identify novel chromatin regulatory proteins that affect p53-dependent transcription and the balance between the expression of pro-cell cycle arrest and proapoptotic genes. We utilized an siRNA library designed against predicted chromatin regulatory proteins, and identified known and novel chromatin-related factors that affect both global p53-dependent transcription and gene-specific regulators of p53 transcriptional activation. The results from this screen will serve as a comprehensive resource for those interested in further characterizing chromatin and epigenetic factors that regulate p53 transcription.
Collapse
|
29
|
Pal D, Mukhopadhyay D, Ramaiah MJ, Sarma P, Bhadra U, Bhadra MP. Regulation of Cell Proliferation and Migration by miR-203 via GAS41/miR-10b Axis in Human Glioblastoma Cells. PLoS One 2016; 11:e0159092. [PMID: 27467502 PMCID: PMC4965126 DOI: 10.1371/journal.pone.0159092] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/27/2016] [Indexed: 12/21/2022] Open
Abstract
Glioma amplified sequence 41(GAS41) is a potent transcription factor that play a crucial role in cell proliferation and survival. In glioblastoma, the expression of GAS41 at both transcriptional and post transcriptional level needs to be tightly maintained in response to cellular signals. Micro RNAs (miRNA) are small non coding RNA that act as important regulators for modulating the expression of various target genes. Studies have shown that several miRNAs play role in the post-transcriptional regulation of GAS41. Here we identified GAS41 as a novel target for endogenous miR-203 and demonstrate an inverse correlation of miR-203 expression with GAS41 in glioma cell lines (HNGC2 and U87). Over expression of miR-203 negatively regulates GAS41 expression in U87 and HNGC2 cell lines. Moreover, miR-203 restrained miR-10b action by suppressing GAS41. GAS41 is essential for repressing p53 in tumor suppressor pathway during cell proliferation. Enforced expression of GAS41 produced contradictory effect on miR-203 but was able to enhance p53 tumor suppressor pathway associated protein. It was also found that miR-203 maintains the stability of p53 as knock down of p53 expression using siRNA resulted in down regulation of pri-miR and mature miR-203 expression. Conversely reconstitution of miR-203 expression induced apoptosis and inhibited migratory property of glioma cells. Taken together, we show that miR-203 is a key negative regulator of GAS41 and acts as tumor suppressor microRNA in glioma.
Collapse
Affiliation(s)
- Dhananjaya Pal
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Arunasafali Marg, New Delhi, 110025, India
| | - Debasmita Mukhopadhyay
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
| | - M. Janaki Ramaiah
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- School of Chemical and Biotechnology, SASTRA University, Tirumalaisamudram, Thanjavur, 613401, India
| | - Pranjal Sarma
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Functional Genomics and Gene silencing group, CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Utpal Bhadra
- Functional Genomics and Gene silencing group, CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Manika Pal Bhadra
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Arunasafali Marg, New Delhi, 110025, India
- * E-mail: ;
| |
Collapse
|
30
|
Blee AM, Liu S, Wang L, Huang H. BET bromodomain-mediated interaction between ERG and BRD4 promotes prostate cancer cell invasion. Oncotarget 2016; 7:38319-38332. [PMID: 27223260 PMCID: PMC5122392 DOI: 10.18632/oncotarget.9513] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/08/2016] [Indexed: 01/05/2023] Open
Abstract
Prostate cancer (PCa) that becomes resistant to hormone castration and next-generation androgen receptor (AR)-targeted therapies, called castration-resistant prostate cancer (CRPC), poses a significant clinical challenge. A better understanding of PCa progression and key molecular mechanisms could bring novel therapies to light. One potential therapeutic target is ERG, a transcription factor aberrantly up-regulated in PCa due to chromosomal rearrangements between androgen-regulated gene TMPRSS2 and ERG. Here we show that the most common PCa-associated truncated ERG T1-E4 (ERGΔ39), encoded by fusion between TMPRSS2 exon 1 and ERG exon 4, binds to bromodomain-1 (BD1) of bromodomain containing protein 4 (BRD4), a member of the bromodomain and extraterminal domain (BET) family. This interaction is partially abrogated by BET inhibitors JQ1 and iBET762. Meta-analysis of published ERG (T1-E4) and BRD4 chromatin immunoprecipitation-sequencing (ChIP-seq) data demonstrates overlap in a substantial portion of their binding sites. Gene expression profile analysis shows some ERG-BRD4 co-target genes are upregulated in CRPC compared to hormone-naïve counterparts. We provide further evidence that ERG-mediated invasion of PCa cells was significantly enhanced by an acetylation-mimicking mutation in ERG that augments the ERG-BRD4 interaction. Our findings reveal that PCa-associated ERG can interact and co-occupy with BRD4 in the genome, and suggest this druggable interaction is critical for ERG-mediated cell invasion and PCa progression.
Collapse
Affiliation(s)
- Alexandra M. Blee
- Mayo Graduate School, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Shujun Liu
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Liguo Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
- Department of Urology, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
- Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| |
Collapse
|
31
|
Mutations in TP53 increase the risk of SOX2 copy number alterations and silencing of TP53 reduces SOX2 expression in non-small cell lung cancer. BMC Cancer 2016; 16:28. [PMID: 26780934 PMCID: PMC4717590 DOI: 10.1186/s12885-016-2061-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 01/10/2016] [Indexed: 12/25/2022] Open
Abstract
Background Amplifications of the transcription factor, SRY (sex determining region Y)-box 2 (SOX2), are common in non-small cell lung cancer (NSCLC). SOX2 signaling is important in maintaining the stem cell-like phenotype of cancer cells and contributes to the pathogenesis of lung cancer. TP53 is known to inhibit gene amplifications and to repress many stem cell-associated genes following DNA damage. The aim of this study was to investigate if TP53 mutational status affected SOX2 copy number variation and gene expression in early-stage NSCLC patients; moreover, to assess if TP53 regulates SOX2 expression in human lung cancer cells. Methods 258 early-stage lung cancer patients were included in the study. Exons 4–9 in the TP53 gene were sequenced for mutations in tumor tissues. SOX2 copy number as well as TP53 and SOX2 gene expression were analyzed in tumor and in adjacent non-tumorous tissues by qPCR. TP53 and SOX2 were silenced using gene-specific siRNAs in human lung adenocarcinoma A427 cells, and the expression of TP53, SOX2 and subset of selected miRNAs was analyzed by qPCR. The odds ratios (ORs) for associations between copy number variation and lung cancer were estimated by conditional logistic regression, and the correlation between gene status and clinicopathological characteristics was assessed by Chi-square or Fisher’s exact test. Gene expression data was analyzed using nonparametric Mann–Whitney test. Results TP53 mutations were associated with an increased risk of acquiring a SOX2 copy number alteration (OR = 2.08, 95 % CI: 1.14–3.79, p = 0.017), which was more frequently occurring in tumor tissues (34 %) than in adjacent non-tumorous tissues (3 %). Moreover, SOX2 and TP53 expression levels were strongly correlated in tumor tissues. In vitro studies showed that a reduction in TP53 was associated with decreased SOX2 expression in A427 cells. Furthermore, TP53 knockdown reduced the miRNA hsa-miR-145, which has previously been shown to regulate SOX2 expression. Conclusions TP53 signaling may be important in the regulation of SOX2 copy number and expression in NSCLC tumors, and the miRNA hsa-miR-145-5p may be one potential driver. This prompts for further studies on the mechanisms behind the TP53-induced regulation of SOX2 expression and the possible importance of hsa-miR-145 in lung cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2061-3) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Judes G, Rifaï K, Ngollo M, Daures M, Bignon YJ, Penault-Llorca F, Bernard-Gallon D. A bivalent role of TIP60 histone acetyl transferase in human cancer. Epigenomics 2015; 7:1351-63. [PMID: 26638912 DOI: 10.2217/epi.15.76] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Acetylation is a major modification that is required for gene regulation, genome maintenance and metabolism. A dysfunctional acetylation plays an important role in several diseases, including cancer. A group of enzymes-lysine acetyltransferases are responsible for this modification and act in regulation of transcription as cofactors and by acetylation of histones and other proteins. Tip60, a member of MYST family, is expressed ubiquitously and is the acetyltransferase catalytic subunit of human NuA4 complex. This HAT has a well-characterized involvement in many processes, such as cellular signaling, DNA damage repair, transcriptional and cellular cycle. Aberrant lysine acetyltransferase functions promote or suppress tumorigenesis in different cancers such as colon, breast and prostate tumors. Therefore, Tip60 might be a potential and important therapeutic target in the cancer treatment; new histone acetyl transferase inhibitors were identified and are more selective inhibitors of Tip60.
Collapse
Affiliation(s)
- Gaëlle Judes
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri Dunant, 63001 Clermont-Ferrand, France.,EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France
| | - Khaldoun Rifaï
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri Dunant, 63001 Clermont-Ferrand, France.,EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France
| | - Marjolaine Ngollo
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri Dunant, 63001 Clermont-Ferrand, France.,EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France
| | - Marine Daures
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri Dunant, 63001 Clermont-Ferrand, France.,EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France
| | - Yves-Jean Bignon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri Dunant, 63001 Clermont-Ferrand, France.,EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France
| | - Frédérique Penault-Llorca
- EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France.,Centre Jean Perrin, Laboratory of Biopathology, 63011 Clermont-Ferrand, France
| | - Dominique Bernard-Gallon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri Dunant, 63001 Clermont-Ferrand, France.,EA 4677 'ERTICA', University of Auvergne, 63011 Clermont-Ferrand, France
| |
Collapse
|
33
|
Abstract
Heart disease is a leading cause of death in the United States, and hypertension is a predominant risk factor. Thus, effective blood pressure control is important to prevent adverse sequelae of hypertension, including heart failure, coronary artery disease, atrial fibrillation, and ischemic stroke. Over half of Americans have uncontrolled blood pressure, which may in part be explained by interpatient variability in drug response secondary to genetic polymorphism. As such, pharmacogenetic testing may be a supplementary tool to guide treatment. This review highlights the pharmacogenetics of antihypertensive response and response to drugs that treat adverse hypertension-related sequelae, particularly coronary artery disease and atrial fibrillation. While pharmacogenetic evidence may be more robust for the latter with respect to clinical implementation, there is increasing evidence of genetic variants that may help predict antihypertensive response. However, additional research and validation are needed before clinical implementation guidelines for antihypertensive therapy can become a reality.
Collapse
|
34
|
Tao K, Yang J, Hu Y, Deng A. Knockdown of YEATS4 inhibits colorectal cancer cell proliferation and induces apoptosis. Am J Transl Res 2015; 7:616-623. [PMID: 26045900 PMCID: PMC4448200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/05/2015] [Indexed: 06/04/2023]
Abstract
YEATS domain containing 4 (YEATS4) is usually amplified and functions as an oncogene in human glioma. However, the biological role of YEATS4 in colorectal cancer (CRC) has not yet been discussed. In this study, we investigated the expression level of YEATS4 in 85 pairs of CRC and paracancerous tissues, and knocked down YEATS4 via a lentivirus system in RKO CRC cell line. Although YEATS4 was upregulated in CRC tissues, YEATS4 expression showed no association with any clinical features and overall survival. Inhibition of YEATS4 significantly suppressed cell proliferation and colony formation. Flow cytometry revealed that cell cycle was arrested in the G0/G1 phase and the number of apoptotic cells were significantly increased when YEATS4 expression was inhibited. In conclusion, our findings provide first evidence that YEATS4 may be an important regulator of cell proliferation and apoptosis in CRC cells.
Collapse
Affiliation(s)
- Kun Tao
- Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical UniversityShanghai, China
- Department of Pathology, Tongren Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Jing Yang
- Department of Pathology, Tongren Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Yuemei Hu
- Department of Pathology, Tongren Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Anmei Deng
- Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical UniversityShanghai, China
| |
Collapse
|
35
|
Guan Z, Yu X, Wang H, Wang H, Zhang J, Li G, Cao J, Teng L. Advances in the targeted therapy of liposarcoma. Onco Targets Ther 2015; 8:125-36. [PMID: 25609980 PMCID: PMC4293924 DOI: 10.2147/ott.s72722] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Liposarcoma (LPS) is the most common type of soft-tissue sarcoma. Complete surgical resection is the only curative means for localized disease; however, both radiation and conventional cytotoxic chemotherapy remain controversial for metastatic or unresectable disease. An increasing number of trials with novel targeted therapy of LPS have provided encouraging data during recent years. This review will provide an overview of the advances in our understanding of LPS and summarize the results of recent trials with novel therapies targeting different genetic and molecular aberrations for different subtypes of LPS.
Collapse
Affiliation(s)
- Zhonghai Guan
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, People's Republic of China
| | - Xiongfei Yu
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, People's Republic of China
| | - Haohao Wang
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, People's Republic of China
| | - Haiyong Wang
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, People's Republic of China
| | - Jing Zhang
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, People's Republic of China
| | - Guangliang Li
- Department of Medicine Oncology, Zhejiang Cancer Hospital, Zhejiang, People's Republic of China
| | - Jiang Cao
- Clinical Research Center, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lisong Teng
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, People's Republic of China
| |
Collapse
|
36
|
Gandhi SG, Bag I, Sengupta S, Pal-Bhadra M, Bhadra U. Drosophila oncogene Gas41 is an RNA interference modulator that intersects heterochromatin and the small interfering RNA pathway. FEBS J 2014; 282:153-73. [PMID: 25323651 DOI: 10.1111/febs.13115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/09/2014] [Accepted: 10/15/2014] [Indexed: 12/27/2022]
Abstract
Glioma amplified sequence41 (Gas41) is a highly conserved putative transcription factor that is frequently abundant in human gliomas. Gas41 shows oncogenic activity by promoting cell growth and viability. In the present study, we show that Gas41 is required for proper functioning of RNA interference (RNAi) machinery in the nuclei, although three basic structural domains of RNAi components PAZ, PIWI and dsRNA with respect to binding are absent in the structural sequences. Variations of structural domains are highly conserved among prokaryotes and eukaryotes. Gas41 interacts with cytological RNase III enzyme Dicer1 both biochemically and genetically. However, Drosophila Gas41 functions as chromatin remodeler and interacts with different heterochromatin markers and repeat-induced transgene silencing by modulating position effect variegation. We also show that transcriptional inactive Gas41 mutant interferes with the functional assembly of heterochromatin-associated proteins, dimethylated lysine 9 of histone H3 and heterochromatic protein 1 in developing embryos. A reduction of heterochromatic markers is accompanied by the mini-w promoter sequence in Gas41 mutants. These findings suggest that Drosophila Gas41 guides the repeat associated gene silencing and the Dicer1 interaction, thereby depicting a new role for Gas41. Gas41 is a critical RNAi component. In Drosophila, Gas41 plays a dual role. On the one hand, it appears to participate with Dicer 1 in the RNAi pathway and, alternatively, it also participates in repeat-induced gene silencing by accumulating heterochromatin proteins at the mini-w array promoters. Therefore, it represents an intriguing and apparently paradoxical new finding in RNA technology with respect to the process of heterochromatin gene silencing.
Collapse
Affiliation(s)
- Sumit G Gandhi
- Functional Genomics and Gene Silencing Group, Centre for Cellular and Molecular Biology-CSIR, Hyderabad, India
| | | | | | | | | |
Collapse
|
37
|
Garsed DW, Marshall OJ, Corbin VDA, Hsu A, Di Stefano L, Schröder J, Li J, Feng ZP, Kim BW, Kowarsky M, Lansdell B, Brookwell R, Myklebost O, Meza-Zepeda L, Holloway AJ, Pedeutour F, Choo KHA, Damore MA, Deans AJ, Papenfuss AT, Thomas DM. The architecture and evolution of cancer neochromosomes. Cancer Cell 2014; 26:653-67. [PMID: 25517748 DOI: 10.1016/j.ccell.2014.09.010] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 05/15/2014] [Accepted: 09/19/2014] [Indexed: 01/21/2023]
Abstract
We isolated and analyzed, at single-nucleotide resolution, cancer-associated neochromosomes from well- and/or dedifferentiated liposarcomas. Neochromosomes, which can exceed 600 Mb in size, initially arise as circular structures following chromothripsis involving chromosome 12. The core of the neochromosome is amplified, rearranged, and corroded through hundreds of breakage-fusion-bridge cycles. Under selective pressure, amplified oncogenes are overexpressed, while coamplified passenger genes may be silenced epigenetically. New material may be captured during punctuated chromothriptic events. Centromeric corrosion leads to crisis, which is resolved through neocentromere formation or native centromere capture. Finally, amplification terminates, and the neochromosome core is stabilized in linear form by telomere capture. This study investigates the dynamic mutational processes underlying the life history of a special form of cancer mutation.
Collapse
Affiliation(s)
- Dale W Garsed
- Cancer Genomics, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC 3010, Australia; Department of Pathology, University of Melbourne, VIC 3010, Australia
| | - Owen J Marshall
- Chromosome Research, Murdoch Childrens Research Institute, and Department of Paediatrics, Royal Children's Hospital, University of Melbourne, Parkville, VIC 3052, Australia
| | - Vincent D A Corbin
- Bioinformatics Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010, Australia; Bioinformatics and Cancer Genomics, Peter MacCallum Cancer Centre, East Melbourne, VIC, 3002, Australia
| | - Arthur Hsu
- Bioinformatics Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Leon Di Stefano
- Bioinformatics Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Jan Schröder
- Bioinformatics Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010, Australia
| | - Jason Li
- Cancer Genomics, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002, Australia
| | - Zhi-Ping Feng
- Bioinformatics Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010, Australia
| | - Bo W Kim
- Chromosome Research, Murdoch Childrens Research Institute, and Department of Paediatrics, Royal Children's Hospital, University of Melbourne, Parkville, VIC 3052, Australia
| | - Mark Kowarsky
- Bioinformatics Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Ben Lansdell
- Bioinformatics Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Ross Brookwell
- Sullivan Nicolaides Pathology, Indooroopilly, QLD 4068, Australia
| | - Ola Myklebost
- Department of Tumor Biology, Oslo University Hospital, Norwegian Radium Hospital, Oslo 0424, Norway
| | - Leonardo Meza-Zepeda
- Department of Tumor Biology, Oslo University Hospital, Norwegian Radium Hospital, Oslo 0424, Norway
| | - Andrew J Holloway
- Cancer Genomics, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002, Australia
| | - Florence Pedeutour
- Laboratory of Solid Tumors Genetics, Nice University Hospital, Nice 06107, France
| | - K H Andy Choo
- Chromosome Research, Murdoch Childrens Research Institute, and Department of Paediatrics, Royal Children's Hospital, University of Melbourne, Parkville, VIC 3052, Australia
| | | | | | - Anthony T Papenfuss
- Bioinformatics Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010, Australia; Department of Mathematics and Statistics, University of Melbourne, VIC, 3010, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC 3010, Australia; Bioinformatics and Cancer Genomics, Peter MacCallum Cancer Centre, East Melbourne, VIC, 3002, Australia.
| | - David M Thomas
- Cancer Genomics, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC 3010, Australia; The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia.
| |
Collapse
|
38
|
Park JH, Hale TK, Smith RJ, Yang T. PPM1B depletion induces premature senescence in human IMR-90 fibroblasts. Mech Ageing Dev 2014; 138:45-52. [DOI: 10.1016/j.mad.2014.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 03/10/2014] [Accepted: 03/15/2014] [Indexed: 01/23/2023]
|
39
|
Pikor LA, Lockwood WW, Thu KL, Vucic EA, Chari R, Gazdar AF, Lam S, Lam WL. YEATS4 is a novel oncogene amplified in non-small cell lung cancer that regulates the p53 pathway. Cancer Res 2013; 73:7301-12. [PMID: 24170126 DOI: 10.1158/0008-5472.can-13-1897] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetic analyses of lung cancer have helped found new treatments in this disease. We conducted an integrative analysis of gene expression and copy number in 261 non-small cell lung cancers (NSCLC) relative to matched normal tissues to define novel candidate oncogenes, identifying 12q13-15 and more specifically the YEATS4 gene as amplified and overexpressed in ~20% of the NSCLC cases examined. Overexpression of YEATS4 abrogated senescence in human bronchial epithelial cells. Conversely, RNAi-mediated attenuation of YEATS4 in human lung cancer cells reduced their proliferation and tumor growth, impairing colony formation and inducing cellular senescence. These effects were associated with increased levels of p21WAF1 and p53 and cleavage of PARP, implicating YEATS4 as a negative regulator of the p21-p53 pathway. We also found that YEATS4 expression affected cellular responses to cisplastin, with increased levels associated with resistance and decreased levels with sensitivity. Taken together, our findings reveal YEATS4 as a candidate oncogene amplified in NSCLC, and a novel mechanism contributing to NSCLC pathogenesis.
Collapse
Affiliation(s)
- Larissa A Pikor
- Authors' Affiliations: Integrative Oncology, BC Cancer Research Center, Vancouver, BC, Canada; National Institutes of Health, Bethesda, Maryland; Department of Genetics, Harvard Medical School, Boston, Massachusetts; and Hamon Center of Therapeutics, University of Texas South Western, Dallas, Texas
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Lee K, Lau ZZ, Meredith C, Park JH. Decrease of p400 ATPase complex and loss of H2A.Z within the p21 promoter occur in senescent IMR-90 human fibroblasts. Mech Ageing Dev 2012; 133:686-94. [PMID: 23146670 DOI: 10.1016/j.mad.2012.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 09/02/2012] [Accepted: 11/01/2012] [Indexed: 10/27/2022]
Abstract
Replicative senescence in human diploid fibroblasts is characterised by an exhaustion of proliferative potential and permanent cell cycle arrest. During senescence, telomere shortening-generated DNA damage activates p53 pathway that upregulates cell cycle inhibitors, such as p21. Human p400 ATPase is a chromatin remodeller that plays a key role in the deposition of the histone variant, H2A.Z within the p21 promoter, repressing p21 gene expression. Decline of p400 ATPase in senescent IMR-90 cells prompted us to investigate structural changes in the chromatin of the p21 promoter during in vitro aging. Whereas doxorubicin treatment in early-passaged cells results in nucleosome density changes near the p53 binding sites of the p21 promoter, our studies show that senescent cells with a high p21 transcription activity had a comparable nucleosome distribution as unstressed young cells. However, H2A.Z that is highly enriched within the p21 promoter of young cells is depleted in senescent cells, suggesting that downregulation of p400 and loss of H2A.Z localisation play roles in relieving p21 gene repression in senescent IMR-90 cells. Taken together, our results indicate that age-dependent p400 downregulation and loss of H2A.Z localisation may contribute to the onset of replicative senescence through a sustained high rate of p21 transcription.
Collapse
Affiliation(s)
- Kangmoon Lee
- Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
| | | | | | | |
Collapse
|
41
|
Schmitt J, Fischer U, Heisel S, Strickfaden H, Backes C, Ruggieri A, Keller A, Chang P, Meese E. GAS41 amplification results in overexpression of a new spindle pole protein. Genes Chromosomes Cancer 2012; 51:868-80. [PMID: 22619067 DOI: 10.1002/gcc.21971] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 11/08/2022] Open
Abstract
Amplification is a hallmark of many human tumors but the role of most amplified genes in human tumor development is not yet understood. Previously, we identified a frequently amplified gene in glioma termed glioma-amplified sequence 41 (GAS41). Using the TCGA data portal and performing experiments on HeLa and TX3868, we analyzed the role of GAS41 amplification on GAS41 overexpression and the effect on the cell cycle. Here we show that GAS41 amplification is associated with overexpression in the majority of cases. Both induced and endogenous overexpression of GAS41 leads to an increase in multipolar spindles. We showed that GAS41 is specifically associated with pericentrosome material. As result of an increased GAS41 expression we found bipolar spindles with misaligned chromosomes. This number was even increased by a combined overexpression of GAS41 and a reduced expression of NuMA. We propose that GAS41 amplification may have an effect on the highly altered karyotype of glioblastoma via its role during spindle pole formation.
Collapse
Affiliation(s)
- Jana Schmitt
- Department of Human Genetics, Saarland University, Medical School, Homburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Association of chromosome 12 locus with antihypertensive response to hydrochlorothiazide may involve differential YEATS4 expression. THE PHARMACOGENOMICS JOURNAL 2012; 13:257-63. [PMID: 22350108 PMCID: PMC3360116 DOI: 10.1038/tpj.2012.4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A recent genome-wide analysis discovered an association between a haplotype (from rs317689/rs315135/rs7297610) on Chromosome 12q15 and blood pressure response to hydrochlorothiazide (HCTZ) in African-Americans. Our aim was to replicate this association and investigate possible functional mechanisms. We observed similar associations between this haplotype and HCTZ response in an independent sample of 746 Caucasians and African-Americans randomized to HCTZ or atenolol treatment. The haplotype association was driven by variation at rs7297610, where C/C genotypes were associated with greater mean (systolic: 3.4 mmHg, P=0.0275; diastolic: 2.5 mmHg, P=0.0196) responses to HCTZ vs T-allele carriers. Such an association was absent in atenolol-treated participants, supporting this as HCTZ specific. Expression analyses in HCTZ-treated African-Americans showed differential pre-treatment leukocyte YEATS4 expression between rs7297610 genotype groups (P=0.024), and reduced post-treatment expression in C/C genotypes (P=0.009), but not in T-carriers. Our data confirm previous genome-wide findings at 12q15 and suggest differential YEATS4 expression could underpin rs7297610-associated HCTZ response variability, which may have future implications for guiding thiazide treatment.
Collapse
|
43
|
Iwai A, Takegami T, Shiozaki T, Miyazaki T. Hepatitis C virus NS3 protein can activate the Notch-signaling pathway through binding to a transcription factor, SRCAP. PLoS One 2011; 6:e20718. [PMID: 21673954 PMCID: PMC3108961 DOI: 10.1371/journal.pone.0020718] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/09/2011] [Indexed: 11/18/2022] Open
Abstract
Persistent infections of hepatitis C virus (HCV) are known to be a major risk factor for causing hepatocellular carcinomas. Nonstructural protein 3 (NS3) of HCV has serine protease and RNA helicase domains, and is essential for the viral replication. Further, NS3 is also considered to be involved in the development of HCV-induced hepatocellular carcinomas. In this report, we focus on the function of NS3 protein, and propose a novel possible molecular mechanism which is thought to be related to the tumorigenesis caused by the persistent infection of HCV. We identified SRCAP (Snf2-related CBP activator protein) as a NS3 binding protein using yeast two-hybrid screening, and a co-immunoprecipitation assay demonstrated that NS3 can bind to SRCAP in mammalian cells. The results of a reporter gene assay using Hes-1 promoter which is known to be a target gene activated by Notch, indicate that NS3 and SRCAP cooperatively activate the Hes-1 promoter in Hep3B cells. In addition, we show in this report that also p400, which is known as a protein closely resembling SRCAP, would be targeted by NS3. NS3 exhibited binding activity also to the 1449–1808 region of p400 by a co-immunoprecipitation assay, and further the activation of the Notch-mediated transcription of Hes-1 promoter by NS3 decreased significantly by the combined silencing of SRCAP and p400 mRNA using short hairpin RNA. These results suggest that the HCV NS3 protein is involved in the activation of the Notch-signaling pathway through the targeting to both SRCAP and p400.
Collapse
Affiliation(s)
- Atsushi Iwai
- Department of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Hokkaido, Japan
| | - Tsutomu Takegami
- Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
- * E-mail:
| | - Takuya Shiozaki
- Department of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Hokkaido, Japan
| | - Tadaaki Miyazaki
- Department of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Hokkaido, Japan
| |
Collapse
|
44
|
Park JH, Smith RJ, Shieh SY, Roeder RG. The GAS41-PP2Cbeta complex dephosphorylates p53 at serine 366 and regulates its stability. J Biol Chem 2011; 286:10911-7. [PMID: 21317290 DOI: 10.1074/jbc.c110.210211] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The p53 tumor suppressor is principally regulated by post-translational modifications and proteasome-dependent degradation. Various kinases have been shown to phosphorylate p53, but little is known about the counteracting phosphatases. We demonstrate here that the newly identified complex GAS41-PP2Cβ, and not PP2Cβ alone, is specifically required for dephosphorylation of serine 366 on p53. Ectopic expression of GAS41 and PP2Cβ reduces UV radiation-induced p53 up-regulation, thereby increasing the cell survival upon genotoxic DNA damage. To our knowledge, the GAS41-PP2Cβ complex is the first example in which substrate specificity of a PP2C family member is controlled by an associated regulatory subunit. Because GAS41 is frequently amplified in human gliomas, our finding illustrates a novel oncogenic mechanism of GAS41 by p53 dephosphorylation.
Collapse
Affiliation(s)
- Jeong Hyeon Park
- Institute of Molecular Biosciences, Massey University, Palmerston North 4442, New Zealand.
| | | | | | | |
Collapse
|
45
|
New frontiers in the treatment of liposarcoma, a therapeutically resistant malignant cohort. Drug Resist Updat 2010; 14:52-66. [PMID: 21169051 DOI: 10.1016/j.drup.2010.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 11/23/2010] [Indexed: 01/10/2023]
Abstract
The adipogenic origin-derived liposarcoma (LPS) family is the most common soft tissue sarcoma histological subtype. This group is composed of three categories as per the 2002 WHO guidelines: (1) well-differentiated and dedifferentiated liposarcoma (WDLPS/DDLPS); (2) myxoid and round cell liposarcoma (MLS and RCL); and (3) pleomorphic liposarcoma (PLS). While clustered together, these histological subtypes are widely diverse in their clinical, pathological, and molecular characteristics. In general, surgery still remains the mainstay of LPS therapy and the only approach offering the potential of cure. Effective therapeutic strategies for locally advanced and metastatic disease are currently lacking and are crucially needed. With the current gradually increasing knowledge of LPS genetic- and epigenetic-associated deregulations, the ultimate goal is to develop drugs that can specifically eliminate LPS cells while sparing normal tissues. This tumor-tailored target-orientated approach will hopefully result in a significant improvement in the outcome of patients suffering from these poor prognosis malignancies.
Collapse
|
46
|
Schulze JM, Wang AY, Kobor MS. Reading chromatin: insights from yeast into YEATS domain structure and function. Epigenetics 2010; 5:573-7. [PMID: 20657183 DOI: 10.4161/epi.5.7.12856] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Chromatin-modifying complexes typically contain signature domains that either have catalytic activity or recognize and bind to specific histone modifications such as acetylation, methylation, and phosphorylation. Despite tremendous progress in this area, much remains to be learned in particular about the mechanistic functions of less well characterized signature domains. One such module is the evolutionary conserved YEATS domain, found in a variety of chromatin-modifying and transcription complexes from yeast to human. Three yeast proteins contain a YEATS domain, including Yaf9, a subunit of both the histone variant H2A.Z deposition complex SWR1-C and the histone acetyltransferase complex NuA4. The three-dimensional structure of the YEATS domain from Yaf9 was solved recently, revealing the existence of three distinct structural regions. One region is characterized by a shallow groove that might constitute a potential acetyl-lysine binding pocket, raising questions about potential protein interaction partners of the Yaf9 YEATS domain.
Collapse
Affiliation(s)
- Julia M Schulze
- Department of Medical Genetics, University of British Columbia, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, BC, CA
| | | | | |
Collapse
|
47
|
Abstract
The discovery that cancer can be governed above and beyond the level of our DNA presents a new era for designing therapies that reverse the epigenetic state of a tumour cell. Understanding how altered chromatin dynamics leads to malignancy is essential for controlling tumour cells while sparing normal cells. Polycomb and trithorax group proteins are evolutionarily conserved and maintain chromatin in the 'off' or 'on' states, thereby preventing or promoting gene expression, respectively. Recent work highlights the dynamic interplay between these opposing classes of proteins, providing new avenues for understanding how these epigenetic regulators function in tumorigenesis.
Collapse
Affiliation(s)
- Alea A Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.
| |
Collapse
|
48
|
Barretina J, Taylor BS, Banerji S, Ramos AH, Lagos-Quintana M, DeCarolis PL, Shah K, Socci ND, Weir BA, Ho A, Chiang DY, Reva B, Mermel C, Getz G, Antipin Y, Beroukhim R, Major JE, Hatton C, Nicoletti R, Hanna M, Sharpe T, Fennell T, Cibulskis K, Onofrio RC, Saito T, Shukla N, Lau C, Nelander S, Silver S, Sougnez C, Viale A, Winckler W, Maki RG, Garraway LA, Lash A, Greulich H, Root D, Sellers WR, Schwartz GK, Antonescu CR, Lander ES, Varmus HE, Ladanyi M, Sander C, Meyerson M, Singer S. Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nat Genet 2010; 42:715-21. [PMID: 20601955 PMCID: PMC2911503 DOI: 10.1038/ng.619] [Citation(s) in RCA: 597] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 06/09/2010] [Indexed: 12/15/2022]
Abstract
Soft-tissue sarcomas, which result in approximately 10,700 diagnoses and 3,800 deaths per year in the United States, show remarkable histologic diversity, with more than 50 recognized subtypes. However, knowledge of their genomic alterations is limited. We describe an integrative analysis of DNA sequence, copy number and mRNA expression in 207 samples encompassing seven major subtypes. Frequently mutated genes included TP53 (17% of pleomorphic liposarcomas), NF1 (10.5% of myxofibrosarcomas and 8% of pleomorphic liposarcomas) and PIK3CA (18% of myxoid/round-cell liposarcomas, or MRCs). PIK3CA mutations in MRCs were associated with Akt activation and poor clinical outcomes. In myxofibrosarcomas and pleomorphic liposarcomas, we found both point mutations and genomic deletions affecting the tumor suppressor NF1. Finally, we found that short hairpin RNA (shRNA)-based knockdown of several genes amplified in dedifferentiated liposarcoma, including CDK4 and YEATS4, decreased cell proliferation. Our study yields a detailed map of molecular alterations across diverse sarcoma subtypes and suggests potential subtype-specific targets for therapy.
Collapse
Affiliation(s)
- Jordi Barretina
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
- The Broad Institute of M.I.T. and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Barry S. Taylor
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Shantanu Banerji
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
- The Broad Institute of M.I.T. and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Alexis H. Ramos
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
- The Broad Institute of M.I.T. and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Mariana Lagos-Quintana
- Sarcoma Biology Laboratory, Sarcoma Disease Management Program, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Penelope L. DeCarolis
- Sarcoma Biology Laboratory, Sarcoma Disease Management Program, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Kinjal Shah
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
- The Broad Institute of M.I.T. and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Nicholas D. Socci
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Barbara A. Weir
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
- The Broad Institute of M.I.T. and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Alan Ho
- Laboratory of New Drug Development, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Derek Y. Chiang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
- The Broad Institute of M.I.T. and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Boris Reva
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Craig Mermel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
- The Broad Institute of M.I.T. and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Gad Getz
- The Broad Institute of M.I.T. and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Yevgenyi Antipin
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Rameen Beroukhim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
- The Broad Institute of M.I.T. and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - John E. Major
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Charlie Hatton
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | - Richard Nicoletti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | - Megan Hanna
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | - Ted Sharpe
- The Broad Institute of M.I.T. and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Tim Fennell
- The Broad Institute of M.I.T. and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Kristian Cibulskis
- The Broad Institute of M.I.T. and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Robert C. Onofrio
- The Broad Institute of M.I.T. and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Tsuyoshi Saito
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Neerav Shukla
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Christopher Lau
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Sven Nelander
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Serena Silver
- The Broad Institute of M.I.T. and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Carrie Sougnez
- The Broad Institute of M.I.T. and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Agnes Viale
- Genomics Core Laboratory, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Wendy Winckler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
- The Broad Institute of M.I.T. and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Robert G. Maki
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Levi A. Garraway
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
- The Broad Institute of M.I.T. and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Alex Lash
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Heidi Greulich
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
- The Broad Institute of M.I.T. and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - David Root
- The Broad Institute of M.I.T. and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - William R. Sellers
- Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Gary K. Schwartz
- Laboratory of New Drug Development, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Cristina R. Antonescu
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Eric S. Lander
- The Broad Institute of M.I.T. and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Harold E. Varmus
- Program in Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Chris Sander
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
- The Broad Institute of M.I.T. and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
- Departments of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Samuel Singer
- Sarcoma Biology Laboratory, Sarcoma Disease Management Program, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| |
Collapse
|
49
|
Heisel S, Habel NC, Schuetz N, Ruggieri A, Meese E. The YEATS family member GAS41 interacts with the general transcription factor TFIIF. BMC Mol Biol 2010; 11:53. [PMID: 20618999 PMCID: PMC2908078 DOI: 10.1186/1471-2199-11-53] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 07/12/2010] [Indexed: 11/10/2022] Open
Abstract
Background In eukaryotes the transcription initiation by RNA polymerase II requires numerous general and regulatory factors including general transcription factors. The general transcription factor TFIIF controls the activity of the RNA polymerase II both at the initiation and elongation stages. The glioma amplified sequence 41 (GAS41) has been associated with TFIIF via its YEATS domain. Results Using GST pull-down assays, we demonstrated that GAS41 binds to both, the small subunit (RAP30) and the large subunit (RAP74) of TFIIF in vitro. The in vivo interaction of GAS41 and endogenous RAP30 and RAP74 was confirmed by co-immunoprecipitation. GAS41 binds to two non-overlapping regions of the C-terminus of RAP30. There is also an ionic component to the binding between GAS41 and RAP30. There was no evidence for a direct interaction between GAS41 and TBP or between GAS41 and RNA polymerase II. Conclusions Our results demonstrate binding between endogenous GAS41 and the endogenous TFIIF subunits (RAP30 and RAP74). Since we did not find evidence for a binding of GAS41 to TBP or RNA polymerase II, GAS41 seems to preferentially bind to TFIIF. GAS41 that does not contain a DNA-binding domain appears to be a co-factor of TFIIF.
Collapse
Affiliation(s)
- Sabrina Heisel
- Department of Human Genetics, Saarland University, 66421 Homburg, Germany
| | | | | | | | | |
Collapse
|
50
|
Slupianek A, Yerrum S, Safadi FF, Monroy MA. The chromatin remodeling factor SRCAP modulates expression of prostate specific antigen and cellular proliferation in prostate cancer cells. J Cell Physiol 2010; 224:369-75. [PMID: 20432434 DOI: 10.1002/jcp.22132] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The SNF2-related CBP activator protein (SRCAP) serves as a coactivator for several nuclear receptors including the androgen receptor (AR). SRCAP is an ATPase that is the core subunit of a large multiprotein complex and was shown to incorporate the histone variant H2A.Z into nucleosomes. In this report, we demonstrate that SRCAP is expressed in the epithelium of normal prostate and in prostate carcinoma cells, and is associated with AR in the nucleus. Using transient transfection assays we demonstrate that SRCAP activates hormone-dependent transcription of the androgen responsive, prostate specific antigen (PSA)-Luciferase reporter gene in human prostate cells. The in vivo occupancy of SRCAP at the endogenous PSA promoter is demonstrated using chromatin immunoprecipitation assays. ShRNA mediated knockdown of SRCAP resulted in decreased H2A.Z binding at the enhancer region of the PSA promoter and decreased expression of PSA in prostate cancer cells. Furthermore, inhibition of SRCAP expression significantly inhibited androgen dependent prostate cancer cell growth. These data identify SRCAP as a physiologically relevant mediator of PSA expression, and demonstrate that SRCAP plays a role in prostate cancer cell proliferation.
Collapse
Affiliation(s)
- Artur Slupianek
- Department of Microbiology & Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|