1
|
Li S, Sun J, Zhang BW, Yang L, Wan YC, Chen BB, Xu N, Xu QR, Fan J, Shang JN, Li R, Yu CG, Xi Y, Chen S. ATG5 attenuates inflammatory signaling in mouse embryonic stem cells to control differentiation. Dev Cell 2024; 59:882-897.e6. [PMID: 38387460 DOI: 10.1016/j.devcel.2024.01.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/13/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
Attenuated inflammatory response is a property of embryonic stem cells (ESCs). However, the underlying mechanisms are unclear. Moreover, whether the attenuated inflammatory status is involved in ESC differentiation is also unknown. Here, we found that autophagy-related protein ATG5 is essential for both attenuated inflammatory response and differentiation of mouse ESCs and that attenuation of inflammatory signaling is required for mouse ESC differentiation. Mechanistically, ATG5 recruits FBXW7 to promote ubiquitination and proteasome-mediated degradation of β-TrCP1, resulting in the inhibition of nuclear factor κB (NF-κB) signaling and inflammatory response. Moreover, differentiation defects observed in ATG5-depleted mouse ESCs are due to β-TrCP1 accumulation and hyperactivation of NF-κB signaling, as loss of β-TrCP1 and inhibition of NF-κB signaling rescued the differentiation defects. Therefore, this study reveals a previously uncharacterized mechanism maintaining the attenuated inflammatory response in mouse ESCs and further expands the understanding of the biological roles of ATG5.
Collapse
Affiliation(s)
- Sheng Li
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Department of General Surgery of Huaihe Hospital, Henan University, Kaifeng 475004, Henan, China; School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining 272067, Shandong, China
| | - Jin Sun
- School of Laboratory Animal & Shandong Laboratory Animal Center, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Bo-Wen Zhang
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Department of General Surgery of Huaihe Hospital, Henan University, Kaifeng 475004, Henan, China
| | - Lu Yang
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Department of General Surgery of Huaihe Hospital, Henan University, Kaifeng 475004, Henan, China
| | - Ying-Cui Wan
- School of Laboratory Animal & Shandong Laboratory Animal Center, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Bei-Bei Chen
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Department of General Surgery of Huaihe Hospital, Henan University, Kaifeng 475004, Henan, China
| | - Nan Xu
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Department of General Surgery of Huaihe Hospital, Henan University, Kaifeng 475004, Henan, China
| | - Qian-Ru Xu
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Department of General Surgery of Huaihe Hospital, Henan University, Kaifeng 475004, Henan, China
| | - Juan Fan
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Department of General Surgery of Huaihe Hospital, Henan University, Kaifeng 475004, Henan, China
| | - Jia-Ni Shang
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Department of General Surgery of Huaihe Hospital, Henan University, Kaifeng 475004, Henan, China
| | - Rui Li
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Department of General Surgery of Huaihe Hospital, Henan University, Kaifeng 475004, Henan, China
| | - Chen-Ge Yu
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Department of General Surgery of Huaihe Hospital, Henan University, Kaifeng 475004, Henan, China
| | - Yan Xi
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Department of General Surgery of Huaihe Hospital, Henan University, Kaifeng 475004, Henan, China; Zhongzhou Laboratory, Kaifeng 475004, Henan, China.
| | - Su Chen
- Laboratory of Molecular and Cellular Biology, Institute of Metabolism and Health, School of Basic Medical Sciences, Department of General Surgery of Huaihe Hospital, Henan University, Kaifeng 475004, Henan, China; Zhongzhou Laboratory, Kaifeng 475004, Henan, China.
| |
Collapse
|
2
|
Feng M, Wang J, Li K, Nakamura F. UBE2A/B is the trans-acting factor mediating mechanotransduction and contact inhibition. Biochem J 2023; 480:1659-1674. [PMID: 37818922 DOI: 10.1042/bcj20230208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Mechanotransduction and contact inhibition (CI) control gene expression to regulate proliferation, differentiation, and even tumorigenesis of cells. However, their downstream trans-acting factors (TAFs) are not well known due to a lack of a high-throughput method to quantitatively detect them. Here, we developed a method to identify TAFs on the cis-acting sequences that reside in open chromatin or DNaseI-hypersensitive sites (DHSs) and to detect nucleocytoplasmic shuttling TAFs using computational and experimental screening. The DHS-proteomics revealed over 1000 potential mechanosensing TAFs and UBE2A/B (Ubiquitin-conjugating enzyme E2 A) was experimentally identified as a force- and CI-dependent nucleocytoplasmic shuttling TAF. We found that translocation of YAP/TAZ and UBE2A/B are distinctively regulated by inhibition of myosin contraction, actin-polymerization, and CI depending on cell types. Next-generation sequence analysis revealed many downstream genes including YAP are transcriptionally regulated by ubiquitination of histone by UBE2A/B. Our results suggested a YAP-independent mechanotransduction and CI pathway mediated by UBE2A/B.
Collapse
Affiliation(s)
- Mingwei Feng
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jiale Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Kangjing Li
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
3
|
Ren X, Ruan J, Lan X, Yang S, Wu D, Huang X, Zhang H, Liu J, Huang H. SET-mediated epigenetic dysregulation of p53 impairs trichloroethylene-induced DNA damage response. Toxicol Lett 2023; 387:76-83. [PMID: 37769858 DOI: 10.1016/j.toxlet.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Trichloroethylene (TCE) was a widely used industrial solvent, and now has become a major environmental pollutant. Exposure to TCE has been found to result in significant damage to the liver, leading to hepatic toxicity. In our previous study, we discovered that a histone chaperon called SET plays a crucial role in mediating the DNA damage and apoptosis caused by TCE in hepatic cells. However, the precise function of SET in the response to DNA damage is still not fully understood. In this study, we evaluated TCE-induced DNA damage of hepatic L-02 cells with SET-knockdown, then analyzed alterations of H3K79me3 and p53 in hepatic cells and carcinogenic mice livers. Results suggested that SET interferes with DNA response via mediating down-regulation of p53 and partially suppressing H3K79me3 under treatment of TCE. To further verify the regulatory cascade, H3K79me3 was reduced and p53 was knocked down in L-02 cells respectively, and extent of DNA damage was evaluated. Reduced H3K79me3 was found leading to down-regulation of p53 which further exacerbated TCE-induced DNA injury. These findings demonstrated that SET-H3K79me3-p53 served as an epigenetic regulatory axis involved in TCE-induced DNA damage response.
Collapse
Affiliation(s)
- Xiaohu Ren
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| | - Jiawen Ruan
- Shenzhen Nanshan Center for Disease Control and Prevention (current under-employment)
| | - Xuerao Lan
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Sixia Yang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| | - Desheng Wu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| | - Xinfeng Huang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| | - Hongyu Zhang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China.
| | - Haiyan Huang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China.
| |
Collapse
|
4
|
Chen Z, Song M, Wang T, Gao J, Lin F, Dai H, Zhang C. Role of circRNA in E3 Modification under Human Disease. Biomolecules 2022; 12:biom12091320. [PMID: 36139159 PMCID: PMC9496110 DOI: 10.3390/biom12091320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Circular RNA (circRNA) is often regarded as a special kind of non-coding RNA, involved in the regulation mechanism of various diseases, such as tumors, neurological diseases, and inflammation. In a broad spectrum of biological processes, the modification of the 76-amino acid ubiquitin protein generates a large number of signals with different cellular results. Each modification may change the result of signal transduction and participate in the occurrence and development of diseases. Studies have found that circRNA-mediated ubiquitination plays an important role in a variety of diseases. This review first introduces the characteristics of circRNA and ubiquitination and summarizes the mechanism of circRNA in the regulation of ubiquitination in various diseases. It is hoped that the emergence of circRNA-mediated ubiquitination can broaden the diagnosis and prognosis of the disease.
Collapse
Affiliation(s)
- Zishuo Chen
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou 510515, China
| | - Minkai Song
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ting Wang
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou 510515, China
| | - Jiawen Gao
- Division of Spinal Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fei Lin
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou 510515, China
| | - Hui Dai
- Hospital Office, Ganzhou People’s Hospital, Ganzhou 341000, China
- Hospital Office, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou 341000, China
- Correspondence: (H.D.); (C.Z.)
| | - Chao Zhang
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou 510515, China
- Hospital Office, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou 341000, China
- Correspondence: (H.D.); (C.Z.)
| |
Collapse
|
5
|
The circular RNA hsa_circ_0001394 promotes hepatocellular carcinoma progression by targeting the miR-527/UBE2A axis. Cell Death Dis 2022; 8:81. [PMID: 35210429 PMCID: PMC8873434 DOI: 10.1038/s41420-022-00866-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/05/2022] [Accepted: 02/03/2022] [Indexed: 12/04/2022]
Abstract
Circular RNAs (circRNAs) have been recognized as significant participants in the progression of different cancers; however, the detailed mechanisms of circRNAs in hepatocellular carcinoma (HCC) remain unclear. In this study, hsa_circ_0001394 was identified by RNA-seq analysis, and hsa_circ_0001394 was determined to be highly expressed in HCC specimens and cell lines. Patients with high expression of hsa_circ_0001394 tended to exhibit poor survival. Increased hsa_circ_0001394 expression in plasma was closely correlated with clinicopathological features including elevated vascular invasion and an advanced TNM stage, as indicated by alpha-fetoprotein (AFP) analysis. Hsa_circ_0001394 promoted the proliferation, migration, and invasion of HCC cells, whereas knockdown of hsa_circ_0001394 inhibited HCC tumorigenesis in vivo. In addition, mechanistic studies showed that miR-527 negatively interacted with hsa_circ_0001394. Furthermore, UBE2A was revealed to serve as a target of miR-527. Overall, the present study suggested that hsa_circ_0001394 may function as a sponge to promote HCC progression by regulating the miR-527/UBE2A pathway. Thus, hsa_circ_0001394 may become a promising biomarker and potential therapeutic target in HCC treatment.
Collapse
|
6
|
Ye Q, Wang J, Liu X, Liu Z, BaZong L, Ma J, Shen R, Ye W, Zhang W, Wang D. The Role of RAD6B and PEDF in Retinal Degeneration. Neuroscience 2021; 480:19-31. [PMID: 34774969 DOI: 10.1016/j.neuroscience.2021.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022]
Abstract
RAD6B is an E2 ubiquitin-conjugating enzyme, playing an important role in DNA damage repair, gene expression, senescence, apoptosis and protein degradation. However, the specific mechanism between ubiquitin and retinal degeneration requires more investigation. Pigment epithelium-derived factor (PEDF) has a potent neurotrophic effect on the retina, protecting retinal neurons and photoreceptors from cell death caused by pathological damage. In this study, we found that loss of RAD6B leads to retinal degeneration in mice, especially in old age. Affymetrix microarray analysis showed that the PEDF signal was changed in RAD6B deficient groups. The expression of γ-H2AX, β-Gal, P53, Caspase-3, P21 and P16 was increased significantly in retinas of RAD6B knockout (KO) mice. Our studies suggest that RAD6B and PEDF play an important role in the health of retina, whereas the absence of RAD6B accelerates the degeneration.
Collapse
Affiliation(s)
- Qiang Ye
- Institute of Human Anatomy and Histoembryology, Basic Medical College, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China; Department of Ophthalmology, The Second Hospital of Lanzhou University, 82 Cuiying Door, Lanzhou 730000, China
| | - Jiaqi Wang
- Institute of Human Anatomy and Histoembryology, Basic Medical College, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Xiangwen Liu
- Institute of Human Anatomy and Histoembryology, Basic Medical College, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Zihua Liu
- Institute of Human Anatomy and Histoembryology, Basic Medical College, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - LuoSong BaZong
- Department of Ophthalmology, The Second Hospital of Lanzhou University, 82 Cuiying Door, Lanzhou 730000, China
| | - Jinhai Ma
- Department of Ophthalmology, The Second Hospital of Lanzhou University, 82 Cuiying Door, Lanzhou 730000, China
| | - Rong Shen
- Institute of Human Anatomy and Histoembryology, Basic Medical College, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China.
| | - Weichun Ye
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China.
| | - Wenfang Zhang
- Department of Ophthalmology, The Second Hospital of Lanzhou University, 82 Cuiying Door, Lanzhou 730000, China.
| | - Degui Wang
- Institute of Human Anatomy and Histoembryology, Basic Medical College, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China.
| |
Collapse
|
7
|
Osborne HC, Irving E, Forment JV, Schmidt CK. E2 enzymes in genome stability: pulling the strings behind the scenes. Trends Cell Biol 2021; 31:628-643. [PMID: 33685796 DOI: 10.1016/j.tcb.2021.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
Ubiquitin and ubiquitin-like proteins (UBLs) function as critical post-translational modifiers in the maintenance of genome stability. Ubiquitin/UBL-conjugating enzymes (E2s) are responsible, as part of a wider enzymatic cascade, for transferring single moieties or polychains of ubiquitin/UBLs to one or multiple residues on substrate proteins. Recent advances in structural and mechanistic understanding of how ubiquitin/UBL substrate attachment is orchestrated indicate that E2s can exert control over chain topology, substrate-site specificity, and downstream physiological effects to help maintain genome stability. Drug discovery efforts have typically focussed on modulating other members of the ubiquitin/UBL cascades or the ubiquitin-proteasome system. Here, we review the current standing of E2s in genome stability and revisit their potential as pharmacological targets for developing novel anti-cancer therapies.
Collapse
Affiliation(s)
- Hugh C Osborne
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Elsa Irving
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, UK
| | - Josep V Forment
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, UK
| | - Christine K Schmidt
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, UK.
| |
Collapse
|
8
|
Jing YY, Cai FF, Zhang L, Han J, Yang L, Tang F, Li YB, Chang JF, Sun F, Yang XM, Sun FL, Chen S. Epigenetic regulation of the Warburg effect by H2B monoubiquitination. Cell Death Differ 2020; 27:1660-1676. [PMID: 31685978 PMCID: PMC7206070 DOI: 10.1038/s41418-019-0450-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer cells reprogram their energy metabolic system from the mitochondrial oxidative phosphorylation (OXPHOS) pathway to a glucose-dependent aerobic glycolysis pathway. This metabolic reprogramming phenomenon is known as the Warburg effect, a significant hallmark of cancer. However, the detailed mechanisms underlying this event or triggering this reprogramming remain largely unclear. Here, we found that histone H2B monoubiquitination (H2Bub1) negatively regulates the Warburg effect and tumorigenesis in human lung cancer cells (H1299 and A549 cell lines) likely through controlling the expression of multiple mitochondrial respiratory genes, which are essential for OXPHOS. Moreover, our work also suggested that pyruvate kinase M2 (PKM2), the rate-limiting enzyme of glycolysis, can directly interact with H2B in vivo and in vitro and negatively regulate the level of H2Bub1. The inhibition of cell proliferation and nude mice xenograft of human lung cancer cells induced by PKM2 knockdown can be partially rescued through lowering H2Bub1 levels, which indicates that the oncogenic function of PKM2 is achieved, at least partially, through the control of H2Bub1. Furthermore, PKM2 and H2Bub1 levels are negatively correlated in cancer specimens. Therefore, these findings not only provide a novel mechanism triggering the Warburg effect that is mediated through an epigenetic pathway (H2Bub1) but also reveal a novel metabolic regulator (PKM2) for the epigenetic mark H2Bub1. Thus, the PKM2-H2Bub1 axis may become a promising cancer therapeutic target.
Collapse
Grants
- the National Natural Science Foundation of China (Grant No.: 81773009,81972650), the Fundamental Research Funds for the Central Universities (Xi’an Jiao Tong University, Grant No.: 2017qngz13), and the China Postdoctoral Science Foundation (Grant No.: 2017M613149 and 2018T111038).
- the National Key Research and Development Program of China (Grant No.: 2017YFA0103301, 2016YFA0100403), the 973 program of the Ministry of Science and Technology of China (Grant No.: 2015CB856204, 2015CB964802), the National Natural Science Foundation of China (Grant No.: 91419304, 31330043, and 31271534)
Collapse
Affiliation(s)
- Yuan-Ya Jing
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, 200092, PR China
| | - Feng-Feng Cai
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Lei Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, 200092, PR China
| | - Jing Han
- Laboratory of Molecular and Cellular Biology, School of Forensic Sciences, School of Basic Medicine, Center for Translational Medicine at The First Affiliated Hospital, Xi'an Jiao Tong University Health Science Center, Xi'an, 710061, Shaanxi, PR China
| | - Lu Yang
- Laboratory of Molecular and Cellular Biology, School of Forensic Sciences, School of Basic Medicine, Center for Translational Medicine at The First Affiliated Hospital, Xi'an Jiao Tong University Health Science Center, Xi'an, 710061, Shaanxi, PR China
| | - Fan Tang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, 200092, PR China
| | - Ya-Bin Li
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, 200092, PR China
| | - Jian-Feng Chang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, 200092, PR China
| | - Feng Sun
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, 200092, PR China
| | - Xiao-Mei Yang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, 200092, PR China.
| | - Fang-Lin Sun
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, 200092, PR China.
| | - Su Chen
- Laboratory of Molecular and Cellular Biology, School of Forensic Sciences, School of Basic Medicine, Center for Translational Medicine at The First Affiliated Hospital, Xi'an Jiao Tong University Health Science Center, Xi'an, 710061, Shaanxi, PR China.
- School of Forensics and Laboratory Medicine, Jining Medical University, Jining, 272067, Shandong, PR China.
| |
Collapse
|
9
|
Haupt S, Caramia F, Herschtal A, Soussi T, Lozano G, Chen H, Liang H, Speed TP, Haupt Y. Identification of cancer sex-disparity in the functional integrity of p53 and its X chromosome network. Nat Commun 2019; 10:5385. [PMID: 31772231 PMCID: PMC6879765 DOI: 10.1038/s41467-019-13266-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/31/2019] [Indexed: 12/12/2022] Open
Abstract
The disproportionately high prevalence of male cancer is poorly understood. We tested for sex-disparity in the functional integrity of the major tumor suppressor p53 in sporadic cancers. Our bioinformatics analyses expose three novel levels of p53 impact on sex-disparity in 12 non-reproductive cancer types. First, TP53 mutation is more frequent in these cancers among US males than females, with poorest survival correlating with its mutation. Second, numerous X-linked genes are associated with p53, including vital genomic regulators. Males are at unique risk from alterations of their single copies of these genes. High expression of X-linked negative regulators of p53 in wild-type TP53 cancers corresponds with reduced survival. Third, females exhibit an exceptional incidence of non-expressed mutations among p53-associated X-linked genes. Our data indicate that poor survival in males is contributed by high frequencies of TP53 mutations and an inability to shield against deregulated X-linked genes that engage in p53 networks.
Collapse
Affiliation(s)
- Sue Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Victoria, 3000, Australia. .,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Franco Caramia
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Victoria, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Alan Herschtal
- Department of Biometrics Novotech, Carlton, Victoria, 3053, Australia
| | - Thierry Soussi
- Department of Oncology-Pathology, Karolinska Institute, Cancer Center Karolinska, Solna, Sweden.,INSERM, U1138, Centre de Recherche des Cordeliers, Paris, France
| | - Guillermina Lozano
- The University of Texas, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hu Chen
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Han Liang
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Terence P Speed
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Ygal Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Victoria, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3010, Australia.,Department of Clinical Pathology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Guo Z, Tian Y, Guo Y, Li B, Liu X, Xie K, Song Y, Wang D. RAD6B Plays a Critical Role in Neuronal DNA Damage Response to Resist Neurodegeneration. Front Cell Neurosci 2019; 13:392. [PMID: 31507381 PMCID: PMC6716356 DOI: 10.3389/fncel.2019.00392] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/09/2019] [Indexed: 01/31/2023] Open
Abstract
RAD6 participates in DNA double-strand breaks (DSBs) repair by ubiquitinating histone H2B in mitotic cells. In terminally differentiated cells, however, the mechanisms of DNA damage repair are less well known. In this study, we investigate whether RAD6B is involved in DSBs repair in neurons and effects of RAD6B deficiency on neuronal survival. We compared neurons of RAD6B-deficient mice with those of littermate wild type (WT) mice and induced DNA damage by X-ray irradiation. We provide evidence that RAD6B is essential for neural DDR and RAD6B deficiency results in increased genomic instability and neurodegeneration. Moreover, higher levels of p53 and p21 are present in the brains of RAD6B-deficient mice, which may be responsible for neuronal senescence, and degeneration. In addition, behavioral experiments show that RAD6B-deficient mice exhibit marked learning and memory deficits. In conclusion, these findings suggest that RAD6B is critical for neural integrity and that the absence of RAD6B accelerates neurodegeneration in mice.
Collapse
Affiliation(s)
- Zhao Guo
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yingxia Tian
- Department of Internal Medicine, Gansu Provincial Academic Institute for Medical Research, Lanzhou, China
| | - Yingli Guo
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Boya Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiangwen Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Kun Xie
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yanfeng Song
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Degui Wang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
11
|
Shen JD, Fu SZ, Ju LL, Wang YF, Dai F, Liu ZX, Ji HZ, Shao JG, Bian ZL. High expression of ubiquitin-conjugating enzyme E2A predicts poor prognosis in hepatocellular carcinoma. Oncol Lett 2018; 15:7362-7368. [PMID: 29725449 DOI: 10.3892/ol.2018.8189] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 02/01/2018] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to illustrate the association of the expression of ubiquitin-conjugating enzyme E2A (UBE2A) with the clinicopathological parameters and prognosis in hepatocellular carcinoma (HCC). The expression levels of UBE2A mRNA and protein in a total of 276 HCC tissues and six liver cell lines was detected by fluorescent quantitative polymerase chain reaction, western blotting and immunohistochemistry. Statistical analysis was also performed to assess the association of the expression of UBE2A with the clinicopathological parameters and prognosis by the GraphPad Prism and SPSS version 21.0 software. UBE2A mRNA and protein were highly expressed in HCC tissues compared with those in the adjacent normal tissue. Immunohistochemical analysis revealed that UBE2A protein was more strongly stained in the 276 paraffin-embedded HCC tissues as compared with the 63 adjacent normal tissue. Statistical analysis also demonstrated that UBE2A expression was significantly associated with histological differentiation, TNM stage and vascular invasion of HCC (P<0.05). Notably, HCC patients with a high expression of UBE2A had a shorter survival time as compared with those with a low expression of UBE2A. There results suggested that UBE2A may be involved in the pathogenesis of HCC and may serve as an important prognostic marker. Further exploration of the involvement of UBE2A in HCC development may provide novel therapeutic targets.
Collapse
Affiliation(s)
- Jian-Dong Shen
- Department of Invasive Technology, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu 226006, P.R. China
| | - Shou-Zhong Fu
- Department of Invasive Technology, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu 226006, P.R. China
| | - Lin-Ling Ju
- Nantong Institute of Liver Diseases, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu 226006, P.R. China
| | - Yi-Fang Wang
- Nantong Institute of Liver Diseases, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu 226006, P.R. China
| | - Feng Dai
- Department of Invasive Technology, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu 226006, P.R. China
| | - Zhao-Xiu Liu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226021, P.R. China
| | - Han-Zheng Ji
- Library of Nantong Third People's Hospital, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu 226006, P.R. China
| | - Jian-Guo Shao
- Department of Gastroenterology and Hepatology, Nantong Institute of Liver Diseases, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu 226006, P.R. China
| | - Zhao-Lian Bian
- Department of Gastroenterology and Hepatology, Nantong Institute of Liver Diseases, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu 226006, P.R. China
| |
Collapse
|
12
|
Simoes da Silva CJ, Fereres S, Simón R, Busturia A. Drosophila SCE/dRING E3-ligase inhibits apoptosis in a Dp53 dependent manner. Dev Biol 2017; 429:81-91. [DOI: 10.1016/j.ydbio.2017.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/22/2017] [Accepted: 07/09/2017] [Indexed: 10/19/2022]
|
13
|
An H, Yang L, Wang C, Gan Z, Gu H, Zhang T, Huang X, Liu Y, Li Y, Chang SJ, Lai J, Li YB, Chen S, Sun FL. Interactome Analysis Reveals a Novel Role for RAD6 in the Regulation of Proteasome Activity and Localization in Response to DNA Damage. Mol Cell Biol 2017; 37:e00419-16. [PMID: 28031328 PMCID: PMC5335506 DOI: 10.1128/mcb.00419-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/01/2016] [Accepted: 12/04/2016] [Indexed: 01/25/2023] Open
Abstract
RAD6, an E2 ubiquitin-conjugating enzyme, is a key node for determining different DNA damage repair pathways, controlling both the error-prone and the error-free DNA damage repair pathways through differential regulation of the ubiquitination of the proliferating cell nuclear antigen (PCNA) protein. However, whether other pathways are involved in the RAD6-mediated regulation of DNA damage repair is still unclear. To deeply understand the molecular mechanisms of RAD6 in DNA damage repair, we performed a proteomic analysis and identified the changes of the protein-protein interaction (PPI) networks of RAD6 before and after X-ray irradiation. Furthermore, our study indicated that a proteasome-related event is likely involved in the DNA damage repair process. Moreover, we found that RAD6 promotes proteasome activity and nuclear translocation by enhancing the degradation of PSMF1 and the lamin B receptor (LBR). Therefore, we provide a novel pathway that is employed by RAD6 in response to DNA damage.
Collapse
Affiliation(s)
- Hongli An
- Center for Translational Medicine at The First Affiliated Hospital, School of Forensic Sciences, School of Pharmacy, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Lu Yang
- Center for Translational Medicine at The First Affiliated Hospital, School of Forensic Sciences, School of Pharmacy, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Chen Wang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, Shanghai, People's Republic of China
| | - Zhixue Gan
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, Shanghai, People's Republic of China
| | - Haihui Gu
- Department of Transfusion Medicine, Changhai Hospital, Second Military Medical University, Shanghai, Shanghai, People's Republic of China
| | - Tao Zhang
- Center for Translational Medicine at The First Affiliated Hospital, School of Forensic Sciences, School of Pharmacy, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Xin Huang
- Center for Translational Medicine at The First Affiliated Hospital, School of Forensic Sciences, School of Pharmacy, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Yan Liu
- People's Hospital of Zunhua, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, People's Republic of China
| | - Yufeng Li
- People's Hospital of Zunhua, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, People's Republic of China
| | - Shing-Jyh Chang
- Department of Obstetrics and Gynecology, Hsinchu Mackay Memorial Hospital, Hsinchu, Taiwan, Republic of China
| | - Jianghua Lai
- Center for Translational Medicine at The First Affiliated Hospital, School of Forensic Sciences, School of Pharmacy, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Ya-Bin Li
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, Shanghai, People's Republic of China
| | - Su Chen
- Center for Translational Medicine at The First Affiliated Hospital, School of Forensic Sciences, School of Pharmacy, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, Shanghai, People's Republic of China
- People's Hospital of Zunhua, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, People's Republic of China
| | - Fang-Lin Sun
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, Shanghai, People's Republic of China
| |
Collapse
|
14
|
Codrich M, Bertuzzi M, Russo R, Francescatto M, Espinoza S, Zentilin L, Giacca M, Cesselli D, Beltrami AP, Ascenzi P, Zucchelli S, Persichetti F, Leanza G, Gustincich S. Neuronal hemoglobin affects dopaminergic cells' response to stress. Cell Death Dis 2017; 8:e2538. [PMID: 28055011 PMCID: PMC5386368 DOI: 10.1038/cddis.2016.458] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/21/2016] [Accepted: 12/05/2016] [Indexed: 11/14/2022]
Abstract
Hemoglobin (Hb) is the major protein in erythrocytes and carries oxygen (O2) throughout the body. Recently, Hb has been found synthesized in atypical sites, including the brain. Hb is highly expressed in A9 dopaminergic (DA) neurons of the substantia nigra (SN), whose selective degeneration leads to Parkinson's disease (PD). Here we show that Hb confers DA cells' susceptibility to 1-methyl-4-phenylpyridinium (MPP+) and rotenone, neurochemical cellular models of PD. The toxic property of Hb does not depend on O2 binding and is associated with insoluble aggregate formation in the nucleolus. Neurochemical stress induces epigenetic modifications, nucleolar alterations and autophagy inhibition that depend on Hb expression. When adeno-associated viruses carrying α- and β-chains of Hb are stereotaxically injected into mouse SN, Hb forms aggregates and causes motor learning impairment. These results position Hb as a potential player in DA cells' homeostasis and dysfunction in PD.
Collapse
Affiliation(s)
- Marta Codrich
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), via Bonomea 265, Trieste 34136, Italy
- Department of Health Sciences, University of Eastern Piedmont ‘A. Avogadro', via Solaroli 17, 28100 Novara, Italy
| | - Maria Bertuzzi
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), via Bonomea 265, Trieste 34136, Italy
| | - Roberta Russo
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), via Bonomea 265, Trieste 34136, Italy
| | - Margherita Francescatto
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), via Morego 30, Genova 16163, Italy
| | - Stefano Espinoza
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), via Morego 30, Genova 16163, Italy
| | | | | | - Daniela Cesselli
- Department of Medical and Biological Sciences, University of Udine, Piazzale Kolbe 4, Udine, 33100, Italy
| | - Antonio Paolo Beltrami
- Department of Medical and Biological Sciences, University of Udine, Piazzale Kolbe 4, Udine, 33100, Italy
| | - Paolo Ascenzi
- Department of Sciences, University of Roma Tre, viale G. Marconi 446, Roma 00146, Italy
| | - Silvia Zucchelli
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), via Bonomea 265, Trieste 34136, Italy
- Department of Health Sciences, University of Eastern Piedmont ‘A. Avogadro', via Solaroli 17, 28100 Novara, Italy
| | - Francesca Persichetti
- Department of Health Sciences, University of Eastern Piedmont ‘A. Avogadro', via Solaroli 17, 28100 Novara, Italy
| | - Giampiero Leanza
- Department of Life Sciences, University of Trieste, via Fleming 22, Trieste 34127, Italy
| | - Stefano Gustincich
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), via Bonomea 265, Trieste 34136, Italy
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), via Morego 30, Genova 16163, Italy
| |
Collapse
|
15
|
Wang C, Chang JF, Yan H, Wang DL, Liu Y, Jing Y, Zhang M, Men YL, Lu D, Yang XM, Chen S, Sun FL. A conserved RAD6-MDM2 ubiquitin ligase machinery targets histone chaperone ASF1A in tumorigenesis. Oncotarget 2016; 6:29599-613. [PMID: 26336826 PMCID: PMC4745749 DOI: 10.18632/oncotarget.5011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 08/12/2015] [Indexed: 11/25/2022] Open
Abstract
Chromatin is a highly organized and dynamic structure in eukaryotic cells. The change of chromatin structure is essential in many cellular processes, such as gene transcription, DNA damage repair and others. Anti-silencing function 1 (ASF1) is a histone chaperone that participates in chromatin higher-order organization and is required for appropriate chromatin assembly. In this study, we identified the E2 ubiquitin-conjugating enzyme RAD6 as an evolutionary conserved interacting protein of ASF1 in D. melanogaster and H. sapiens that promotes the turnover of ASF1A by cooperating with a well-known E3 ligase, MDM2, via ubiquitin-proteasome pathway in H. sapiens. Further functional analyses indicated that the interplay between RAD6 and ASF1A associates with tumorigenesis. Together, these data suggest that the RAD6-MDM2 ubiquitin ligase machinery is critical for the degradation of chromatin-related proteins.
Collapse
Affiliation(s)
- Chen Wang
- Research Center for Translational Medicine at East Hospital, Tongji University, Shanghai, 200120/200092, China.,School of Life Sciences and Technology, Tongji University, Shanghai, 200120/200092, China.,UN School of Environmental Sciences and Technology, Tongji University, Shanghai, 200120/200092, China
| | - Jian-Feng Chang
- Research Center for Translational Medicine at East Hospital, Tongji University, Shanghai, 200120/200092, China.,School of Life Sciences and Technology, Tongji University, Shanghai, 200120/200092, China
| | - Hongli Yan
- Department of Laboratory Medicine, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China
| | - Da-Liang Wang
- Institute of Epigenetics and Cancer Research, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yan Liu
- Institute of Epigenetics and Cancer Research, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yuanya Jing
- School of Life Sciences and Technology, Tongji University, Shanghai, 200120/200092, China
| | - Meng Zhang
- School of Life Sciences and Technology, Tongji University, Shanghai, 200120/200092, China
| | - Yu-Long Men
- School of Life Sciences and Technology, Tongji University, Shanghai, 200120/200092, China
| | - Dongdong Lu
- School of Life Sciences and Technology, Tongji University, Shanghai, 200120/200092, China
| | - Xiao-Mei Yang
- School of Life Sciences and Technology, Tongji University, Shanghai, 200120/200092, China
| | - Su Chen
- Research Center for Translational Medicine at East Hospital, Tongji University, Shanghai, 200120/200092, China.,School of Life Sciences and Technology, Tongji University, Shanghai, 200120/200092, China.,Department of Science and Education, People's Hospital of Zunhua, Tangshan, Hebei, 064200, China
| | - Fang-Lin Sun
- Research Center for Translational Medicine at East Hospital, Tongji University, Shanghai, 200120/200092, China.,School of Life Sciences and Technology, Tongji University, Shanghai, 200120/200092, China
| |
Collapse
|
16
|
Cheng CM, Shiah SG, Huang CC, Hsiao JR, Chang JY. Up-regulation of miR-455-5p by the TGF-β-SMAD signalling axis promotes the proliferation of oral squamous cancer cells by targeting UBE2B. J Pathol 2016; 240:38-49. [PMID: 27235675 DOI: 10.1002/path.4752] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/31/2016] [Accepted: 05/14/2016] [Indexed: 01/07/2023]
Abstract
MicroRNAs (miRNAs) are involved in the tumourigenesis of various cancers by regulating their downstream targets. To identify the changes of miRNAs in oral squamous cell carcinoma (OSCC), we investigated the expression profiles of miRNAs in 40 pairs of OSCC specimens and their matched non-tumour epithelial tissues. Our data revealed higher miR-455-5p expression in the tumour tissues than in the normal tissues; the expression was also higher in oral cancer cell lines than in normal keratinocyte cell lines. MiR-455-5p knockdown reduced both the anchorage-independent growth and the proliferative ability of oral cancer cells, and these factors increased in miR-455-5p-overexpressing cells. Furthermore, by analysing the array data of patients with cancer and cell lines, we identified ubiquitin-conjugating enzyme E2B (UBE2B) as a target of miR-455-5p, and further validated this using 3'-untranslated region luciferase reporter assays and western blot analysis. We also demonstrated that UBE2B suppression rescued the impaired growth ability of miR-455-5p-knockdown cells. Furthermore, we observed that miR-455-5p expression was regulated, at least in part, by the transforming growth factor-β (TGF-β) pathway through the binding of SMAD3 to specific promoter regions. Notably, miR-455-5p expression was associated with the nodal status, stage, and overall survival in our patients, suggesting that miR-455-5p is a potential marker for predicting the prognosis of patients with oral cancer. In conclusion, we reveal that miR-455-5p expression is regulated by the TGF-β-dependent pathway, which subsequently leads to UBE2B down-regulation and contributes to oral cancer tumourigenesis. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Chao-Min Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.,National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan, ROC
| | - Shine-Gwo Shiah
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan, ROC
| | - Chien-Chang Huang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan, ROC
| | - Jenn-Ren Hsiao
- Department of Otolaryngology, Head and Neck Collaborative Oncology Group, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Jang-Yang Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.,National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan, ROC.,Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| |
Collapse
|
17
|
Polge C, Leulmi R, Jarzaguet M, Claustre A, Combaret L, Béchet D, Heng AE, Attaix D, Taillandier D. UBE2B is implicated in myofibrillar protein loss in catabolic C2C12 myotubes. J Cachexia Sarcopenia Muscle 2016; 7:377-87. [PMID: 27239408 PMCID: PMC4864198 DOI: 10.1002/jcsm.12060] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 06/18/2015] [Accepted: 07/07/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Skeletal muscle protein loss is an adaptive response to various patho-physiological situations, and the ubiquitin proteasome system (UPS) is responsible for the degradation of the bulk of muscle proteins. The role of E2 ubiquitin-conjugating enzymes is still poorly understood in skeletal muscle. METHODS We screened for E2s expression levels in C2C12 myotubes submitted to the catabolic glucocorticoid dexamethasone (Dex). RESULTS One micromolar Dex induced an accumulation of proteasome substrates (polyUb conjugates) and an overexpression of the muscle-specific E3 ligase MuRF1 and of six E2 enzymes, UBE2A, UBE2B, UBE2D1, UBE2D2, UBE2G1, and UBE2J1. However, only MuRF1 and UBE2B were sensitive to mild catabolic conditions (0.16 μM Dex). UBE2B knockdown induced a sharp decrease of total (-18%) and K48 (-28%) Ub conjugates, that is, proteasome substrates, indicating an important role of UBE2B in the overall protein breakdown in catabolic myotubes. CONCLUSIONS Interestingly, these results indicate an important role of UBE2B on muscle protein homeostasis during catabolic conditions.
Collapse
Affiliation(s)
- Cécile Polge
- INRA, UMR 1019, UNH, CRNH Auvergne Saint Genès Champanelle F-63122 France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine BP 10448 Clermont-Ferrand F-63000 France
| | - Roza Leulmi
- INRA, UMR 1019, UNH, CRNH Auvergne Saint Genès Champanelle F-63122 France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine BP 10448 Clermont-Ferrand F-63000 France
| | - Marianne Jarzaguet
- INRA, UMR 1019, UNH, CRNH Auvergne Saint Genès Champanelle F-63122 France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine BP 10448 Clermont-Ferrand F-63000 France
| | - Agnes Claustre
- INRA, UMR 1019, UNH, CRNH Auvergne Saint Genès Champanelle F-63122 France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine BP 10448 Clermont-Ferrand F-63000 France
| | - Lydie Combaret
- INRA, UMR 1019, UNH, CRNH Auvergne Saint Genès Champanelle F-63122 France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine BP 10448 Clermont-Ferrand F-63000 France
| | - Daniel Béchet
- INRA, UMR 1019, UNH, CRNH Auvergne Saint Genès Champanelle F-63122 France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine BP 10448 Clermont-Ferrand F-63000 France
| | - Anne-Elisabeth Heng
- INRA, UMR 1019, UNH, CRNH Auvergne Saint Genès Champanelle F-63122 France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine BP 10448 Clermont-Ferrand F-63000 France; Service de Néphrologie Réanimation Médicale, Pôle Respiratoire, Endocrinologie-Diabétologie, Urologie, Néphrologie-Dialyse, Nutrition Clinique, Infectiologie, Réanimation Médicale, Hygiène Hospitalière (REUNNIRH) Clermont-Ferrand France
| | - Didier Attaix
- INRA, UMR 1019, UNH, CRNH Auvergne Saint Genès Champanelle F-63122 France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine BP 10448 Clermont-Ferrand F-63000 France
| | - Daniel Taillandier
- INRA, UMR 1019, UNH, CRNH Auvergne Saint Genès Champanelle F-63122 France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine BP 10448 Clermont-Ferrand F-63000 France
| |
Collapse
|
18
|
Shafiee SM, Rasti M, Seghatoleslam A, Azimi T, Owji AA. UBE2Q1 in a Human Breast Carcinoma Cell Line: Overexpression and Interaction with p53. Asian Pac J Cancer Prev 2016; 16:3723-7. [PMID: 25987028 DOI: 10.7314/apjcp.2015.16.9.3723] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The p53 tumor suppressor protein is a principal mediator of growth arrest, senescence, and apoptosis in response to a broad array of cellular damage. p53 is a substrate for the ubiquitin-proteasome system, however, the ubiquitin-conjugating enzymes (E2s) involved in p53 ubiquitination have not been well studied. UBE2Q1 is a novel E2 ubiquitin conjugating enzyme gene. Here, we investigated the effect of UBE2Q1 overexpression on the level of p53 in the MDA-MB-468 breast cancer cell line as well as the interaction between UBE2Q1 and p53. By using a lipofection method, the p53 mutated breast cancer cell line, MDA-MB-468, was transfected with the vector pCMV6-AN-GFP, containing UBE2Q1 ORF. Western blot analysis was employed to verify the overexpression of UBE2Q1 in MDA-MB-468 cells and to evaluate the expression level of p53 before and after cell transfection. Immunoprecipitation and GST pull-down protocols were used to investigate the binding of UBE2Q1 to p53. We established MDA-MB-468 cells that transiently expressed a GFP fusion proteins containing UBE2Q1 (GFP-UBE2Q1). Western blot analysis revealed that levels of p53 were markedly lower in UBE2Q1 transfected MDA-MB-468 cells as compared with control MDA-MB-468 cells. Both in vivo and in vitro data showed that UBE2Q1 co-precipitated with p53 protein. Our data for the first time showed that overexpression of UBE2Q1can lead to the repression of p53 in MDA-MB-468 cells. This repression of p53 may be due to its UBE2Q1 mediated ubiquitination and subsequent proteasome degradation, a process that may involve direct interaction of UBE2Q1with p53.
Collapse
Affiliation(s)
- Sayed Mohammad Shafiee
- Departments of Biochemistry- Recombinant Protein Laboratory, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran E-mail :
| | | | | | | | | |
Collapse
|
19
|
Blackburn J, Roden DL, Ng R, Wu J, Bosman A, Epstein RJ. Damage-inducible intragenic demethylation of the human TP53 tumor suppressor gene is associated with transcription from an alternative intronic promoter. Mol Carcinog 2015; 55:1940-1951. [PMID: 26676339 PMCID: PMC5111752 DOI: 10.1002/mc.22441] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 10/29/2015] [Accepted: 11/17/2015] [Indexed: 12/23/2022]
Abstract
Wild-type TP53 exons 5-8 contain CpG dinucleotides that are prone to methylation-dependent mutation during carcinogenesis, but the regulatory effects of methylation affecting these CpG sites are unclear. To clarify this, we first assessed site-specific TP53 CpG methylation in normal and transformed cells. Both DNA damage and cell ageing were associated with site-specific CpG demethylation in exon 5 accompanied by induction of a truncated TP53 isoform regulated by an adjacent intronic promoter (P2). We then synthesized novel synonymous TP53 alleles with divergent CpG content but stable encodement of the wild-type polypeptide. Expression of CpG-enriched TP53 constructs selectively reduced production of the full-length transcript (P1), consistent with a causal relationship between intragenic demethylation and transcription. 450K methylation comparison of normal (TP53-wildtype) and cancerous (TP53-mutant) human cells and tissues revealed focal cancer-associated declines in CpG methylation near the P1 transcription start site, accompanied by rises near the alternate exon 5 start site. These data confirm that site-specific changes of intragenic TP53 CpG methylation are extrinsically inducible, and suggest that human cancer progression is mediated in part by dysregulation of damage-inducible intragenic CpG demethylation that alters TP53 P1/P2 isoform expression. © 2015 The Authors. Molecular Carcinogenesis Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- James Blackburn
- Laboratory of Genome Evolution, The Kinghorn Cancer Centre, Garvan Institute for Medical Research, Sydney, Australia.,UNSW Medicine, St. Vincent's Clinical School, Darlinghurst, Sydney, Australia
| | - Daniel L Roden
- Laboratory of Cancer Biology, The Kinghorn Cancer Centre, Garvan Institute for Medical Research, Sydney, Australia
| | - Robert Ng
- Laboratory of Genome Evolution, The Kinghorn Cancer Centre, Garvan Institute for Medical Research, Sydney, Australia.,UNSW Medicine, St. Vincent's Clinical School, Darlinghurst, Sydney, Australia
| | - Jianmin Wu
- Laboratory of Cancer Bioinformatics, The Kinghorn Cancer Centre, Garvan Institute for Medical Research, Sydney, Australia
| | - Alexis Bosman
- Laboratory of Developmental and Stem Cell Biology, Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Richard J Epstein
- Laboratory of Genome Evolution, The Kinghorn Cancer Centre, Garvan Institute for Medical Research, Sydney, Australia.,UNSW Medicine, St. Vincent's Clinical School, Darlinghurst, Sydney, Australia.,Clinical Informatics & Research Centre, Department of Oncology, St. Vincent's Hospital, Sydney, Australia
| |
Collapse
|
20
|
Polge C, Attaix D, Taillandier D. Role of E2-Ub-conjugating enzymes during skeletal muscle atrophy. Front Physiol 2015; 6:59. [PMID: 25805999 PMCID: PMC4354305 DOI: 10.3389/fphys.2015.00059] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/14/2015] [Indexed: 01/05/2023] Open
Abstract
The Ubiquitin Proteasome System (UPS) is a major actor of muscle wasting during various physio-pathological situations. In the past 15 years, increasing amounts of data have depicted a picture, although incomplete, of the mechanisms implicated in myofibrillar protein degradation, from the discovery of muscle-specific E3 ligases to the identification of the signaling pathways involved. The targeting specificity of the UPS relies on the capacity of the system to first recognize and then label the proteins to be degraded with a poly-ubiquitin (Ub) chain. It is fairly assumed that the recognition of the substrate is accomplished by the numerous E3 ligases present in mammalian cells. However, most E3s do not possess any catalytic activity and E2 enzymes may be more than simple Ub-providers for E3s since they are probably important actors in the ubiquitination machinery. Surprisingly, most authors have tried to characterize E3 substrates, but the exact role of E2s in muscle protein degradation is largely unknown. A very limited number of the 35 E2s described in humans have been studied in muscle protein breakdown experiments and the vast majority of studies were only descriptive. We review here the role of E2 enzymes in skeletal muscle and the difficulties linked to their study and provide future directions for the identification of muscle E2s responsible for the ubiquitination of contractile proteins.
Collapse
Affiliation(s)
- Cecile Polge
- UMR 1019 Nutrition Humaine, Institut National de la Recherche Agronomique Saint Genès Champanelle, France
| | - Didier Attaix
- UMR 1019 Nutrition Humaine, Institut National de la Recherche Agronomique Saint Genès Champanelle, France
| | - Daniel Taillandier
- UMR 1019 Nutrition Humaine, Institut National de la Recherche Agronomique Saint Genès Champanelle, France
| |
Collapse
|
21
|
Cai F, Chen P, Chen L, Biskup E, Liu Y, Chen PC, Chang JF, Jiang W, Jing Y, Chen Y, Jin H, Chen S. Human RAD6 promotes G1-S transition and cell proliferation through upregulation of cyclin D1 expression. PLoS One 2014; 9:e113727. [PMID: 25409181 PMCID: PMC4237501 DOI: 10.1371/journal.pone.0113727] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/28/2014] [Indexed: 11/19/2022] Open
Abstract
Protein ubiquitinylation regulates protein stability and activity. RAD6, an E2 ubiquitin-conjugating enzyme, which that has been substantially biochemically characterized, functions in a number of biologically relevant pathways, including cell cycle progression. In this study, we show that RAD6 promotes the G1-S transition and cell proliferation by regulating the expression of cyclin D1 (CCND1) in human cells. Furthermore, our data indicate that RAD6 influences the transcription of CCND1 by increasing monoubiquitinylation of histone H2B and trimethylation of H3K4 in the CCND1 promoter region. Our study presents, for the first time, an evidence for the function of RAD6 in cell cycle progression and cell proliferation in human cells, raising the possibility that RAD6 could be a new target for molecular diagnosis and prognosis in cancer therapeutics.
Collapse
Affiliation(s)
- Fengfeng Cai
- School of Life Sciences and Technology, Department of Breast Surgery of Yangpu Hospital, Research Center for Translational Medicine at East Hospital, Tongji University, Shanghai, P. R. China
| | - Ping Chen
- School of Life Sciences and Technology, Department of Breast Surgery of Yangpu Hospital, Research Center for Translational Medicine at East Hospital, Tongji University, Shanghai, P. R. China
| | - Li Chen
- School of Life Sciences and Technology, Department of Breast Surgery of Yangpu Hospital, Research Center for Translational Medicine at East Hospital, Tongji University, Shanghai, P. R. China
| | - Ewelina Biskup
- Department of Oncology, University Hospital of Basel, Basel, Switzerland
| | - Yan Liu
- College of Life Sciences, Hebei United University, Tangshan, Hebei Province, P. R. China
- The Cancer Institute, Tangshan People’s Hospital, Tangshan, Hebei Province, P. R. China
| | - Pei-Chao Chen
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang Province, P. R. China
| | - Jian-Feng Chang
- School of Life Sciences and Technology, Department of Breast Surgery of Yangpu Hospital, Research Center for Translational Medicine at East Hospital, Tongji University, Shanghai, P. R. China
| | - Wenjie Jiang
- School of Life Sciences and Technology, Department of Breast Surgery of Yangpu Hospital, Research Center for Translational Medicine at East Hospital, Tongji University, Shanghai, P. R. China
| | - Yuanya Jing
- School of Life Sciences and Technology, Department of Breast Surgery of Yangpu Hospital, Research Center for Translational Medicine at East Hospital, Tongji University, Shanghai, P. R. China
| | - Youwei Chen
- School of Life Sciences and Technology, Department of Breast Surgery of Yangpu Hospital, Research Center for Translational Medicine at East Hospital, Tongji University, Shanghai, P. R. China
| | - Hui Jin
- Department of Biochemistry and Molecular Cell Biology, School of Medcine, Shanghai Jiao Tong University, Shanghai, P. R. China
- * E-mail: (SC); (HJ)
| | - Su Chen
- School of Life Sciences and Technology, Department of Breast Surgery of Yangpu Hospital, Research Center for Translational Medicine at East Hospital, Tongji University, Shanghai, P. R. China
- * E-mail: (SC); (HJ)
| |
Collapse
|
22
|
RAD6 promotes homologous recombination repair by activating the autophagy-mediated degradation of heterochromatin protein HP1. Mol Cell Biol 2014; 35:406-16. [PMID: 25384975 DOI: 10.1128/mcb.01044-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Efficient DNA double-strand break (DSB) repair is critical for the maintenance of genome stability. Unrepaired or misrepaired DSBs cause chromosomal rearrangements that can result in severe consequences, such as tumorigenesis. RAD6 is an E2 ubiquitin-conjugating enzyme that plays a pivotal role in repairing UV-induced DNA damage. Here, we present evidence that RAD6 is also required for DNA DSB repair via homologous recombination (HR) by specifically regulating the degradation of heterochromatin protein 1α (HP1α). Our study indicates that RAD6 physically interacts with HP1α and ubiquitinates HP1α at residue K154, thereby promoting HP1α degradation through the autophagy pathway and eventually leading to an open chromatin structure that facilitates efficient HR DSB repair. Furthermore, bioinformatics studies have indicated that the expression of RAD6 and HP1α exhibits an inverse relationship and correlates with the survival rate of patients.
Collapse
|
23
|
Read ML, Seed RI, Fong JCW, Modasia B, Ryan GA, Watkins RJ, Gagliano T, Smith VE, Stratford AL, Kwan PK, Sharma N, Dixon OM, Watkinson JC, Boelaert K, Franklyn JA, Turnell AS, McCabe CJ. The PTTG1-binding factor (PBF/PTTG1IP) regulates p53 activity in thyroid cells. Endocrinology 2014; 155:1222-34. [PMID: 24506068 PMCID: PMC4759943 DOI: 10.1210/en.2013-1646] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The PTTG1-binding factor (PBF/PTTG1IP) has an emerging repertoire of roles, especially in thyroid biology, and functions as a protooncogene. High PBF expression is independently associated with poor prognosis and lower disease-specific survival in human thyroid cancer. However, the precise role of PBF in thyroid tumorigenesis is unclear. Here, we present extensive evidence demonstrating that PBF is a novel regulator of p53, a tumor suppressor protein with a key role in maintaining genetic stability, which is infrequently mutated in differentiated thyroid cancer. By coimmunoprecipitation and proximity-ligation assays, we show that PBF binds specifically to p53 in thyroid cells and significantly represses transactivation of responsive promoters. Further, we identify that PBF decreases p53 stability by enhancing ubiquitination, which appears dependent on the E3 ligase activity of Mdm2. Impaired p53 function was evident in a transgenic mouse model with thyroid-specific PBF overexpression (transgenic PBF mice), which had significantly increased genetic instability as indicated by fluorescent inter simple sequence repeat-PCR analysis. Consistent with this, approximately 40% of all DNA repair genes examined were repressed in transgenic PBF primary cultures, including genes with critical roles in maintaining genomic integrity such as Mgmt, Rad51, and Xrcc3. Our data also revealed that PBF induction resulted in up-regulation of the E2 enzyme Rad6 in murine thyrocytes and was associated with Rad6 expression in human thyroid tumors. Overall, this work provides novel insights into the role of the protooncogene PBF as a negative regulator of p53 function in thyroid tumorigenesis, in which PBF is generally overexpressed and p53 mutations are rare compared with other tumor types.
Collapse
Affiliation(s)
- Martin L Read
- School of Clinical and Experimental Medicine (M.L.R., R.I.S., J.C.W.F., B.M., G.A.R., R.J.W., V.E.S., P.K.K., N.S., O.M.D., K.B., J.A.F., C.J.M.) and School of Cancer Sciences (A.S.T.), University of Birmingham, Birmingham, United Kingdom; Department of Medical Sciences (T.G.), University of Ferrara, Ferrara, Italy; Department of Pediatrics (A.L.S.), University of British Columbia, Vancouver, British Columbia, Canada; and University Hospitals Birmingham National Health Service Foundation Trust (J.C.W.), Birmingham, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Breast cancer is the most common malignancy in women and a significant cause of morbidity and mortality. Sub-types of breast cancer defined by the expression of steroid hormones and Her2/Neu oncogene have distinct prognosis and undergo different therapies. Besides differing in their phenotype, sub-types of breast cancer display various molecular lesions that participate in their pathogenesis. BRCA1 is one of the common hereditary cancer predisposition genes and encodes for an ubiquitin ligase. Ubiquitin ligases or E3 enzymes participate together with ubiquitin activating enzyme and ubiquitin conjugating enzymes in the attachment of ubiquitin (ubiquitination) in target proteins. Ubiquitination is a post-translational modification regulating multiple cell functions. It also plays important roles in carcinogenesis in general and in breast carcinogenesis in particular. Ubiquitin conjugating enzymes are a central component of the ubiquitination machinery and are often perturbed in breast cancer. This paper will discuss ubiquitin and ubiquitin-like proteins conjugating enzymes participating in breast cancer pathogenesis, their relationships with other proteins of the ubiquitination machinery and their role in phenotype of breast cancer sub-types.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Centre Pluridisciplinaire d'Oncologie, BH06, University Hospital of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
25
|
Histone H2B lysine 120 monoubiquitination is required for embryonic stem cell differentiation. Cell Res 2012; 22:1402-5. [PMID: 22847742 DOI: 10.1038/cr.2012.114] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|