1
|
Fitz-James MH, Tong P, Pidoux AL, Ozadam H, Yang L, White SA, Dekker J, Allshire RC. Large domains of heterochromatin direct the formation of short mitotic chromosome loops. eLife 2020; 9:e57212. [PMID: 32915140 PMCID: PMC7515631 DOI: 10.7554/elife.57212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022] Open
Abstract
During mitosis chromosomes reorganise into highly compact, rod-shaped forms, thought to consist of consecutive chromatin loops around a central protein scaffold. Condensin complexes are involved in chromatin compaction, but the contribution of other chromatin proteins, DNA sequence and histone modifications is less understood. A large region of fission yeast DNA inserted into a mouse chromosome was previously observed to adopt a mitotic organisation distinct from that of surrounding mouse DNA. Here, we show that a similar distinct structure is common to a large subset of insertion events in both mouse and human cells and is coincident with the presence of high levels of heterochromatic H3 lysine nine trimethylation (H3K9me3). Hi-C and microscopy indicate that the heterochromatinised fission yeast DNA is organised into smaller chromatin loops than flanking euchromatic mouse chromatin. We conclude that heterochromatin alters chromatin loop size, thus contributing to the distinct appearance of heterochromatin on mitotic chromosomes.
Collapse
Affiliation(s)
- Maximilian H Fitz-James
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Pin Tong
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Alison L Pidoux
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Hakan Ozadam
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Liyan Yang
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Sharon A White
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
| | - Robin C Allshire
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Abstract
The pharmaceutical approach to somatic gene therapy is based on consideration of a gene as a chemical entity with specific physical, chemical and colloidal properties. The genes that are required for gene therapy are large molecules (> 1 x 10(6) Daltons, > 100 nm diameter) with a net negative charge that prevents diffusion through biological barriers such as an intact endothelium, the plasma membrane or the nuclear membrane. New methods for gene therapy are based on increasing knowledge of the pathways by which DNA may be internalized into cells and traffic to the nucleus, pharmaceutical experience with particulate drug delivery systems, and the ability to control gene expression with recombined genetic elements. This article reviews two themes in the development of gene therapies: first, the current approaches involving the administration of cells, viruses and plasmid DNA; second, the emerging pharmaceutical approach to gene therapy based on the pharmaceutical characteristics of DNA itself and methods for advanced drug delivery.
Collapse
Affiliation(s)
- F D Ledley
- GENEMEDICINE, INC., Woodlands, Texas 77381, USA
| |
Collapse
|
3
|
Francès V, Bastin M. Gene targeting in rat embryo fibroblasts promoted by the polyomavirus large T antigen. Nucleic Acids Res 1996; 24:1999-2004. [PMID: 8668528 PMCID: PMC145918 DOI: 10.1093/nar/24.11.1999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We used the recombination-promoting activity of the polyomavirus large T antigen (T-ag) to increase the frequency of gene targeting in rat fibroblasts. We constructed a cell line carrying a functional polyomavirus replication origin and a transformation-defective middle T-ag oncogene. The structure of the locus was such that homologous recombination with the targeting DNA reconstituted a functional transforming gene and converted the cells from the normal to the transformed state. Introduction of the large T-ag with the targeting DNA promoted recombinational events that corrected the mutation in either the target locus or the targeting DNA. The frequency of recombination was not substantially influenced by the extent of homology between the recombining sequences. However, it was reduced when the replication origin was inactivated in the targeting DNA, and was reduced further when the origin was inactivated in the target locus.
Collapse
Affiliation(s)
- V Francès
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | |
Collapse
|
4
|
St-Onge L, Bouchard L, Laurent S, Bastin M. Intrachromosomal recombination mediated by papovavirus large T antigens. J Virol 1990; 64:2958-66. [PMID: 2159556 PMCID: PMC249480 DOI: 10.1128/jvi.64.6.2958-2966.1990] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To investigate the mechanism by which the large T antigen (T-Ag) of polyomavirus and simian virus 40 can promote recombination in mammalian cells, we analyzed homologous recombination events occurring between two defective copies of the polyomavirus middle T (pmt) oncogene lying in close proximity on the same chromosome in a rat cell line. Reconstitution of a functional pmt gene by spontaneous recombination occurred at a rate of about 2 x 10(-7) per cell generation. Introduction of the polyomavirus large T (plt) oncogene into the cell line by DNA transfection promoted recombination very efficiently, with rates in the range of 10(-1) to 10(-2) per cell generation. Recombination was independent of any amplification of viral sequences and could even be promoted by the large T-Ag from simian virus 40, which cannot activate polyomavirus DNA replication. To explain the role of large T-Ag, we propose a novel mechanism of nonconservative recombination involving slipped-strand mispairing between the two viral repeats followed by gap repair synthesis.
Collapse
Affiliation(s)
- L St-Onge
- Department of Microbiology, University of Sherbrooke, Quebec, Canada
| | | | | | | |
Collapse
|
5
|
Kwoh TJ, Obermiller PS, McCue AW, Kwoh DY, Sullivan SA, Gingeras TR. Introduction and expression of the bacterial PaeR7 restriction endonuclease gene in mouse cells containing the PaeR7 methylase. Nucleic Acids Res 1988; 16:11489-506. [PMID: 2850539 PMCID: PMC339060 DOI: 10.1093/nar/16.24.11489] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
To study the factors essential for a functional restriction system, the PaeR7 restriction-modification system has been introduced and expressed in murine cells. Transfer of this system was accomplished in two steps. First, cells containing sufficient PaeR7 methylase to completely methylate the mouse genome were constructed. In the second step, the mouse metallothionein promoter-regulated, endonuclease expression vector linked to the hygromycin B resistance selection marker was used to transfect the high methylase-expressing cells. Sixty percent of the clones isolated contained PaeR7 endonuclease enzymatic activity. Transfected cells expressing both methylase and endonuclease were incapable of blocking infection by DNA viruses, and possible explanations are discussed.
Collapse
Affiliation(s)
- T J Kwoh
- La Jolla Biological Laboratories, San Diego, CA 92138
| | | | | | | | | | | |
Collapse
|
6
|
Farzaneh F, Panayotou GN, Bowler LD, Hardas BD, Broom T, Walther C, Shall S. ADP-ribosylation is involved in the integration of foreign DNA into the mammalian cell genome. Nucleic Acids Res 1988; 16:11319-26. [PMID: 3144706 PMCID: PMC339012 DOI: 10.1093/nar/16.23.11319] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The most commonly used DNA transfection method, which employs the calcium phosphate co-precipitation of the donor DNA, involves several discrete steps (1,2). These include the uptake of the donor DNA by the recipient cells, the transport of the DNA to the nucleus, transient expression prior to integration into the host cell genome, concatenation and integration of the transfected DNA into the host cell genome and finally the stable expression of the integrated genes (2,3). Both the concatenation and the integration of the donor DNA into the host genome involve the formation and ligation of DNA strand-breaks. In the present study we demonstrate that the nuclear enzyme, adenosine diphosphoribosyl transferase (ADPRT, E.C. 2.4.2.30), which is dependent on the presence of DNA strand breaks for its activity (4,5) and necessary for the efficient ligation of DNA strand-breaks in eukaryotic cells (4,6), is required for the integration of donor DNA into the host genome. However, ADPRT activity does not influence the uptake of DNA into the cell, its episomal maintenance or replication, nor its expression either before or after integration into the host genome. These observations strongly suggest the involvement of ADPRT activity in eukaryotic DNA recombination events.
Collapse
Affiliation(s)
- F Farzaneh
- Cell and Molecular Biology Laboratory, University of Sussex, Brighton, UK
| | | | | | | | | | | | | |
Collapse
|
7
|
Gimmi ER, Soprano KJ, Rosenberg M, Reff ME. Deletions in the SV40 late polyadenylation region downstream of the AATAAA mediate similar effects on expression in various mammalian cell lines. Nucleic Acids Res 1988; 16:8977-97. [PMID: 2845363 PMCID: PMC338647 DOI: 10.1093/nar/16.18.8977] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A series of deletions in the SV40 late polyadenylation region was assayed by transient expression in a hamster fibroblast cell line. Because of differences in expression data between our results and the published results of another laboratory using a similar set of deletions introduced into a monkey kidney cell line, we studied our deletions in cells of different tissue-types and species (1). Deletion of the SV40 late polyadenylation region to 49 nucleotides downstream of the hexanucleotide AATAAA showed a small effect on gene expression, while further truncation of the region to 6 nucleotides downstream of the AATAAA showed an 85% drop in marker enzyme activity, protein levels and steady-state message levels. Another deletion in the same region, from base pair 10 to 15 past the AATAAA, which removes the wild-type site of RNA cleavage, showed a 50% drop in marker gene expression. The effects of these mutants on gene expression were similar in all of the cell lines tested and agree with other studies that DNA downstream of the AATAAA plays a role in efficient gene expression.
Collapse
Affiliation(s)
- E R Gimmi
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140
| | | | | | | |
Collapse
|
8
|
Satellite DNA induces unstable expression of the adjacent herpes simplex virus tk gene cotransfected in mouse cells. Mol Cell Biol 1988. [PMID: 2835671 DOI: 10.1128/mcb.8.3.1336] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To study the influence of clustered highly repetitive DNA sequences on the expression of adjacent genes, LTK- cells were cotransfected with the herpes simplex virus thymidine kinase (tk) gene and mouse satellite DNA. TK+ transformants containing a few copies of the tk genes flanked by satellite DNA were isolated. In situ hybridization on the metaphase chromosomes indicated that in each cell line the TK sequences resided at a single chromosomal site and that integration occurred preferentially into regions of the cellular DNA rich in highly repetitive sequences. The prominent feature of these cell lines was their phenotypic instability. Suppression and reexpression of the tk gene occurred at high frequency (greater than 3%) and did not correlate with any significant change in the organization of foreign DNA or with the presence of selective agents. These results indicate that satellite DNA, the major component of constitutive heterochromatin, may influence the expression of adjacent genes by affecting the chromatin structure.
Collapse
|
9
|
Talarico D, Peverali AF, Ginelli E, Meneveri R, Mondello C, Della Valle G. Satellite DNA induces unstable expression of the adjacent herpes simplex virus tk gene cotransfected in mouse cells. Mol Cell Biol 1988; 8:1336-44. [PMID: 2835671 PMCID: PMC363280 DOI: 10.1128/mcb.8.3.1336-1344.1988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
To study the influence of clustered highly repetitive DNA sequences on the expression of adjacent genes, LTK- cells were cotransfected with the herpes simplex virus thymidine kinase (tk) gene and mouse satellite DNA. TK+ transformants containing a few copies of the tk genes flanked by satellite DNA were isolated. In situ hybridization on the metaphase chromosomes indicated that in each cell line the TK sequences resided at a single chromosomal site and that integration occurred preferentially into regions of the cellular DNA rich in highly repetitive sequences. The prominent feature of these cell lines was their phenotypic instability. Suppression and reexpression of the tk gene occurred at high frequency (greater than 3%) and did not correlate with any significant change in the organization of foreign DNA or with the presence of selective agents. These results indicate that satellite DNA, the major component of constitutive heterochromatin, may influence the expression of adjacent genes by affecting the chromatin structure.
Collapse
Affiliation(s)
- D Talarico
- Dipartimento di Genetica e Microbiologia A. Buzzati Traverso, Universitá di Pavia, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Wallenburg JC, Nepveu A, Chartrand P. Integration of a vector containing rodent repetitive elements in the rat genome. Nucleic Acids Res 1987; 15:7849-63. [PMID: 2823220 PMCID: PMC306312 DOI: 10.1093/nar/15.19.7849] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have previously shown that integration of a polyoma vector containing rodent repetitive elements into rat cellular DNA is non-random (Wallenburg et al. J. Virol. 50: 678-683). Junctions between the polyoma vector and the host DNA occur in the repetitive sequences of the vector about ten times more frequently than would be expected if sequences from the vector were used randomly for integration. In this paper we looked at the host sequences involved in these junctions. Our analysis did not reveal any repetitive or specific sequences and we presume therefore that the repetitive sequences of the vector acted as hot spots for illegitimate recombination. We also analysed the integration mechanism and found that: First, even though the polyoma vector was transfected in the presence of carrier DNA, integration did not involve the formation of a transgenome. Second, in at least one of the clones analysed, integration resulted in deletion of host DNA sequences. Third, the host DNA displaced at the integration site was considerably longer than the integrated segment.
Collapse
Affiliation(s)
- J C Wallenburg
- Département de microbiologie, Faculté de médecine, Centre Hospitalier Universitaire, Sherbrooke, Québec, Canada
| | | | | |
Collapse
|
11
|
Kerlakian CB, Toth SW, Kuempel ED, Luse DS. Differential expression of mouse beta/goat beta c, mouse beta/goat beta F, and mouse beta/goat epsilon II hybrid globin genes in murine erythroleukemia cells. Mol Cell Biol 1986; 6:3873-83. [PMID: 3467176 PMCID: PMC367150 DOI: 10.1128/mcb.6.11.3873-3883.1986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We assembled three hybrid beta-globin genes by fusing the mouse beta-major promoter and initial transcribed region to one of three goat beta-like globin gene bodies: beta c (preadult), beta F (fetal), or epsilon II (embryonic). Thymidine kinase (tk)-deficient murine erythroleukemia (MEL) cells were cotransformed with one of these constructs and a separate plasmid bearing the tk gene. Half of the 24 cell lines containing either the mouse beta/goat beta c or mouse beta/goat beta F genes expressed the transferred genes at significant levels; in many cases the hybrid genes were, like the endogenous beta-globin genes, inducible with dimethyl sulfoxide. We obtained 13 cell lines containing the mouse beta/goat epsilon II hybrid gene, 6 of which were cotransfected with a mouse beta/human beta fusion gene known to function in MEL cells. In contrast to the results with the other fusion genes, the mouse beta/goat epsilon II hybrid was very poorly expressed: in two separate experiments, 0 of 13 and 2 of 13 lines showed significant mouse beta/goat epsilon II RNA levels after induction. In all these lines the endogenous mouse beta and cotransfected mouse beta/human beta genes were expressed. As an initial test of possible reasons for the inactivity of the mouse beta/goat epsilon II hybrid, we recloned this fusion gene into a tk-bearing plasmid, adjacent to the tk gene. Of 12 cell lines transformed with this plasmid, 11 produced mouse beta/goat epsilon II RNA; in 6 cases the expression was both strong and dimethyl sulfoxide inducible.
Collapse
|
12
|
Unstable expression and amplification of a transfected oncogene in confluent and subconfluent cells. Mol Cell Biol 1985. [PMID: 2993865 DOI: 10.1128/mcb.5.6.1456] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NIH 3T3 cells were transfected with a plasmid containing the transforming gene, v-src, from Rous sarcoma virus. One of the transformed cell lines isolated reverted to a flat, nontransformed morphology after cloning through soft agar. This cell line did not express the src gene and could no longer grow in soft agar. When these cells were held at confluence, spontaneous foci appeared which eventually covered the dish. The appearance of foci correlated with an increase in v-src gene expression, ability to grow in soft agar, and tumorigenicity in mice. When these transformed cells were trypsinized and held at subconfluence, both v-src expression and the transformed phenotype were progressively lost. Whereas rearrangement of the transfected gene was not detected, the gene copy number in the transformed cells was markedly increased (greater than 50-fold). Confluence-dependent gene amplification and deamplification have been retained after several cycles of growth alternately at high and low density, in cells recloned through soft agar, and after cells had been maintained continuously at high or low density. The results suggest that, in this cell line, reversible gene amplification plays a central role in expression of the transfected gene.
Collapse
|
13
|
Biamonti G, Della Valle G, Talarico D, Cobianchi F, Riva S, Falaschi A. Fate of exogenous recombinant plasmids introduced into mouse and human cells. Nucleic Acids Res 1985; 13:5545-61. [PMID: 4034393 PMCID: PMC321889 DOI: 10.1093/nar/13.15.5545] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have constructed a number of plasmids selectable in both E. coli and mouse or human cells. Human DNA sequences were inserted and the recombinant plasmids were used to transfect either mouse or human cells by the Ca-phosphate precipitation technique. We have observed that: (i) competent cells uptake large amounts of plasmid DNA; (ii) input plasmids persist in transformed mammalian cells as free unreplicating circular molecules for up to 20 generations; such persistence does not depend on the presence of selective markers; (iii) plasmids incorporated into mouse L-cells undergo widespread rearrangements (in the absence of replication) entailing mostly deletions of both human and bacterial sequences which yield smaller products; the latter appear to be more stable in a subsequent transformation cycle. Surprisingly such rearrangements are almost totally absent in transformed human KB-cells. This property of human KB-cells may prove useful for the development of a vector apt at cloning and expressing human DNA sequences. Unlike what has been observed in yeast, no "autonomously replicating sequence" can be detected in mammalian cells by randomly cloning human DNA sequences into a selectable plasmid and screening for an increased transformation efficiency.
Collapse
|
14
|
Unstable expression and amplification of a transfected oncogene in confluent and subconfluent cells. Mol Cell Biol 1985; 5:1456-64. [PMID: 2993865 PMCID: PMC366877 DOI: 10.1128/mcb.5.6.1456-1464.1985] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
NIH 3T3 cells were transfected with a plasmid containing the transforming gene, v-src, from Rous sarcoma virus. One of the transformed cell lines isolated reverted to a flat, nontransformed morphology after cloning through soft agar. This cell line did not express the src gene and could no longer grow in soft agar. When these cells were held at confluence, spontaneous foci appeared which eventually covered the dish. The appearance of foci correlated with an increase in v-src gene expression, ability to grow in soft agar, and tumorigenicity in mice. When these transformed cells were trypsinized and held at subconfluence, both v-src expression and the transformed phenotype were progressively lost. Whereas rearrangement of the transfected gene was not detected, the gene copy number in the transformed cells was markedly increased (greater than 50-fold). Confluence-dependent gene amplification and deamplification have been retained after several cycles of growth alternately at high and low density, in cells recloned through soft agar, and after cells had been maintained continuously at high or low density. The results suggest that, in this cell line, reversible gene amplification plays a central role in expression of the transfected gene.
Collapse
|
15
|
Homologous recombination between overlapping thymidine kinase gene fragments stably inserted into a mouse cell genome. Mol Cell Biol 1984. [PMID: 6328272 DOI: 10.1128/mcb.4.5.852] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have constructed a substrate to study homologous recombination between adjacent segments of chromosomal DNA. This substrate, designated lambda tk2 , consists of one completely defective and one partially defective herpes simplex virus thymidine kinase (tk) gene cloned in bacteriophage lambda DNA. The two genes have homologous 984-base-pair sequences and are separated by 3 kilobases of largely vector DNA. When lambda tk2 DNA was transferred into mouse LMtk- cells by the calcium phosphate method, rare TK+ transformants were obtained that contained many (greater than 40) copies of the unrecombined DNA. Tk- revertants, which had lost most of the copies of unrecombined DNA, were isolated from these TK+-transformed lines. Two of these Tk- lines were further studied by analysis of their reversion back to the Tk+ phenotype. They generated ca. 200 Tk+ revertants per 10(8) cells after growth in nonselecting medium for 5 days. All of these Tk+ revertants have an intact tk gene reconstructed by homologous recombination; they also retain various amounts of unrecombined lambda tk2 DNA. Southern blot analysis suggested that at least some of the recombination events involve unequal sister chromatid exchanges. We also tested three agents, mitomycin C, 12-O-tetradecanoyl-phorbol-13-acetate, and mezerein, that are thought to stimulate recombination to determine whether they affect the reversion from Tk- to Tk+. Only mitomycin C increased the number of Tk+ revertants.
Collapse
|
16
|
Plasmids containing mouse rDNA do not recombine with cellular ribosomal genes when introduced into cultured mouse cells. Mol Cell Biol 1984. [PMID: 6717435 DOI: 10.1128/mcb.4.4.576] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have examined the fate of plasmids containing a segment of a mouse rDNA repeat after they were introduced by transfection into cultured mouse cells. In addition to the rDNA segment, the plasmids contained the thymidine kinase gene from herpes simplex virus 1 to allow for selection of the plasmid after transfection into thymidine kinase-deficient mouse cells. Thus far, no cases of homologous recombination between transfected plasmid DNAs and host cell sequences have been documented. We reasoned that the high repetition frequency of the rRNA genes in the mouse genome (200 copies per diploid cell) might create a favorable situation for obtaining homologous recombination events between the plasmids containing rDNA and host cell rDNA sequences. The plasmids were introduced into cells in both the presence and the absence of carrier DNA and both as covalently closed circles and linear molecules. The sites of plasmid integration in the genomes of various cell lines were examined by DNA restriction digests and hybridization, molecular cloning, and nuclear fractionation. In the seven cell lines examined, there was no evidence that the plasmids had integrated into the rRNA gene clusters of the cell. Thus, the apparent absence of site-specific integration of cloned DNAs introduced into mammalian cells does not appear to be due simply to the small target presented by most host cell sequences.
Collapse
|
17
|
Co-amplification of double minute chromosomes, multiple drug resistance, and cell surface P-glycoprotein in DNA-mediated transformants of mouse cells. Mol Cell Biol 1984. [PMID: 6144041 DOI: 10.1128/mcb.4.3.500] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A genetic system comprised of mammalian cell mutants which demonstrate concomitant resistance to a number of unrelated drugs has been described previously. The resistance is due to reduced cell membrane permeability and is correlated with the presence of large amounts of a plasma membrane glycoprotein termed P-glycoprotein. This system could represent a model for multiple drug resistance which develops in cancer patients treated with chemotherapeutic drugs. We demonstrate here that the multiple drug resistance phenotype can be transferred to mouse cells with DNA from a drug-resistant mutant and then amplified quantitatively by culture in media containing increasing concentrations of drug. The amount of P-glycoprotein was correlated directly with the degree of drug resistance in the transformants and amplified transformants. In addition, the drug resistance and expression of P-glycoprotein of the transformants were unstable and associated quantitatively with the number of double minute chromosomes. We suggest that the gene for multiple drug resistance and P-glycoprotein is contained in these extrachromosomal particles and is amplified by increases in double minute chromosome number. The potential use of this system for manipulation of mammalian genes in general is discussed.
Collapse
|
18
|
Lin FL, Sternberg N. Homologous recombination between overlapping thymidine kinase gene fragments stably inserted into a mouse cell genome. Mol Cell Biol 1984; 4:852-61. [PMID: 6328272 PMCID: PMC368827 DOI: 10.1128/mcb.4.5.852-861.1984] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have constructed a substrate to study homologous recombination between adjacent segments of chromosomal DNA. This substrate, designated lambda tk2 , consists of one completely defective and one partially defective herpes simplex virus thymidine kinase (tk) gene cloned in bacteriophage lambda DNA. The two genes have homologous 984-base-pair sequences and are separated by 3 kilobases of largely vector DNA. When lambda tk2 DNA was transferred into mouse LMtk- cells by the calcium phosphate method, rare TK+ transformants were obtained that contained many (greater than 40) copies of the unrecombined DNA. Tk- revertants, which had lost most of the copies of unrecombined DNA, were isolated from these TK+-transformed lines. Two of these Tk- lines were further studied by analysis of their reversion back to the Tk+ phenotype. They generated ca. 200 Tk+ revertants per 10(8) cells after growth in nonselecting medium for 5 days. All of these Tk+ revertants have an intact tk gene reconstructed by homologous recombination; they also retain various amounts of unrecombined lambda tk2 DNA. Southern blot analysis suggested that at least some of the recombination events involve unequal sister chromatid exchanges. We also tested three agents, mitomycin C, 12-O-tetradecanoyl-phorbol-13-acetate, and mezerein, that are thought to stimulate recombination to determine whether they affect the reversion from Tk- to Tk+. Only mitomycin C increased the number of Tk+ revertants.
Collapse
|
19
|
Abstract
An uninterrupted avian sarcoma viral genome terminated by viral long terminal repeat sequences was cloned into a pBR322 plasmid. After introduction into a cultured avian cell, transcription of either the circular plasmid molecule or one linearized within the pBR322 sequences could initiate and terminate at long terminal repeat sequences, yielding full-sized viral RNA. A plasmid DNA molecule linearized by cleavage within the viral pol gene, on the other hand, would have to undergo ligation to yield full-sized viral RNA. Microinjection of each of these three types of DNA into the nuclei of quail cells promoted the release of similar virus titers, indicating that the plasmid DNA cleaved within the viral pol gene had been efficiently and accurately ligated. When plasmid DNA was transfected into quail cells, circular and pBR322-cleaved molecules directed the synthesis of similar virus titers, indicating that they were similarly taken up and utilized by the cells. Compared with these results, plasmid DNA cleaved within the pol gene was reduced in activity over 95% after transfection. This reduction did not result from inefficient ligation but from the generation of mutations (of limited size) during ligation of the transfected molecules. Mutations were not observed after microinjection even into the cytoplasm. Consistent with these findings, transfected DNA termini were found to be joined regardless of their structure, whereas ligation after microinjection required that single-stranded protruding DNA termini be complementary.
Collapse
|
20
|
Steele RE, Bakken AH, Reeder RH. Plasmids containing mouse rDNA do not recombine with cellular ribosomal genes when introduced into cultured mouse cells. Mol Cell Biol 1984; 4:576-82. [PMID: 6717435 PMCID: PMC368759 DOI: 10.1128/mcb.4.4.576-582.1984] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We have examined the fate of plasmids containing a segment of a mouse rDNA repeat after they were introduced by transfection into cultured mouse cells. In addition to the rDNA segment, the plasmids contained the thymidine kinase gene from herpes simplex virus 1 to allow for selection of the plasmid after transfection into thymidine kinase-deficient mouse cells. Thus far, no cases of homologous recombination between transfected plasmid DNAs and host cell sequences have been documented. We reasoned that the high repetition frequency of the rRNA genes in the mouse genome (200 copies per diploid cell) might create a favorable situation for obtaining homologous recombination events between the plasmids containing rDNA and host cell rDNA sequences. The plasmids were introduced into cells in both the presence and the absence of carrier DNA and both as covalently closed circles and linear molecules. The sites of plasmid integration in the genomes of various cell lines were examined by DNA restriction digests and hybridization, molecular cloning, and nuclear fractionation. In the seven cell lines examined, there was no evidence that the plasmids had integrated into the rRNA gene clusters of the cell. Thus, the apparent absence of site-specific integration of cloned DNAs introduced into mammalian cells does not appear to be due simply to the small target presented by most host cell sequences.
Collapse
|
21
|
Robertson SM, Ling V, Stanners CP. Co-amplification of double minute chromosomes, multiple drug resistance, and cell surface P-glycoprotein in DNA-mediated transformants of mouse cells. Mol Cell Biol 1984; 4:500-6. [PMID: 6144041 PMCID: PMC368728 DOI: 10.1128/mcb.4.3.500-506.1984] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A genetic system comprised of mammalian cell mutants which demonstrate concomitant resistance to a number of unrelated drugs has been described previously. The resistance is due to reduced cell membrane permeability and is correlated with the presence of large amounts of a plasma membrane glycoprotein termed P-glycoprotein. This system could represent a model for multiple drug resistance which develops in cancer patients treated with chemotherapeutic drugs. We demonstrate here that the multiple drug resistance phenotype can be transferred to mouse cells with DNA from a drug-resistant mutant and then amplified quantitatively by culture in media containing increasing concentrations of drug. The amount of P-glycoprotein was correlated directly with the degree of drug resistance in the transformants and amplified transformants. In addition, the drug resistance and expression of P-glycoprotein of the transformants were unstable and associated quantitatively with the number of double minute chromosomes. We suggest that the gene for multiple drug resistance and P-glycoprotein is contained in these extrachromosomal particles and is amplified by increases in double minute chromosome number. The potential use of this system for manipulation of mammalian genes in general is discussed.
Collapse
|
22
|
Kopchick JJ, Stacey DW. Differences in intracellular DNA ligation after microinjection and transfection. Mol Cell Biol 1984; 4:240-6. [PMID: 6321956 PMCID: PMC368687 DOI: 10.1128/mcb.4.2.240-246.1984] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
An uninterrupted avian sarcoma viral genome terminated by viral long terminal repeat sequences was cloned into a pBR322 plasmid. After introduction into a cultured avian cell, transcription of either the circular plasmid molecule or one linearized within the pBR322 sequences could initiate and terminate at long terminal repeat sequences, yielding full-sized viral RNA. A plasmid DNA molecule linearized by cleavage within the viral pol gene, on the other hand, would have to undergo ligation to yield full-sized viral RNA. Microinjection of each of these three types of DNA into the nuclei of quail cells promoted the release of similar virus titers, indicating that the plasmid DNA cleaved within the viral pol gene had been efficiently and accurately ligated. When plasmid DNA was transfected into quail cells, circular and pBR322-cleaved molecules directed the synthesis of similar virus titers, indicating that they were similarly taken up and utilized by the cells. Compared with these results, plasmid DNA cleaved within the pol gene was reduced in activity over 95% after transfection. This reduction did not result from inefficient ligation but from the generation of mutations (of limited size) during ligation of the transfected molecules. Mutations were not observed after microinjection even into the cytoplasm. Consistent with these findings, transfected DNA termini were found to be joined regardless of their structure, whereas ligation after microinjection required that single-stranded protruding DNA termini be complementary.
Collapse
|
23
|
Expression and stabilization of microinjected plasmids containing the herpes simplex virus thymidine kinase gene and polyoma virus DNA in mouse cells. Mol Cell Biol 1983. [PMID: 6304496 DOI: 10.1128/mcb.3.4.511] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
To observe the effects of polyoma virus DNA on the expression of the herpes simplex virus (HSV) thymidine kinase (TK) gene early after transfer into TK-deficient mouse cells and the subsequent development of stable TK-positive transformants, we constructed a series of recombinant plasmids containing the herpes simplex virus TK gene joined with various segments of the polyoma virus genome and microinjected them into the nuclei or cytoplasm of LTK-A cells (TK(-), APRT(-)). The frequency of nucleus-injected cells expressing TK after 1 day, measured by autoradiography of cells incubated with [(3)H]thymidine, increased approximately 30-fold when the plasmids contained the polyoma virus origin of replication. The origin includes sequences with homology to the simian virus 40 origin of replication and adjoining sequences, including a recently defined transcription-enhancing sequence. After microinjection of a single origin-containing plasmid molecule per cell, TK expression was detected in approximately 50% of the injected cells. When a larger number of origin-containing plasmid molecules were injected per cell, all cells showed early TK activity. When the entire polyoma virus early region was present, neighboring uninjected cells became TK positive. When plasmids were injected into the cell cytoplasm, approximately 400 times as many molecules per cell were needed to cause early TK activity. The frequency of stable transformation observed 2 weeks after nuclear injection of 10 to 20 polyoma virus origin-containing plasmid molecules per cell was at least 2 orders of magnitude greater than with plasmids containing the TK gene alone. The greatest enhancement of stable TK transformation was obtained with plasmids containing the origin alone, when the maximum frequency of stable transformation was 5%. The addition of the coding regions for the small and medium T antigens or the entire early region significantly decreased TK transformation frequency in a copy-dependent fashion. The timing of stabilization of TK-positive transformation was analyzed by releasing hypoxanthine-aminopterin-thymidine selection pressure at various times after microinjection, culturing the cells in nonselective medium, and assaying for TK activity. Stabilization was found to occur between 3 and 6 days after nuclear injection. Cells injected with a plasmid containing the origin and the early region were examined for expression of the large T antigen with polyoma virus antitumor serum and immunofluorescent staining. The expression of the large T antigen was clearly associated with a cytopathic effect. TK-positive clones observed 2 weeks after injection of the plasmid were uniformly T antigen negative. Cytotoxicity may be the result of plasmid replication and toxic levels of T antigen or TK. In addition, expression of the large T antigen may block stabilization by preventing the integration of origin-containing plasmid molecules.
Collapse
|
24
|
Evolution of chromosomal regions containing transfected and amplified dihydrofolate reductase sequences. Mol Cell Biol 1983. [PMID: 6855772 DOI: 10.1128/mcb.3.4.699] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A modular dihydrofolate reductase gene has been introduced into Chinese hamster ovary cells lacking dihydrofolate reductase. Clones capable of growth in the absence of added nucleosides contain one to five copies of the plasmid DNA integrated into the host genome. Upon stepwise selection to increasing methotrexate concentrations, cells are obtained which have amplified the transforming DNA over several hundredfold. A detailed analysis of the chromosomes in three clones indicated the appearance of cytologically distinct chromosomal regions containing the amplified plasmid DNA which differ in surrounding sequence composition, structure, and location. Two of the clones examined have extensive, homogeneously staining regions. The DNA in these homogeneously staining regions replicates in the early part of the S phase. The amplified plasmid DNA is found associated at or near the ends of chromosomes or on dicentric chromosomes. We propose that integration of DNA may disrupt telomeric structures and facilitate the formation of dicentric chromosomes, which may then undergo bridge breakage-fusion cycles. These phenomena are discussed in relation to DNA transfer experiments and modes of gene amplification and chromosome rearrangement.
Collapse
|
25
|
Yamaizumi M, Horwich AL, Ruddle FH. Expression and stabilization of microinjected plasmids containing the herpes simplex virus thymidine kinase gene and polyoma virus DNA in mouse cells. Mol Cell Biol 1983; 3:511-22. [PMID: 6304496 PMCID: PMC368567 DOI: 10.1128/mcb.3.4.511-522.1983] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
To observe the effects of polyoma virus DNA on the expression of the herpes simplex virus (HSV) thymidine kinase (TK) gene early after transfer into TK-deficient mouse cells and the subsequent development of stable TK-positive transformants, we constructed a series of recombinant plasmids containing the herpes simplex virus TK gene joined with various segments of the polyoma virus genome and microinjected them into the nuclei or cytoplasm of LTK-A cells (TK(-), APRT(-)). The frequency of nucleus-injected cells expressing TK after 1 day, measured by autoradiography of cells incubated with [(3)H]thymidine, increased approximately 30-fold when the plasmids contained the polyoma virus origin of replication. The origin includes sequences with homology to the simian virus 40 origin of replication and adjoining sequences, including a recently defined transcription-enhancing sequence. After microinjection of a single origin-containing plasmid molecule per cell, TK expression was detected in approximately 50% of the injected cells. When a larger number of origin-containing plasmid molecules were injected per cell, all cells showed early TK activity. When the entire polyoma virus early region was present, neighboring uninjected cells became TK positive. When plasmids were injected into the cell cytoplasm, approximately 400 times as many molecules per cell were needed to cause early TK activity. The frequency of stable transformation observed 2 weeks after nuclear injection of 10 to 20 polyoma virus origin-containing plasmid molecules per cell was at least 2 orders of magnitude greater than with plasmids containing the TK gene alone. The greatest enhancement of stable TK transformation was obtained with plasmids containing the origin alone, when the maximum frequency of stable transformation was 5%. The addition of the coding regions for the small and medium T antigens or the entire early region significantly decreased TK transformation frequency in a copy-dependent fashion. The timing of stabilization of TK-positive transformation was analyzed by releasing hypoxanthine-aminopterin-thymidine selection pressure at various times after microinjection, culturing the cells in nonselective medium, and assaying for TK activity. Stabilization was found to occur between 3 and 6 days after nuclear injection. Cells injected with a plasmid containing the origin and the early region were examined for expression of the large T antigen with polyoma virus antitumor serum and immunofluorescent staining. The expression of the large T antigen was clearly associated with a cytopathic effect. TK-positive clones observed 2 weeks after injection of the plasmid were uniformly T antigen negative. Cytotoxicity may be the result of plasmid replication and toxic levels of T antigen or TK. In addition, expression of the large T antigen may block stabilization by preventing the integration of origin-containing plasmid molecules.
Collapse
|
26
|
Kaufman RJ, Sharp PA, Latt SA. Evolution of chromosomal regions containing transfected and amplified dihydrofolate reductase sequences. Mol Cell Biol 1983; 3:699-711. [PMID: 6855772 PMCID: PMC368586 DOI: 10.1128/mcb.3.4.699-711.1983] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A modular dihydrofolate reductase gene has been introduced into Chinese hamster ovary cells lacking dihydrofolate reductase. Clones capable of growth in the absence of added nucleosides contain one to five copies of the plasmid DNA integrated into the host genome. Upon stepwise selection to increasing methotrexate concentrations, cells are obtained which have amplified the transforming DNA over several hundredfold. A detailed analysis of the chromosomes in three clones indicated the appearance of cytologically distinct chromosomal regions containing the amplified plasmid DNA which differ in surrounding sequence composition, structure, and location. Two of the clones examined have extensive, homogeneously staining regions. The DNA in these homogeneously staining regions replicates in the early part of the S phase. The amplified plasmid DNA is found associated at or near the ends of chromosomes or on dicentric chromosomes. We propose that integration of DNA may disrupt telomeric structures and facilitate the formation of dicentric chromosomes, which may then undergo bridge breakage-fusion cycles. These phenomena are discussed in relation to DNA transfer experiments and modes of gene amplification and chromosome rearrangement.
Collapse
|
27
|
Shiroki K, Saito I, Maruyama K, Fukui Y, Imatani Y, Oda KI, Shimojo H. Expression of adenovirus type 12 early region 1 in KB cells transformed by recombinants containing the gene. J Virol 1983; 45:1074-82. [PMID: 6834475 PMCID: PMC256515 DOI: 10.1128/jvi.45.3.1074-1082.1983] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The adenovirus type 12 (Ad12) early region 1 (E1) gene was introduced into KB cells by using a dominant selection vector, pSV2-gpt, and over 80 Gpt+ KB cell clones were established. Three types of recombinant DNAs (gAE1A, gARC, and gABA) were constructed. They contained the AccI-H, EcoRI-C, and BamHI-A fragments, respectively, of Ad12 DNA in pSV2-gpt. Five of 50 (10%) gABA-transformed cell clones, 12 of 18 (67%) gAE1A-transformed cell clones, and 10 of 18 (56%) gARC-transformed cell clones complemented the growth of Ad5 dl312 (deletion in E1A) and were designated as Gpt+ Ad+ cell clones. In these cell clones at their early passages, recombinant genome sequences were detected in cellular DNA and were expressed. T antigen g (the E1A gene product) was detected by immunofluorescence. The Gpt+ Ad+ cell clones supported the growth of Ad5 deletion mutants in parallel with the expression of Ad12 E1A or E1A plus E1B genes. After infection of Gpt+ Ad+ cell clones with Ad5 dl312, the early genes of dl312 were efficiently transcribed, indicating the expression of the pre-early function of the Ad12 E1A gene. Two clones each from gAE1A-,gARC-, and gABA-transformed cells were subcultured for a long period to determine the stability of the transfecting DNAs. Subculture in a nonselective medium resulted in cells which lost the transfecting DNAs. Subculture in a selective medium resulted in the selection of cells which maintained the gpt gene expression but lost the Ad12 gene expression. These results indicate that the transfecting DNA is present in an unstable state in KB cells.
Collapse
MESH Headings
- Adenoviruses, Human/genetics
- Adenoviruses, Human/immunology
- Antigens, Viral/genetics
- Antigens, Viral, Tumor
- Cell Line
- Cell Transformation, Viral
- Clone Cells
- DNA, Recombinant
- DNA, Viral/genetics
- Gene Expression Regulation
- Genes, Viral
- Humans
- Transcription, Genetic
Collapse
|
28
|
Fung YK, Crittenden LB, Fadly AM, Kung HJ. Tumor induction by direct injection of cloned v-src DNA into chickens. Proc Natl Acad Sci U S A 1983; 80:353-7. [PMID: 6300833 PMCID: PMC393375 DOI: 10.1073/pnas.80.2.353] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The in vitro transforming potential of Rous sarcoma viruses has been shown to reside in a gene segment, v-src. To provide direct proof that the isolated v-src sequence contains all the information necessary for sarcoma induction in vivo, we have injected subgenomic and genomic cloned DNA carrying v-src directly into chickens. We report that v-src, without the complements of other viral genes, can effectively induce sarcomas in the host within weeks after injection. The sarcoma tumors generated by subgenomic v-src DNA are of mono- or oligoclonal origin. They have acquired v-src sequences in the genome and expressed high levels of src messages. Intact long terminal repeats do not seem to be essential in the tumorigenic process.
Collapse
|
29
|
Nairn RS, Adair GM, Humphrey RM. DNA-mediated gene transfer in Chinese hamster ovary cells: clonal variation in transfer efficiency. MOLECULAR & GENERAL GENETICS : MGG 1982; 187:384-90. [PMID: 6294469 DOI: 10.1007/bf00332616] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Thymidine kinase-deficient Chinese hamster ovary (CHO) cells were genetically transformed with the BamHI restriction fragment encoding the thymidine kinase gene of herpes simplex virus (HSV-tk). We have observed considerable clonal variation among independent CHO sublines with respect to transformation competence for the DNA-mediated gene transfer of HSV-tk. Transformation frequencies greater than or equal to 3 X 10(-4) were observed consistently in one subline, with a transformation efficiency of approximately 1 transformant per ng viral gene. The frequency and efficiency of transformation we observed in this system are at least 10-fold greater than those previously reported for DNA-mediated transformation of CHO cells by HSV-tk. All of the CHO HSV-tk+ transformants examined were stable for the transferred genotype in the absence of selection, and all showed evidence of co-transformation by unselected plasmid pBR322 sequences.
Collapse
|
30
|
Mocarski ES, Roizman B. Herpesvirus-dependent amplification and inversion of cell-associated viral thymidine kinase gene flanked by viral a sequences and linked to an origin of viral DNA replication. Proc Natl Acad Sci U S A 1982; 79:5626-30. [PMID: 6291055 PMCID: PMC346957 DOI: 10.1073/pnas.79.18.5626] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The genome of herpes simplex virus 1 or 2 consists of two components, L and S, which invert relative to each other during infection. As a result, viral DNA consists of four equimolar populations of molecules differing solely in the relative orientations of the L and S components. Previous studies have shown that the a sequences, located in the same orientation at the genomic termini and in inverted orientation at the L-S junction, play a key role in the inversion of L and S components. In this report we describe a virus-dependent system designed to allow identification of the viral genes capable of acting in trans to invert DNA flanked by inverted copies of a sequences. In this system, cells are converted to the thymidine kinase-positive phenotype with a chimeric plasmid carrying the thymidine kinase gene flanked by inverted copies of the a sequence and linked to an origin of viral DNA replication derived from the S component. The DNA introduced into the cells is retained and propagated in its original sequence arrangement as head-to-tail concatemers. Infection of these cells with herpes simplex virus 1 or 2 results in as much as 100-fold amplification of the plasmid sequences and inversion of the DNA flanked by copies of the a sequence. In infected cells, the amplified resident DNA accumulates in head-to-tail concatemers and no rearrangement other than the inversions could be detected. These results suggest that the a sequence-dependent inversions required trans-acting viral gene products.
Collapse
|
31
|
Andrulis IL, Siminovitch L. DNA-mediated gene transfer of beta-aspartylhydroxamate resistance into Chinese hamster ovary cells. Proc Natl Acad Sci U S A 1981; 78:5724-8. [PMID: 6117859 PMCID: PMC348842 DOI: 10.1073/pnas.78.9.5724] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cell lines that have high levels of resistance to beta-aspartylhydroxamate and elevated levels of asparagine synthetase activity were selected in two steps from Chinese hamster ovary cells. Resistance to beta-aspartylhydroxmate was transferred into sensitive cells by using total genomic DNA derived from the dominant two-step mutants. The surviving colonies were characterized as transferants on the basis of transfer frequency, degree of resistance to beta-aspartylhydroxamate, increased level of asparagine synthetase activity, expression of the donor form of asparagine synthetase, codominance in hybrids, and instability of the phenotype in the absence of selection.
Collapse
|