1
|
Popova VV, Brechalov AV, Georgieva SG, Kopytova DV. Nonreplicative functions of the origin recognition complex. Nucleus 2018; 9:460-473. [PMID: 30196754 PMCID: PMC6244734 DOI: 10.1080/19491034.2018.1516484] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/04/2018] [Accepted: 08/16/2018] [Indexed: 12/14/2022] Open
Abstract
Origin recognition complex (ORC), a heteromeric six-subunit complex, is the central component of the eukaryotic pre-replication complex. Recent data from yeast, frogs, flies and mammals present compelling evidence that ORC and its individual subunits have nonreplicative functions as well. The majority of these functions, such as heterochromatin formation, chromosome condensation, and segregation are dependent on ORC-DNA interactions. Furthermore, ORC is involved in the control of cell division via its participation in centrosome duplication and cytokinesis. Recent findings have also demonstrated a direct interaction between ORC and mRNPs and highlighted an essential role of ORC in mRNA nuclear export. Along with the growth of evolutionary complexity of organisms, ORC complex functions become more elaborate and new functions of the ORC sub-complexes and individual subunits have emerged.
Collapse
Affiliation(s)
- Varvara V. Popova
- Department of Transcription Regulation and Chromatin Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander V. Brechalov
- Department of Transcription Regulation and Chromatin Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sofia G. Georgieva
- Department of Transcription Regulation and Chromatin Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Daria V. Kopytova
- Department of Transcription Regulation and Chromatin Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
The Nuts and Bolts of Transcriptionally Silent Chromatin in Saccharomyces cerevisiae. Genetics 2017; 203:1563-99. [PMID: 27516616 DOI: 10.1534/genetics.112.145243] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/30/2016] [Indexed: 12/31/2022] Open
Abstract
Transcriptional silencing in Saccharomyces cerevisiae occurs at several genomic sites including the silent mating-type loci, telomeres, and the ribosomal DNA (rDNA) tandem array. Epigenetic silencing at each of these domains is characterized by the absence of nearly all histone modifications, including most prominently the lack of histone H4 lysine 16 acetylation. In all cases, silencing requires Sir2, a highly-conserved NAD(+)-dependent histone deacetylase. At locations other than the rDNA, silencing also requires additional Sir proteins, Sir1, Sir3, and Sir4 that together form a repressive heterochromatin-like structure termed silent chromatin. The mechanisms of silent chromatin establishment, maintenance, and inheritance have been investigated extensively over the last 25 years, and these studies have revealed numerous paradigms for transcriptional repression, chromatin organization, and epigenetic gene regulation. Studies of Sir2-dependent silencing at the rDNA have also contributed to understanding the mechanisms for maintaining the stability of repetitive DNA and regulating replicative cell aging. The goal of this comprehensive review is to distill a wide array of biochemical, molecular genetic, cell biological, and genomics studies down to the "nuts and bolts" of silent chromatin and the processes that yield transcriptional silencing.
Collapse
|
3
|
Winter E. The Sum1/Ndt80 transcriptional switch and commitment to meiosis in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 2012; 76:1-15. [PMID: 22390969 PMCID: PMC3294429 DOI: 10.1128/mmbr.05010-11] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cells encounter numerous signals during the development of an organism that induce division, differentiation, and apoptosis. These signals need to be present for defined intervals in order to induce stable changes in the cellular phenotype. The point after which an inducing signal is no longer needed for completion of a differentiation program can be termed the "commitment point." Meiotic development in the yeast Saccharomyces cerevisiae (sporulation) provides a model system to study commitment. Similar to differentiation programs in multicellular organisms, the sporulation program in yeast is regulated by a transcriptional cascade that produces early, middle, and late sets of sporulation-specific transcripts. Although critical meiosis-specific events occur as early genes are expressed, commitment does not take place until middle genes are induced. Middle promoters are activated by the Ndt80 transcription factor, which is produced and activated shortly before most middle genes are expressed. In this article, I discuss the connection between Ndt80 and meiotic commitment. A transcriptional regulatory pathway makes NDT80 transcription contingent on the prior expression of early genes. Once Ndt80 is produced, the recombination (pachytene) checkpoint prevents activation of the Ndt80 protein. Upon activation, Ndt80 triggers a positive autoregulatory loop that leads to the induction of genes that promote exit from prophase, the meiotic divisions, and spore formation. The pathway is controlled by multiple feed-forward loops that give switch-like properties to the commitment transition. The conservation of regulatory components of the meiotic commitment pathway and the recently reported ability of Ndt80 to increase replicative life span are discussed.
Collapse
Affiliation(s)
- Edward Winter
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
4
|
Ume6 is required for the MATa/MATalpha cellular identity and transcriptional silencing in Kluyveromyces lactis. Genetics 2010; 184:999-1011. [PMID: 20139343 DOI: 10.1534/genetics.110.114678] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To explore the similarities and differences of regulatory circuits among budding yeasts, we characterized the role of the unscheduled meiotic gene expression 6 (UME6) gene in Kluyveromyces lactis. We found that Ume6 was required for transcriptional silencing of the cryptic mating-type loci HMLalpha and HMRa. Chromatin immunoprecipitation (ChIP) suggested that Ume6 acted directly by binding the cis-regulatory silencers of these loci. Unexpectedly, a MATa ume6 strain was mating proficient, whereas a MATalpha ume6 strain was sterile. This observation was explained by the fact that ume6 derepressed HMLalpha2 only weakly, but derepressed HMRa1 strongly. Consistently, two a/alpha-repressed genes (MTS1 and STE4) were repressed in the MATalpha ume6 strain, but were expressed in the MATa ume6 strain. Surprisingly, ume6 partially suppressed the mating defect of a MATa sir2 strain. MTS1 and STE4 were repressed in the MATa sir2 ume6 double-mutant strain, indicating that the suppression acted downstream of the a1/alpha2-repressor. We show that both STE12 and the MATa2/HMRa2 genes were overexpressed in the MATa sir2 ume6 strain. Consistent with the idea that this deregulation suppressed the mating defect, ectopic overexpression of Ste12 and a2 in a MATa sir2 strain resulted in efficient mating. In addition, Ume6 served as a block to polyploidy, since ume6/ume6 diploids mated as pseudo a-strains. Finally, Ume6 was required for repression of three meiotic genes, independently of the Rpd3 and Sin3 corepressors.
Collapse
|
5
|
Valenzuela L, Gangadharan S, Kamakaka RT. Analyses of SUM1-1-mediated long-range repression. Genetics 2006; 172:99-112. [PMID: 16272409 PMCID: PMC1456157 DOI: 10.1534/genetics.105.050427] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 10/11/2005] [Indexed: 12/29/2022] Open
Abstract
In Saccharomyces cerevisiae, local repression is promoter specific and localized to a small region on the DNA, while silencing is promoter nonspecific, encompasses large domains of chromatin, and is stably inherited for multiple generations. Sum1p is a local repressor protein that mediates repression of meiosis-specific genes in mitotic cells while the Sir proteins are long-range repressors that stably silence genes at HML, HMR, and telomeres. The SUM1-1 mutation is a dominant neomorphic mutation that enables the mutant protein to be recruited to the HMR locus and repress genes, even in the absence of the Sir proteins. In this study we show that the mutation in Sum1-1p enabled it to spread, and the native HMR barrier blocked it from spreading. Thus, like the Sir proteins, Sum1-1p was a long-range repressor, but unlike the Sir proteins, Sum1-1p-mediated repression was more promoter specific, repressing certain genes better than others. Furthermore, repression mediated by Sum1-1p was not stably maintained or inherited and we therefore propose that Sum1-1p-mediated long-range repression is related but distinct from silencing.
Collapse
Affiliation(s)
- Lourdes Valenzuela
- Unit on Chromatin and Transcription, NICHD/NIH, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
6
|
Irlbacher H, Franke J, Manke T, Vingron M, Ehrenhofer-Murray AE. Control of replication initiation and heterochromatin formation in Saccharomyces cerevisiae by a regulator of meiotic gene expression. Genes Dev 2005; 19:1811-22. [PMID: 16077008 PMCID: PMC1182343 DOI: 10.1101/gad.334805] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Accepted: 06/01/2005] [Indexed: 12/31/2022]
Abstract
Heterochromatinization at the silent mating-type loci HMR and HML in Saccharomyces cerevisiae is achieved by targeting the Sir complex to these regions via a set of anchor proteins that bind to the silencers. Here, we have identified a novel heterochromatin-targeting factor for HML, the protein Sum1, a repressor of meiotic genes during vegetative growth. Sum1 bound both in vitro and in vivo to HML via a functional element within the HML-E silencer, and sum1Delta caused HML derepression. Significantly, Sum1 was also required for origin activity of HML-E, demonstrating a role of Sum1 in replication initiation. In a genome-wide search for Sum1-regulated origins, we identified a set of autonomous replicative sequences (ARS elements) that bound both the origin recognition complex and Sum1. Full initiation activity of these origins required Sum1, and their origin activity was decreased upon removal of the Sum1-binding site. Thus, Sum1 constitutes a novel global regulator of replication initiation in yeast.
Collapse
Affiliation(s)
- Horst Irlbacher
- Otto-Warburg-Laboratorium and Department for Computational Molecular Biology, Max-Planck-Institut für Molekulare Genetik, D-14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
7
|
Pak J, Segall J. Role of Ndt80, Sum1, and Swe1 as targets of the meiotic recombination checkpoint that control exit from pachytene and spore formation in Saccharomyces cerevisiae. Mol Cell Biol 2002; 22:6430-40. [PMID: 12192042 PMCID: PMC135635 DOI: 10.1128/mcb.22.18.6430-6440.2002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The meiotic recombination checkpoint, which is triggered by defects in recombination or chromosome synapsis, arrests sporulating cells of Saccharomyces cerevisiae at pachytene by preventing accumulation of active Clb-Cdc28. We compared the effects of manipulating the three known targets of the meiotic recombination checkpoint, NDT80, SWE1, and SUM1, in dmc1-arrested cells. Ndt80 is an activator of a set of middle sporulation-specific genes (MSGs), which includes CLB genes and genes involved in spore wall formation; Swe1 inhibits Clb-Cdc28 activity; and Sum1 is a repressor of NDT80 and some MSGs. Activation of the checkpoint leads to inhibition of Ndt80 activity and to stabilization of Swe1 and Sum1. Thus, dmc1-arrested cells fail to express MSGs, arrest at pachytene, and do not form spores. Our study shows that dmc1/dmc1 sum1/sum1 cells expressed MSGs prematurely and at high levels, entered the meiotic divisions efficiently, and in some cases formed asci containing mature spores. In contrast, dmc1/dmc1 swe1/swe1 cells expressed MSGs at a very low level, were inefficient and delayed in entry into the meiotic divisions, and never formed mature spores. We found that cells of dmc1/dmc1 sum1/sum1 ndt80/ndt80 and dmc1/dmc1 swe1/swe1 ndt80/ndt80 strains arrested at pachytene and that dmc1/dmc1 or dmc1/dmc1 swe1/swe1 cells overexpressing NDT80 were less efficient in bypassing checkpoint-mediated arrest than dmc1/dmc1 sum1/sum1 cells. Our results are consistent with previous suggestions that increased Clb-Cdc28 activity, caused by mutation of SWE1 or by an NDT80-dependent increase in CLB expression, allows dmc1/dmc1 cells to exit pachytene and that subsequent upregulation of Ndt80 activity by a feedback mechanism promotes entry into the meiotic divisions. Spore morphogenesis, however, requires efficient and timely activation of MSGs, which we speculate was achieved in dmc1/dmc1 sum1/sum1 cells by premature expression of NDT80.
Collapse
Affiliation(s)
- Julia Pak
- Department of Molecular and Medical Genetics, University of Toronto, Ontario, Canada M5S 1A8
| | | |
Collapse
|
8
|
Pak J, Segall J. Regulation of the premiddle and middle phases of expression of the NDT80 gene during sporulation of Saccharomyces cerevisiae. Mol Cell Biol 2002; 22:6417-29. [PMID: 12192041 PMCID: PMC135636 DOI: 10.1128/mcb.22.18.6417-6429.2002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2002] [Revised: 06/07/2002] [Accepted: 06/21/2002] [Indexed: 01/11/2023] Open
Abstract
The NDT80 gene of Saccharomyces cerevisiae, which encodes a global activator of transcription of middle sporulation-specific genes, is first expressed after the activation of early meiotic genes but prior to activation of middle sporulation-specific genes. Both upstream repression sequence 1 (URS1) and mid-sporulation element (MSE) sites are present in the promoter region of the NDT80 gene; these elements have been shown previously to contribute to the regulation of expression of early and middle sporulation-specific genes, respectively, by mediating repression in growing cells and activation at specific times during sporulation. In this study, we have shown that the overlapping windows of URS1- and MSE-mediated repression and activation are responsible for the distinctive premiddle expression pattern of the NDT80 gene. Our data suggest that a Sum1-associated repression complex bound at the NDT80 MSE sites prevents Ime1 tethered at the NDT80 URS1 sites from activating transcription of the NDT80 gene at the time that Ime1-dependent activation of early URS1-regulated meiotic genes is occurring. We propose that a decrease in the efficiency of Sum1-mediated repression as cells progress through the early events of the sporulation program allows the previously inactive Ime1 tethered at the URS1(NDT80) sites to promote a low level of expression of the NDT80 gene. This initial phase of URS1-dependent NDT80 expression is followed by Ndt80-dependent upregulation of its own expression, which requires the MSE(NDT80) sites and occurs concomitantly with Ndt80-dependent activation of a set of middle MSE-regulated sporulation-specific genes. Mutation of IME2 prevents expression of NDT80 in sporulating cells. We show in this study that NDT80 is expressed and that middle genes are activated in cells of an Deltaime2/Deltaime2 Deltasum1/Deltasum1 strain in sporulation medium. This suggests that Ime2 activates expression of NDT80 by eliminating Sum1-mediated repression.
Collapse
Affiliation(s)
- Julia Pak
- Department of Molecular and Medical Genetics, University of Toronto, Ontario, Canada M5S 1A8
| | | |
Collapse
|
9
|
Huang Y. Transcriptional silencing in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Nucleic Acids Res 2002; 30:1465-82. [PMID: 11917007 PMCID: PMC101825 DOI: 10.1093/nar/30.7.1465] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2001] [Revised: 01/28/2002] [Accepted: 01/28/2002] [Indexed: 11/13/2022] Open
Abstract
Transcriptional silencing is a heritable form of gene inactivation that involves the assembly of large regions of DNA into a specialized chromatin structure that inhibits transcription. This phenomenon is responsible for inhibiting transcription at silent mating-type loci, telomeres and rDNA repeats in both budding yeast Saccharomyces cerevisiae and fission yeast Schizosaccharomyces pombe, as well as at centromeres in fission yeast. Although transcriptional silencing in both S.cerevisiae and S.pombe involves modification of chromatin, no apparent amino acid sequence similarities have been reported between the proteins involved in establishment and maintenance of silent chromatin in these two distantly related yeasts. Silencing in S.cerevisiae is mediated by Sir2p-containing complexes, whereas silencing in S.pombe is mediated primarily by Swi6-containing complexes. The Swi6 complexes of S.pombe contain proteins closely related to their counterparts in higher eukaryotes, but have no apparent orthologs in S.cerevisiae. Silencing proteins from both yeasts are also actively involved in other chromosome-related nuclear functions, including DNA repair and the regulation of chromatin structure.
Collapse
|
10
|
Sutton A, Heller RC, Landry J, Choy JS, Sirko A, Sternglanz R. A novel form of transcriptional silencing by Sum1-1 requires Hst1 and the origin recognition complex. Mol Cell Biol 2001; 21:3514-22. [PMID: 11313477 PMCID: PMC100273 DOI: 10.1128/mcb.21.10.3514-3522.2001] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, a and alpha mating-type information is stored in transcriptionally silenced cassettes called HML and HMR. Silencing of these loci, maintained by the formation of a specialized type of heterochromatin, requires trans-acting proteins and cis-acting elements. Proteins required for silencing include the Sir2 NAD(+)-dependent deacetylase, Sir3, and Sir4. Factors that bind to the cis elements at HMR and HML and that are important for silencing include the origin recognition complex (ORC). Mutations of any of these Sir proteins or combinations of cis elements result in loss of silencing. SUM1-1 was previously identified as a dominant mutation that restores silencing to HMR in the absence of either the Sir proteins or some of the cis elements. We have investigated the novel mechanism whereby Sum1-1 causes Sir-independent silencing at HMR and present the following findings: Sum1-1 requires the Sir2 homolog, Hst1, for silencing and most probably requires the NAD(+)-dependent deacetylase activity of this protein. Sum1-1 interacts strongly with ORC, and this strong interaction is dependent on HMR DNA. Furthermore, ORC is required for Sum1-1-mediated silencing at HMR. These observations lead to a model for Sum1-1 silencing of HMR in which Sum1-1 is recruited to HMR by binding to ORC. Sum1-1, in turn, recruits Hst1. Hst1 then deacetylates histones or other chromatin-associated proteins to cause chromatin condensation and transcriptional silencing.
Collapse
Affiliation(s)
- A Sutton
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York 11794-5215, USA
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
In Saccharomyces cerevisiae, gene silencing at the HMR and HML loci is normally dependent on Sir2p, Sir3p, and Sir4p, which are structural components of silenced chromatin. Sir2p is a NAD+-dependent histone deacetylase required for silencing. Silencing can be restored in cells lacking Sir proteins by a dominant mutation in SUM1, which normally acts as a mitotic repressor of meiotic genes. This study found that mutant Sum1-1p, but not wild-type Sum1p, associated directly with HM loci. The origin recognition complex (ORC) was required for Sum1-1p-mediated silencing, and mutations in ORC genes reduced association of Sum1-1p with the HM loci. Sum1-1p-mediated silencing also depended on HST1, a paralog of SIR2. Both Sum1-1p and wild-type Sum1p interacted with Hst1p in coimmunoprecipitation experiments. Therefore, the SUM1-1 mutation did not change the affinity of Sum1p for Hst1p, but rather relocalized Sum1p to the HM loci. Sum1-1-Hst1p action led to hypoacetylation of the nucleosomes at HM loci. Thus, Sum1-1p and Hst1p could substitute for Sir proteins to achieve silencing through formation of a compositionally distinct type of heterochromatin.
Collapse
Affiliation(s)
- L N Rusché
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
12
|
Chi MH, Shore D. SUM1-1, a dominant suppressor of SIR mutations in Saccharomyces cerevisiae, increases transcriptional silencing at telomeres and HM mating-type loci and decreases chromosome stability. Mol Cell Biol 1996; 16:4281-94. [PMID: 8754829 PMCID: PMC231427 DOI: 10.1128/mcb.16.8.4281] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Transcriptional silencing in the yeast Saccharomyces cerevisiae occurs at HML and HMR mating-type loci and telomeres and requires the products of the silent information regulator (SIR) genes. Recent evidence suggests that the silencer- and telomere-binding protein Rap1p initiates silencing by recruiting a complex of Sir proteins to the chromosome, where they act in some way to modify chromatin structure or accessibility. A single allele of the SUM1gene (SUM1-1) which restores silencing at HM loci in strains mutant for any of the four SIR genes was identified a number of years ago. However, conflicting genetic results and the lack of other alleles of SUM1 made it difficult to surmise the wild-type function of SUM1 or the manner in which the SUM1-1 mutation restores silencing in sir mutant strains. Here we report the cloning and characterization of the SUM1 gene and the SUM1-1 mutant allele. Our results indicate that SUM1-1 is an unusual altered-function mutation that can bypass the need for SIR function in HM silencing and increase repression at telomeres. A sum1 deletion mutation has only minor effects on silencing in SIR strains and does not restore silencing in sir mutants. In addition to its effect on transcriptional silencing, the SUM1-1 mutation (but not a sum1 deletion) increases the rate of chromosome loss and cell death. We suggest several speculative models for the action of SUM1-1 in silencing based on these and other data.
Collapse
Affiliation(s)
- M H Chi
- Department of Microbiology, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
13
|
Abstract
Three copies of the mating-type genes, which determine cell type, are found in the budding yeast Saccharomyces cerevisiae. The copy at the MAT locus is transcriptionally active, whereas identical copies of the mating-type genes at the HML and HMR loci are transcriptionally silent. Hence, HML and HMR, also known as the silent mating-type loci, are subject to a position effect. Regulatory sequences flank the silent mating-type loci and mediate repression of HML and HMR. These regulatory sequences are called silencers for their ability to repress the transcription of nearby genes in a distance- and orientation-independent fashion. In addition, a number of proteins, including the four SIR proteins, histone H4, and an alpha-acetyltransferase, are required for the complete repression of HML and HMR. Because alterations in the amino-terminal domain of histone H4 result in the derepression of the silent mating-type loci, the mechanism of repression may involve the assembly of a specific chromatin structure. A number of additional clues permit insight into the nature of repression at HML and HMR. First, an S phase event is required for the establishment of repression. Second, at least one gene appears to play a role in the establishment mechanism yet is not essential for the stable propagation of repression through many rounds of cell division. Third, certain aspects of repression are linked to aspects of replication. The silent mating-type loci share many similarities with heterochromatin. Furthermore, regions of S. cerevisiae chromosomes, such as telomeres, which are known to be heterochromatic in other organisms, require a subset of SIR proteins for repression. Further analysis of the transcriptional repression at the silent mating-type loci may lend insight into heritable repression in other eukaryotes.
Collapse
Affiliation(s)
- P Laurenson
- Division of Genetics, University of California, Berkeley 94720
| | | |
Collapse
|
14
|
Abstract
The repression of transcription of the silent mating-type locus HMRa in the yeast Saccharomyces cerevisiae requires the four SIR proteins, histone H4 and a flanking site designated HMR-E. The SUM1-1 mutation alleviated the need for many of these components in transcriptional repression. In the absence of each of the SIR proteins, SUM1-1 restored repression in MAT alpha strains; thus, SUM1-1 appeared to bypass the need for the SIR genes in repression of HMRa. Repression was not specific to the genes normally present at HMR, since the TRP1 gene placed at HMR was repressed by SUM1-1 in a sir3 strain. Therefore, like the mechanisms of silencing normally used at HMR, silencing by SUM1-1 was gene-nonspecific. SUM1-1 suppressed point mutations in histone H4, but failed to suppress strongly a deletion mutation in histone H4. Similarly, SUM1-1 suppressed mutations in the three known elements of HMR-E, but was unable to suppress a deletion of HMR-E. These epistasis analyses implied that the functions required for repression at HMR can be ordered, with the SIR genes and silencer elements acting upstream of SUM1-1. SUM1-1 itself may function at the level of chromatin in the assembly of inactive DNA at the silent mating-type loci.
Collapse
Affiliation(s)
- P Laurenson
- Department of Molecular and Cellular Biology, University of California, Berkeley 94720
| | | |
Collapse
|
15
|
Rapamycin sensitivity in Saccharomyces cerevisiae is mediated by a peptidyl-prolyl cis-trans isomerase related to human FK506-binding protein. Mol Cell Biol 1991. [PMID: 1996117 DOI: 10.1128/mcb.11.3.1718] [Citation(s) in RCA: 161] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rapamycin is a macrolide antifungal agent with structural similarity to FK506. It exhibits potent immunosuppressive properties analogous to those of both FK506 and cyclosporin A (CsA). Unlike FK506 and CsA, however, rapamycin does not inhibit the transcription of early T-cell activation genes, including interleukin-2, but instead appears to block downstream events leading to T-cell activation. FK506 and CsA receptor proteins (FKBP and cyclophilin, respectively) have been identified and shown to be distinct members of a class of enzymes that possess peptidyl-prolyl cis-trans isomerase (PPIase) activity. Despite the apparent differences in their mode of action, rapamycin and FK506 act as reciprocal antagonists in vivo and compete for binding to FKBP. As a means of rapidly identifying a target protein for rapamycin in vivo, we selected and genetically characterized rapamycin-resistant mutants of Saccharomyces cerevisiae and isolated a yeast genomic fragment that confers drug sensitivity. We demonstrate that the resonse to rapamycin in yeast cells is mediated by a gene encoding a 114-amino-acid, approximately 13-kDa protein which has a high degree of sequence homology with human FKBP; we designated this gene RBP1 (for rapamycin-binding protein). The RBP1 protein (RBP) was expressed in Escherichia coli, purified to homogeneity, and shown to catalyze peptidyl-prolyl isomerization of a synthetic peptide substrate. PPIase activity was completely inhibited by rapamycin and FK506 but not by CsA, indicating that both macrolides bind to the recombinant protein. Expression of human FKBP in rapamycin-resistant mutants restored rapamycin sensitivity, indicating a functional equivalence between the yeast and human enzymes.
Collapse
|
16
|
Rapamycin sensitivity in Saccharomyces cerevisiae is mediated by a peptidyl-prolyl cis-trans isomerase related to human FK506-binding protein. Mol Cell Biol 1991; 11:1718-23. [PMID: 1996117 PMCID: PMC369480 DOI: 10.1128/mcb.11.3.1718-1723.1991] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Rapamycin is a macrolide antifungal agent with structural similarity to FK506. It exhibits potent immunosuppressive properties analogous to those of both FK506 and cyclosporin A (CsA). Unlike FK506 and CsA, however, rapamycin does not inhibit the transcription of early T-cell activation genes, including interleukin-2, but instead appears to block downstream events leading to T-cell activation. FK506 and CsA receptor proteins (FKBP and cyclophilin, respectively) have been identified and shown to be distinct members of a class of enzymes that possess peptidyl-prolyl cis-trans isomerase (PPIase) activity. Despite the apparent differences in their mode of action, rapamycin and FK506 act as reciprocal antagonists in vivo and compete for binding to FKBP. As a means of rapidly identifying a target protein for rapamycin in vivo, we selected and genetically characterized rapamycin-resistant mutants of Saccharomyces cerevisiae and isolated a yeast genomic fragment that confers drug sensitivity. We demonstrate that the resonse to rapamycin in yeast cells is mediated by a gene encoding a 114-amino-acid, approximately 13-kDa protein which has a high degree of sequence homology with human FKBP; we designated this gene RBP1 (for rapamycin-binding protein). The RBP1 protein (RBP) was expressed in Escherichia coli, purified to homogeneity, and shown to catalyze peptidyl-prolyl isomerization of a synthetic peptide substrate. PPIase activity was completely inhibited by rapamycin and FK506 but not by CsA, indicating that both macrolides bind to the recombinant protein. Expression of human FKBP in rapamycin-resistant mutants restored rapamycin sensitivity, indicating a functional equivalence between the yeast and human enzymes.
Collapse
|