1
|
Russnak R, Pereira S, Platt T. RNA binding analysis of yeast REF2 and its two-hybrid interaction with a new gene product, FIR1. Gene Expr 2018; 6:241-58. [PMID: 9196079 PMCID: PMC6148272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The product of the REF2 gene is required for optimal levels of endonucleolytic cleavage at the 3' ends of yeast mRNA, prior to the addition of a poly(A) tail. To test the role of the previously demonstrated nonspecific affinity of REF2 for RNA in this process, we have identified RNA binding mutants in vitro and tested them for function within the cell. One REF2 variant, with an internal deletion of 82 amino acids (269-350), displays a 10-fold reduction in RNA binding, yet still retains full levels of processing activity in vivo. Conversely, a series of carboxyl-terminal deletions that maintain full RNA binding capability have progressively decreasing activity. These results rule out a major role for the central RNA binding domain of REF2 in mRNA 3' end processing and demonstrate the importance of the carboxyl-terminal region. To ask if the stimulatory role of REF2 depends on interactions with other proteins, we used a two-hybrid screen to identify a new protein termed FIR1 (Factor Interacting with REF) encoded on chromosome V. FIR1 interacts with two independent regions of REF2, one of which (amino acids 268-345) overlaps the RNA binding domain and is dispensible for REF2 function, whereas the other (amino acids 391-533) is located within the critical carboxyl-terminus. As with REF2, FIR1 has a small but detectable role in influencing the efficiency of poly(A) site use. Yeast strains containing a disrupted FIR1 gene are slightly less efficient in the use of cryptic poly(A) sites located within the lacZ portion of an ACT1-lacZ reporter construct. Likewise, a double delta ref2, delta fir1 mutant is more defective in processing of a reporter CYC1 poly(A) site than delta ref2 alone. This synergistic response provides additional support for the interaction of FIR1 with REF2 in vivo, and suggests that a number of gene products may be involved in regulating the cleavage reaction in yeast.
Collapse
Affiliation(s)
- Roland Russnak
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642
| | - Shalini Pereira
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642
| | - Terry Platt
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642
- Address correspondence to Terry Platt. Tel: (716) 275-8244; Fax: (716) 271-2683; E-mail:
| |
Collapse
|
2
|
Zhao H, Zheng J, Li QQ. A novel plant in vitro assay system for pre-mRNA cleavage during 3'-end formation. PLANT PHYSIOLOGY 2011; 157:1546-54. [PMID: 21908687 PMCID: PMC3252153 DOI: 10.1104/pp.111.179465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Messenger RNA (mRNA) maturation in eukaryotic cells requires the formation of the 3' end, which includes two tightly coupled steps: the committing cleavage reaction that requires both correct cis-element signals and cleavage complex formation, and the polyadenylation step that adds a polyadenosine [poly(A)] tract to the newly generated 3' end. An in vitro biochemical assay plays a critical role in studying this process. The lack of such an assay system in plants hampered the study of plant mRNA 3'-end formation for the last two decades. To address this, we have now established and characterized a plant in vitro cleavage assay system, in which nuclear protein extracts from Arabidopsis (Arabidopsis thaliana) suspension cell cultures can accurately cleave different pre-mRNAs at expected in vivo authenticated poly(A) sites. The specific activity is dependent on appropriate cis-elements on the substrate RNA. When complemented by yeast (Saccharomyces cerevisiae) poly(A) polymerase, about 150-nucleotide poly(A) tracts were added specifically to the newly cleaved 3' ends in a cooperative manner. The reconstituted polyadenylation reaction is indicative that authentic cleavage products were generated. Our results not only provide a novel plant pre-mRNA cleavage assay system, but also suggest a cross-kingdom functional complementation of yeast poly(A) polymerase in a plant system.
Collapse
|
3
|
Tian B, Graber JH. Signals for pre-mRNA cleavage and polyadenylation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:385-96. [PMID: 22012871 DOI: 10.1002/wrna.116] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pre-mRNA cleavage and polyadenylation is an essential step for 3' end formation of almost all protein-coding transcripts in eukaryotes. The reaction, involving cleavage of nascent mRNA followed by addition of a polyadenylate or poly(A) tail, is controlled by cis-acting elements in the pre-mRNA surrounding the cleavage site. Experimental and bioinformatic studies in the past three decades have elucidated conserved and divergent elements across eukaryotes, from yeast to human. Here we review histories and current models of these elements in a broad range of species.
Collapse
Affiliation(s)
- Bin Tian
- UMDNJ-New Jersey Medical School, Newark, NJ, USA.
| | | |
Collapse
|
4
|
Roth KM, Byam J, Fang F, Butler JS. Regulation of NAB2 mRNA 3'-end formation requires the core exosome and the Trf4p component of the TRAMP complex. RNA (NEW YORK, N.Y.) 2009; 15:1045-58. [PMID: 19369424 PMCID: PMC2685527 DOI: 10.1261/rna.709609] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The nuclear exosome functions in a variety of pathways catalyzing formation of mature RNA 3'-ends or the destruction of aberrant RNA transcripts. The RNA 3'-end formation activity of the exosome appeared restricted to small noncoding RNAs. However, the nuclear exosome controls the level of the mRNA encoding the poly(A)-binding protein Nab2p in a manner requiring an A(26) sequence in the mRNA 3' untranslated regions (UTR), and the activities of Nab2p and the exosome-associated exoribonuclease Rrp6p. Here we show that the A(26) sequence inhibits normal 3'-end processing of NAB2 mRNA in vivo and in vitro, and makes formation of the mature 3'-end dependent on trimming of the transcript by the core exosome and the Trf4p component of the TRAMP complex from a downstream site. The detection of mature, polyadenylated transcripts ending at, or within, the A(26) sequence indicates that exosome trimming sometimes gives way to polyadenylation of the mRNA. Alternatively, Rrp6p and the TRAMP-associated Mtr4p degrade these transcripts thereby limiting the amount of Nab2p in the cell. These findings suggest that NAB2 mRNA 3'-end formation requires the exosome and TRAMP complex, and that competition between polyadenylation and Rrp6p-dependent degradation controls the level of this mRNA.
Collapse
Affiliation(s)
- Kelly M Roth
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
5
|
Viphakone N, Voisinet-Hakil F, Minvielle-Sebastia L. Molecular dissection of mRNA poly(A) tail length control in yeast. Nucleic Acids Res 2008; 36:2418-33. [PMID: 18304944 PMCID: PMC2367721 DOI: 10.1093/nar/gkn080] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In eukaryotic cells, newly synthesized mRNAs acquire a poly(A) tail that plays several fundamental roles in export, translation and mRNA decay. In mammals, PABPN1 controls the processivity of polyadenylation and the length of poly(A) tails during de novo synthesis. This regulation is less well-detailed in yeast. We have recently demonstrated that Nab2p is necessary and sufficient for the regulation of polyadenylation and that the Pab1p/PAN complex may act at a later stage in mRNA metabolism. Here, we show that the presence of both Pab1p and Nab2p in reconstituted pre-mRNA 3′-end processing reactions has no stimulating nor inhibitory effect on poly(A) tail regulation. Importantly, the poly(A)-binding proteins are essential to protect the mature mRNA from being subjected to a second round of processing. We have determined which domains of Nab2p are important to control polyadenylation and found that the RGG-box work in conjunction with the two last essential CCCH-type zinc finger domains. Finally, we have tried to delineate the mechanism by which Nab2p performs its regulation function during polyadenylation: it likely forms a complex with poly(A) tails different from a simple linear deposit of proteins as it has been observed with Pab1p.
Collapse
Affiliation(s)
- Nicolas Viphakone
- Université Victor Segalen Bordeaux 2, CNRS, Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
| | | | | |
Collapse
|
6
|
Balbo PB, Bohm A. Mechanism of poly(A) polymerase: structure of the enzyme-MgATP-RNA ternary complex and kinetic analysis. Structure 2007; 15:1117-31. [PMID: 17850751 PMCID: PMC2032019 DOI: 10.1016/j.str.2007.07.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 06/27/2007] [Accepted: 07/01/2007] [Indexed: 11/23/2022]
Abstract
We report the 1.8 A structure of yeast poly(A) polymerase (PAP) trapped in complex with ATP and a five residue poly(A) by mutation of the catalytically required aspartic acid 154 to alanine. The enzyme has undergone significant domain movement and reveals a closed conformation with extensive interactions between the substrates and all three polymerase domains. Both substrates and 31 buried water molecules are enclosed within a central cavity that is open at both ends. Four PAP mutants were subjected to detailed kinetic analysis, and studies of the adenylyltransfer (forward), pyrophosphorolysis (reverse), and nucleotidyltransfer reaction utilizing CTP for the mutants are presented. The results support a model in which binding of both poly(A) and the correct nucleotide, MgATP, induces a conformational change, resulting in formation of a stable, closed enzyme state. Thermodynamic considerations of the data are discussed as they pertain to domain closure, substrate specificity, and catalytic strategies utilized by PAP.
Collapse
Affiliation(s)
- Paul B. Balbo
- Tufts School of Medicine, Department of Biochemistry, 136 Harrison Ave., Boston, MA 02111
| | - Andrew Bohm
- Tufts School of Medicine, Department of Biochemistry, 136 Harrison Ave., Boston, MA 02111
| |
Collapse
|
7
|
Nedea E, He X, Kim M, Pootoolal J, Zhong G, Canadien V, Hughes T, Buratowski S, Moore CL, Greenblatt J. Organization and function of APT, a subcomplex of the yeast cleavage and polyadenylation factor involved in the formation of mRNA and small nucleolar RNA 3'-ends. J Biol Chem 2003; 278:33000-10. [PMID: 12819204 DOI: 10.1074/jbc.m304454200] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Messenger RNA 3'-end formation is functionally coupled to transcription by RNA polymerase II. By tagging and purifying Ref2, a non-essential protein previously implicated in mRNA cleavage and termination, we isolated a multiprotein complex, holo-CPF, containing the yeast cleavage and polyadenylation factor (CPF) and six additional polypeptides. The latter can form a distinct complex, APT, in which Pti1, Swd2, a type I protein phosphatase (Glc7), Ssu72 (a TFIIB and RNA polymerase II-associated factor), Ref2, and Syc1 are associated with the Pta1 subunit of CPF. Systematic tagging and purification of holo-CPF subunits revealed that yeast extracts contain similar amounts of CPF and holo-CPF. By purifying holo-CPF from strains lacking Ref2 or containing truncated subunits, subcomplexes were isolated that revealed additional aspects of the architecture of APT and holo-CPF. Chromatin immunoprecipitation was used to localize Ref2, Ssu72, Pta1, and other APT subunits on small nucleolar RNA (snoRNA) genes and primarily near the polyadenylation signals of the constitutively expressed PYK1 and PMA1 genes. Use of mutant components of APT revealed that Ssu72 is important for preventing readthrough-dependent expression of downstream genes for both snoRNAs and polyadenylated transcripts. Ref2 and Pta1 similarly affect at least one snoRNA transcript.
Collapse
Affiliation(s)
- Eduard Nedea
- Banting and Best Department of Medical Research and Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Edmonds M. A history of poly A sequences: from formation to factors to function. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 71:285-389. [PMID: 12102557 DOI: 10.1016/s0079-6603(02)71046-5] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biological polyadenylation, first recognized as an enzymatic activity, remained an orphan enzyme until poly A sequences were found on the 3' ends of eukarvotic mRNAs. Their presence in bacteria viruses and later in archeae (ref. 338) established their universality. The lack of compelling evidence for a specific function limited attention to their cellular formation. Eventually the newer techniques of molecular biology and development of accurate nuclear processing extracts showed 3' end formation to be a two-step process. Pre-mRNA was first cleaved endonucleolytically at a specific site that was followed by sequential addition of AMPs from ATP to the 3' hydroxyl group at the end of mRNA. The site of cleavage was specified by a conserved hexanucleotide, AAUAAA, from 10 to 30 nt upstream of this 3' end. Extensive purification of these two activities showed that more than 10 polypeptides were needed for mRNA 3' end formation. Most of these were in complexes involved in the cleavage step. Two of the best characterized are CstF and CPSF, while two other remain partially purified but essential. Oddly, the specific proteins involved in phosphodiester bond hydrolysis have yet to be identified. The polyadenylation step occurs within the complex of poly A polymerase and poly A-binding protein, PABII, that controls poly A length. That the cleavage complex, CPSF, is also required for this step attests to a tight coupling of the two steps of 3' and formation. The reaction reconstituted from these RNA-free purified factors correctly processes pre-mRNAs. Meaningful analysis of the role of poly A in mRNA metabolism or function was possible once quantities of these proteins most often over-expressed from cDNA clones became available. The large number needed for two simple reactions of an endonuclease, a polymerase and a sequence recognition factor, pointed to 3' end formation as a regulated process. Polyadenylation itself had appeared to require regulation in cases where two poly A sites were alternatively processed to produce mRNA coding for two different proteins. The 64-KDa subunit of CstF is now known to be a regulator of poly A site choice between two sites in the immunoglobulin heavy chain of B cells. In resting cells the site used favors the mRNA for a membrane-bound protein. Upon differentiation to plasma cells, an upstream site is used the produce a secreted form of the heavy chain. Poly A site choice in the calcitonin pre-mRNA involves splicing factors at a pseudo splice site in an intron downstream of the active poly site that interacts with cleavage factors for most tissues. The molecular basis for choice of the alternate site in neuronal tissue is unknown. Proteins needed for mRNA 3' end formation also participate in other RNA-processing reactions: cleavage factors bind to the C-terminal domain of RNA polymerase during transcription; splicing of 3' terminal exons is stimulated port of by cleavage factors that bind to splicing factors at 3' splice sites. nuclear ex mRNAs is linked to cleavage factors and requires the poly A II-binding protein. Most striking is the long-sought evidence for a role for poly A in translation in yeast where it provides the surface on which the poly A-binding protein assembles the factors needed for the initiation of translation. This adaptability of eukaryotic cells to use a sequence of low information content extends to bacteria where poly A serves as a site for assembly of an mRNA degradation complex in E. coli. Vaccinia virus creates mRNA poly A tails by a streamlined mechanism independent of cleavage that requires only two proteins that recognize unique poly A signals. Thus, in spite of 40 years of study of poly A sequences, this growing multiplicity of uses and even mechanisms of formation seem destined to continue.
Collapse
MESH Headings
- Adenoviridae/genetics
- Adenoviridae/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- History, 20th Century
- RNA Processing, Post-Transcriptional
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/history
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Vaccinia virus/genetics
- Vaccinia virus/metabolism
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Mary Edmonds
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
9
|
Sillero MAG, De Diego A, Osorio H, Sillero A. Dinucleoside polyphosphates stimulate the primer independent synthesis of poly(A) catalyzed by yeast poly(A) polymerase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5323-9. [PMID: 12392566 DOI: 10.1046/j.1432-1033.2002.03253.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Novel properties of the primer independent synthesis of poly(A), catalyzed by the yeast poly(A) polymerase are presented. The commercial enzyme from yeast, in contrast to the enzyme from Escherichia coli, is unable to adenylate the 3'-OH end of nucleosides, nucleotides or dinucleoside polyphosphates (NpnN). In the presence of 0.05 mm ATP, dinucleotides (at 0.01 mm) activated the enzyme velocity in the following decreasing order: Gp4G, 100; Gp3G, 82; Ap6A, 61; Gp2G, 52; Ap4A, 51; Ap2A, 41; Gp5G, 36; Ap5A, 27; Ap3A, 20, where 100 represents a 10-fold activation in relation to a control without effector. The velocity of the enzyme towards its substrate ATP displayed sigmoidal kinetics with a Hill coefficient (nH) of 1.6 and a Km(S0.5) value of 0.308 +/- 0.120 mm. Dinucleoside polyphosphates did not affect the maximum velocity (Vmax) of the reaction, but did alter its nH and Km(S0.5) values. In the presence of 0.01 mm Gp4G or Ap4A the nH and Km(S0.5) values were (1.0 and 0.063 +/- 0.012 mm) and (0.8 and 0.170 +/- 0.025 mm), respectively. With these kinetic properties, a dinucleoside polyphosphate concentration as low as 1 micro m may have a noticeable activating effect on the synthesis of poly(A) by the enzyme. These findings together with previous publications from this laboratory point to a potential relationship between dinucleoside polyphosphates and enzymes catalyzing the synthesis and/or modification of DNA or RNA.
Collapse
Affiliation(s)
- María A Günther Sillero
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols UAM/CSIC, Facultad de Medicina, Madrid, Spain
| | | | | | | |
Collapse
|
10
|
Sillero MA, Socorro S, Baptista MJ, Del Valle M, De Diego A, Sillero A. Poly(A) polymerase from Escherichia coli adenylylates the 3'-hydroxyl residue of nucleosides, nucleoside 5'-phosphates and nucleoside(5')oligophospho(5')nucleosides (NpnN). EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3605-11. [PMID: 11422392 DOI: 10.1046/j.1432-1327.2001.02271.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The capacity of Escherichia coli poly(A) polymerase to adenylylate the 3'-OH residue of a variety of nucleosides, nucleoside 5'-phosphates and dinucleotides of the type nucleoside(5')oligophospho(5')nucleoside is described here for the first time. Using micromolar concentrations of [alpha-32P]ATP, the following nucleosides/nucleotides were found to be substrates of the reaction: guanosine, AMP, CMP, GMP, IMP, GDP, CTP, dGTP, GTP, XTP, adenosine(5')diphospho(5')adenosine (Ap2A), adenosine (5')triphospho(5')adenosine (Ap3A), adenosine(5')tetraphospho(5')adenosine (Ap4A), adenosine(5')pentaphospho(5')adenosine (Ap5A), guanosine(5')diphospho(5') guanosine (Gp2G), guanosine(5')triphospho(5')guanosine (Gp3G), guanosine(5')tetraphospho(5')guanosine (Gp4G), and guanosine(5')pentaphospho(5')guanosine (Gp5G). The synthesized products were analysed by TLC or HPLC and characterized by their UV spectra, and by treatment with alkaline phosphatase and snake venom phosphodiesterase. The presence of 1 mM GMP inhibited competitively the polyadenylylation of tRNA. We hypothesize that the type of methods used to measure polyadenylation of RNA is the reason why this novel property of E. coli poly(A) polymerase has not been observed previously.
Collapse
Affiliation(s)
- M A Sillero
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols UAM/CSIC, Facultad de Medicina, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
11
|
Barabino SM, Ohnacker M, Keller W. Distinct roles of two Yth1p domains in 3'-end cleavage and polyadenylation of yeast pre-mRNAs. EMBO J 2000; 19:3778-87. [PMID: 10899131 PMCID: PMC313971 DOI: 10.1093/emboj/19.14.3778] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Yth1p is the yeast homologue of the 30 kDa subunit of mammalian cleavage and polyadenylation specificity factor (CPSF). The protein is part of the cleavage and polyadenylation factor CPF, which includes cleavage factor II (CF II) and polyadenylation factor I (PF I), and is required for both steps in pre-mRNA 3'-end processing. Yth1p is an RNA-binding protein that was previously shown to be essential for polyadenylation. Here, we demonstrate that Yth1p is also required for the cleavage reaction and that two protein domains have distinct roles in 3'-end processing. The C-terminal part is required in polyadenylation to tether Fip1p and poly(A) polymerase to the rest of CPF. A single point mutation in the highly conserved second zinc finger impairs both cleavage and polyadenylation, and affects the ability of Yth1p to interact with the pre-mRNA and other CPF subunits. Finally, we find that Yth1p binds to CYC1 pre-mRNA in the vicinity of the cleavage site. Our results indicate that Yth1p is important for the integrity of CPF and participates in the recognition of the cleavage site.
Collapse
Affiliation(s)
- S M Barabino
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland.
| | | | | |
Collapse
|
12
|
Sathyanarayana UG, Freeman LA, Lee MS, Garrard WT. RNA polymerase-specific nucleosome disruption by transcription in vivo. J Biol Chem 1999; 274:16431-6. [PMID: 10347204 DOI: 10.1074/jbc.274.23.16431] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nucleosomal chromatin structure within genes is disrupted upon transcription by RNA polymerase II. To determine whether this disruption is caused by transcription per se as opposed to the RNA polymerase source, we engineered the yeast chromosomal HSP82 gene to be exclusively transcribed by bacteriophage T7 RNA polymerase in vivo. Interestingly, we found that a fraction of the T7-generated transcripts were 3' end processed and polyadenylated at or near the 3' ends of the hsp82 and the immediately downstream CIN2 genes. Surprisingly, the nucleosomal structure of the T7-transcribed hsp82 gene remained intact, in marked contrast to the disrupted structure generated by much weaker, basal level transcription of the wild type gene by RNA polymerase II under non-heat shock conditions. Therefore, disruption of chromatin structure by transcription is dependent on the RNA polymerase source. We propose that the observed RNA polymerase dependence for transcription-induced nucleosome disruption may be related either to the differential recruitment of chromatin remodeling complexes, the rates of histone octamer translocation and nucleosome reformation during polymerase traversal, and/or the degree of transient torsional stress generated by the elongating polymerase.
Collapse
Affiliation(s)
- U G Sathyanarayana
- Department of Molecular Biology and Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9140, USA
| | | | | | | |
Collapse
|
13
|
Hani J, Schelbert B, Bernhardt A, Domdey H, Fischer G, Wiebauer K, Rahfeld JU. Mutations in a peptidylprolyl-cis/trans-isomerase gene lead to a defect in 3'-end formation of a pre-mRNA in Saccharomyces cerevisiae. J Biol Chem 1999; 274:108-16. [PMID: 9867817 DOI: 10.1074/jbc.274.1.108] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a genetic screen aimed at the identification of trans-acting factors involved in mRNA 3'-end processing of budding yeast, we have previously isolated two temperature-sensitive mutants with an apparent defect in the 3'-end formation of a plasmid-derived pre-mRNA. Surprisingly, both mutants were rescued by the essential gene ESS1/PTF1 that encoded a putative peptidylprolyl-cis/trans-isomerase (PPIase) (Hani, J., Stumpf, G., and Domdey, H. (1995) FEBS Lett. 365, 198-202). Such enzymes, which catalyze the cis/trans-interconversion of peptide bonds N-terminal of prolines, are suggested to play a role in protein folding or trafficking. Here we report that Ptf1p shows PPIase activity in vitro, displaying an unusual substrate specificity for peptides with phosphorylated serine and threonine residues preceding proline. Both mutations were found to result in amino acid substitutions of highly conserved residues within the PPIase domain, causing a marked decrease in PPIase activity of the mutant enzymes. Our results are suggestive of a so far unknown involvement of a PPIase in mRNA 3'-end formation in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- J Hani
- Genzentrum der Ludwig-Maximilians-Universität München, Feodor-Lynen Strasse 25, 81377 München, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Aranda A, Pérez-Ortín JE, Moore C, del Olmo M. The yeast FBP1 poly(A) signal functions in both orientations and overlaps with a gene promoter. Nucleic Acids Res 1998; 26:4588-96. [PMID: 9753725 PMCID: PMC147910 DOI: 10.1093/nar/26.20.4588] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This report provides an analysis of a region of chromosome XII in which the FBP1 and YLR376c genes transcribe in the same direction. Our investigation indicates that the Saccharomyces cerevisiae FBP1 gene contains strong signals for polyadenylation and transcription termination in both orientations in vivo . A (TA)14 element plays a major role in directing polyadenylation in both orientations. While this region has four nonoverlapping copies of a TATATA hexanucleotide, which is a very potent polyadenylation efficiency element in yeast, it alone is not sufficient for full activation in the reverse orientation of a cluster of downstream poly(A) sites, and an additional upstream sequence is required. The putative RNA hairpin formed from the (TA)14 element is not involved in 3'-end formation. Surprisingly, deletion of the entire (TA)14 stretch affects transcription termination in the reverse orientation, in contrast to our previous results with the forward orientation, indicating that the transcription termination element operating in the reverse orientation has very different sequence requirements. Promoter elements for the YLR376c gene overlap with the signal for FBP1 3'-end formation. To our knowledge, this is the first time that overlapping of both types of regulatory signals has been found in two adjacent yeast genes.
Collapse
Affiliation(s)
- A Aranda
- Departament de Bioquímica i Biologia Molecular, Facultats de Ciències, Universitat de València, andDepartamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Apartado 73,-46100 Burjassot, Spain
| | | | | | | |
Collapse
|
15
|
Abstract
Many components of the mammalian and yeast pre-mRNA 3'-end-processing machinery have recently been purified and cDNAs or genes coding for these factors have been cloned. Most of the factors consist of multiple subunits, some of which serve to bind the RNA substrate, others of which are involved in forming a complex network of protein-protein interactions. Most of the mammalian 3'-end-processing factors are similar in their amino acid sequence to the yeast factors, indicating that they have a common evolutionary history.
Collapse
Affiliation(s)
- W Keller
- Department of Cell Biology, Biozentrum University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland.
| | | |
Collapse
|
16
|
Wahle E, Kühn U. The mechanism of 3' cleavage and polyadenylation of eukaryotic pre-mRNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 57:41-71. [PMID: 9175430 DOI: 10.1016/s0079-6603(08)60277-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- E Wahle
- Institut für Biochemic, Justus-Liebig-Universität Giessen, Germany
| | | |
Collapse
|
17
|
Abstract
Our understanding of how the 3' ends of mRNAs are formed in plants is rudimentary compared to what we know about this process in other eukaryotes. The salient features of plant pre-mRNAs that signal cleavage and polyadenylation remain obscure, and the biochemical mechanism is as yet wholly uncharacterized. Nevertheless, despite the lack of universally conserved cis-acting motifs, a common underlying architecture is emerging from functional analyses of plant poly(A) signals, allowing meaningful comparison with components of poly(A) signals in other eukaryotes. A plant poly(A) signal consists of one or more near-upstream elements (NUE), each directing processing at a poly(A) site a short distance downstream of it, and an extensive far-upstream element (FUE) that enhances processing efficiency at all sites. By analogy with other systems, a model for a plant 3'-end processing complex can be proposed. Plant poly(A) polymerases have been isolated and partially characterised. These, together with hints that some processing factors are conserved in different organisms, opens promising avenues toward initial characterisation of the trans-acting factors involved in 3'-end formation of mRNAs in higher plants.
Collapse
Affiliation(s)
- H M Rothnie
- Friedrich Miescher-Institut, Basel, Switzerland
| |
Collapse
|
18
|
Pereira S, Platt T. A mutation in the ATP binding domain of rho alters its RNA binding properties and uncouples ATP hydrolysis from helicase activity. J Biol Chem 1995; 270:30401-7. [PMID: 8530466 DOI: 10.1074/jbc.270.51.30401] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The Escherichia coli mutant rho201 was originally isolated in a genetic screen for defects in rho-dependent termination. Cloning and sequencing of this gene reveals a single phenylalanine to cysteine mutation at residue 232 in the ATP binding domain of the protein. This mutation significantly alters its RNA binding properties so that it binds trp t', RNA 100-fold weaker than the wild type protein, with a Kd of approximately 1.3 nM. Rho201 binds nonspecific RNA only 3-4-fold less tightly than it binds trp t', while the wild type differential for these same RNAs is 10-20-fold. Curiously, rho201 displays increased secondary site RNA activation, with a Km for ribo(C)10 of 0.6 microM, compared to the wild type value of 3-4 microM. Although rho201 and the wild type protein hydrolyze ATP similarly with poly(C), or trp t' RNA, as cofactors, rho201 has a higher ATPase activity when activated by nonspecific RNA. Physically, rho201 displays an abnormal conformation detectable by mild trypsin digestion. Despite effective ATP hydrolysis, the rho201 mutant is a poor RNA:DNA helicase and terminates inefficiently on trp t'. The single F232C mutation thus appears to uncouple the protein's ATPase activity from its helicase function, so rho can no longer harness available energy for use in subsequent reactions.
Collapse
Affiliation(s)
- S Pereira
- Department of Biochemistry, University of Rochester Medical Center, New York 14642, USA
| | | |
Collapse
|
19
|
Affiliation(s)
- W Keller
- Department of Cell Biology Biozentrum University of Basel, Switzerland
| |
Collapse
|
20
|
Preker PJ, Lingner J, Minvielle-Sebastia L, Keller W. The FIP1 gene encodes a component of a yeast pre-mRNA polyadenylation factor that directly interacts with poly(A) polymerase. Cell 1995; 81:379-89. [PMID: 7736590 DOI: 10.1016/0092-8674(95)90391-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have identified an essential gene, called FIP1, encoding a 327 amino acid protein interacting with yeast poly(A) polymerase (PAP1) in the two-hybrid assay. Recombinant FIP1 protein forms a 1:1 complex with PAP1 in vitro. At 37 degrees C, a thermosensitive allele of FIP1 shows a shortening of poly(A) tails and a decrease in the steady-state level of actin transcripts. When assayed for 3'-end processing in vitro, fip1 mutant extracts exhibit normal cleavage activity, but fail to polyadenylate the upstream cleavage product. Polyadenylation activity is restored by adding polyadenylation factor I (PF I). Antibodies directed against FIP1 specifically recognize a polypeptide in these fractions. Coimmunoprecipitation experiments reveal that RNA14, a subunit of cleavage factor I (CF I), directly interacts with FIP1, but not with PAP1. We propose a model in which PF I tethers PAP1 to CF I, thereby conferring specificity to poly(A) polymerase for pre-mRNA substrates.
Collapse
Affiliation(s)
- P J Preker
- Department of Cell Biology, University of Basel, Switzerland
| | | | | | | |
Collapse
|
21
|
Russo P. Saccharomyces cerevisiae mRNA 3' end forming signals are also involved in transcription termination. Yeast 1995; 11:447-53. [PMID: 7597848 DOI: 10.1002/yea.320110507] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Previously, a 38-base-pair (bp) region in the 3' untranslated portion of the Saccharomyces cerevisiae iso-1-cytochrome c gene, was shown to be required for both normal CYC1 mRNA 3' end formation (Zaret and Sherman, 1982), and efficient transcription termination (Russo and Sherman, 1989). In another study, specific sequences such as TATATA, TACATA, and TAGTAGTA were shown to be involved in mRNA 3' end formation in S. cerevisiae (Russo et al., 1991). In this report, an in vivo plasmid stability assay has been utilized to show that these and related sequences are also involved in transcription termination, at varying efficiencies, and in an orientation-dependent manner. For example: the sequence TATATA appeared to terminate transcription almost as efficiently as the original wild type 38-bp region; whereas, the sequences TAGATATATGTAA and TACATA were less efficient, and TTTTTTTATA had little, if any, transcription termination function. In contrast, none of these sequences appeared to terminate transcription in the reverse orientation. Therefore, it appears that certain sequence signals capable of promoting mRNA 3' end formation in yeast, are also directly involved in transcription termination.
Collapse
Affiliation(s)
- P Russo
- Institute of Biotechnology, University of Helsinki, Finland
| |
Collapse
|
22
|
Wahle E. 3'-end cleavage and polyadenylation of mRNA precursors. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1261:183-94. [PMID: 7711061 DOI: 10.1016/0167-4781(94)00248-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- E Wahle
- Department of Cell Biology, Biozentrum, University of Basel, Switzerland
| |
Collapse
|
23
|
Egli CM, Braus GH. Uncoupling of mRNA 3' cleavage and polyadenylation by expression of a hammerhead ribozyme in yeast. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46996-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
24
|
Rothnie HM, Reid J, Hohn T. The contribution of AAUAAA and the upstream element UUUGUA to the efficiency of mRNA 3'-end formation in plants. EMBO J 1994; 13:2200-10. [PMID: 8187773 PMCID: PMC395075 DOI: 10.1002/j.1460-2075.1994.tb06497.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The requirement for sequence specificity in the AAUAAA motif of the cauliflower mosaic virus (CaMV) polyadenylation signal was examined by saturation mutagenesis. While deletion of AAUAAA almost abolished processing at the CaMV polyadenylation site, none of the 18 possible single base mutations had a dramatic effect on processing efficiency. The effect of replacing all six nucleotides simultaneously varied depending on the sequence used, but some replacements were as detrimental as the deletion mutant. Taken together, these results confirm that AAUAAA is an essential component of the CaMV polyadenylation signal, but indicate that a high degree of sequence variation can be tolerated. A repeated UUUGUA motif was identified as an important upstream accessory element of the CaMV polyadenylation signal. This sequence was able to induce processing at a heterologous polyadenylation site in a sequence-specific and additive manner. The effect of altering the spacing between this upstream element and the AAUAAA was examined; moving these two elements closer together or further apart reduces the processing efficiency. The upstream element does not function to signal processing at the CaMV polyadenylation site if placed downstream of the cleavage site. Analysis of further upstream sequences revealed that almost all of the 200 nt fragment required for maximal processing contributes positively to processing efficiency. Furthermore, isolated far upstream sequences distinct from UUUGUA were also able to induce processing at a heterologous polyadenylation site.
Collapse
Affiliation(s)
- H M Rothnie
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | |
Collapse
|
25
|
Scorer CA, Buckholz RG, Clare JJ, Romanos MA. The intracellular production and secretion of HIV-1 envelope protein in the methylotrophic yeast Pichia pastoris. Gene 1993; 136:111-9. [PMID: 8293993 DOI: 10.1016/0378-1119(93)90454-b] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein, gp120 (ENV), is required in large quantities for immunological studies and as a potential vaccine component. We have expressed the DNA encoding gp120 in a highly efficient expression system based on the methylotrophic yeast, Pichia pastoris. The native gene was found to contain a sequence which resembled a Saccharomyces cerevisiae polyadenylation consensus and acted as a premature polyadenylation site in P. pastoris, resulting in the production of truncated mRNA. As full-length mRNA was produced in S. cerevisiae, this indicates differences in mRNA 3'-end formation between the two yeasts. Inactivation of this site by site-directed mutagenesis revealed several additional fortuitous polyadenylation sites within the gene. We have designed and constructed a 69%-synthetic gene with increased G + C content which overcomes this transcriptional problem, giving rise to full-length mRNA. High levels of intracellular, insoluble, unglycosylated ENV were produced [1.25 mg/ml in high-density (2 x 10(10) cells per ml) fermentations]. ENV also was secreted from P. pastoris using the S. cerevisiae alpha-factor prepro secretion leader and the S. cerevisiae invertase signal sequence. However, a high proportion of the secreted product was found to be hyperglycosylated, in contrast to other foreign proteins secreted from P. pastoris. There also was substantial proteolytic degradation, but this was minimized by maintaining a low pH on induction. Insoluble, yeast-derived ENV proteins are being considered as vaccine antigens and the P. pastoris system offers an efficient method of production.
Collapse
Affiliation(s)
- C A Scorer
- Wellcome Research Laboratories, Beckenham, Kent, UK
| | | | | | | |
Collapse
|
26
|
Kim J, Shen B, Dorsett D. The Drosophila melanogaster suppressor of Hairy-wing zinc finger protein has minimal effects on gene expression in Saccharomyces cerevisiae. Genetics 1993; 135:343-55. [PMID: 8243999 PMCID: PMC1205640 DOI: 10.1093/genetics/135.2.343] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Many mutations in Drosophila melanogaster are gypsy retrotransposon insertions. Gypsy binds the protein (SUHW) encoded by the suppressor of Hairy-wing [su(Hw)] gene, and SUHW alters expression of surrounding genes. When gypsy is between an enhancer and promoter, SUHW blocks activation of transcription by the enhancer. Additionally, when gypsy is downstream of a promoter in a parallel orientation, SUHW increases truncation of transcripts at the poly(A) site in the gypsy 5' long terminal repeat, thereby decreasing the gene transcript levels. The effects of SUHW appear to involve fundamental and general mechanisms controlling gene expression because SUHW potentiates other poly(A) sites and blocks several enhancers in Drosophila. To investigate these mechanisms, SUHW was expressed in Saccharomyces cerevisiae. Although SUHW enters the nucleus and binds DNA in yeast, it has surprisingly minor effects on utilization of the CYC1 poly(A) site and transcription activation by a GAL upstream activation sequence. These observations indicate that the observed effects of SUHW on gene expression in Drosophila require specific interactions with other factors that are absent or unrecognizable in yeast.
Collapse
Affiliation(s)
- J Kim
- Program in Molecular Biology, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, New York
| | | | | |
Collapse
|
27
|
|
28
|
Irniger S, Egli CM, Braus GH. Messenger RNA 3'-end formation of a DNA fragment from the human c-myc 3'-end region in Saccharomyces cerevisiae. Curr Genet 1993; 23:201-4. [PMID: 7916669 DOI: 10.1007/bf00351496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have tested the functioning of the human c-myc polyadenylation signal in Saccharomyces cerevisiae. A DNA fragment containing the two AATAAA polyadenylation signals of the c-myc gene was inserted into a plasmid designed for the in-vivo testing of polyadenylation signals in yeast. The c-myc fragment had a partial capacity for directing mRNA 3'-end formation in yeast. The 3'-endpoints were 50-100 bp distant from the mRNA 3'-ends mapped in humans. This human DNA fragment is therefore unspecifically functional in yeast, indicating that other sequence elements than the human polyadenylation signal, AATAAA, are necessary for 3'-end formation.
Collapse
Affiliation(s)
- S Irniger
- Institute of Microbiology, Swiss Federal Institute of Technology (ETH), Zürich
| | | | | |
Collapse
|
29
|
Affiliation(s)
- M A Romanos
- Department of Cell Biology, Wellcome Research Laboratories, Beckenham, Kent, U.K
| | | | | |
Collapse
|
30
|
Abstract
Almost all messenger RNAs carry a polyadenylate tail that is added in a post-transcriptional reaction. In the nuclei of animal cells, the 3'-end of the RNA is formed by endonucleolytic cleavage of the primary transcript at the site of poly(A) addition, followed by the polymerisation of the tail. The reaction depends on specific RNA sequences upstream as well as downstream of the polyadenylation site. Cleavage and polyadenylation can be uncoupled in vitro. Polyadenylation is carried out by poly(A) polymerase with the aid of a specificity factor that binds the polyadenylation signal AAUAAA. Several additional factors are required for the initial cleavage. A newly discovered poly(A)-binding protein stimulates poly(A) tail synthesis and may be involved in the control of tail length. Polyadenylation reactions different from this scheme, either in other organisms or under special physiological circumstances, are discussed.
Collapse
Affiliation(s)
- E Wahle
- Department of Cell Biology, University of Basel, Switzerland
| |
Collapse
|
31
|
Abstract
We have cloned the region from MAT to THR4 on chromosome III of Saccharomyces cerevisiae. Although the region is only 15 kb, the two loci are genetically separated by 22 cM. This is in sharp contrast to the very low level of recombination (2 cM in 22 kb) that is observed in the adjacent CRY1-MAT interval, and suggests that there may be a "hot spot" for recombination in the MAT-THR4 region. The DNA sequence of the first 4.4 kb distal to MAT reveals an open reading frame that we have identified as the essential gene, TSM1. Surprisingly, the TSM1 open reading frame of 1,410 amino acids extends into the MAT locus, such that the 3'-end of the MAT alpha 1 transcript ends 15 bp from the 3'-end of the TSM1 open reading frame.
Collapse
Affiliation(s)
- B L Ray
- Rosenstiel Basic Medical Research Center, Brandeis University, Waltham, MA 02254
| | | | | |
Collapse
|
32
|
Affiliation(s)
- N Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, England
| |
Collapse
|
33
|
Mogen BD, MacDonald MH, Graybosch R, Hunt AG. Upstream sequences other than AAUAAA are required for efficient messenger RNA 3'-end formation in plants. THE PLANT CELL 1990; 2:1261-72. [PMID: 1983794 PMCID: PMC159971 DOI: 10.1105/tpc.2.12.1261] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We have characterized the upstream nucleotide sequences involved in mRNA 3'-end formation in the 3' regions of the cauliflower mosaic virus (CaMV) 19S/35S transcription unit and a pea gene encoding ribulose-1,5-bisphosphate carboxylase small subunit (rbcS). Sequences between 57 bases and 181 bases upstream from the CaMV polyadenylation site were required for efficient polyadenylation at this site. In addition, an AAUAAA sequence located 13 bases to 18 bases upstream from this site was also important for efficient mRNA 3'-end formation. An element located between 60 bases and 137 bases upstream from the poly(A) addition sites in a pea rbcS gene was needed for functioning of these sites. The CaMV -181/-57 and rbcS -137/-60 elements were different in location and sequence composition from upstream sequences needed for polyadenylation in mammalian genes, but resembled the signals that direct mRNA 3'-end formation in yeast. However, the role of the AAUAAA motif in 3'-end formation in the CaMV 3' region was reminiscent of mRNA polyadenylation in animals. We suggest that multiple elements are involved in mRNA 3'-end formation in plants, and that interactions of different components of the plant polyadenylation apparatus with their respective sequence elements and with each other are needed for efficient mRNA 3'-end formation.
Collapse
Affiliation(s)
- B D Mogen
- Department of Agronomy, University of Kentucky, Lexington 40546-0091
| | | | | | | |
Collapse
|
34
|
Abstract
Most mRNAs end in a poly(A) tail, the addition of which is catalysed by a poly(A) polymerase in conjunction with a distinct factor that provides specificity for mRNAs. The reaction is dynamic, involving separable initiation, elongation and termination phases. A companion article in next month's TIBS will review the regulation of poly(A) addition and removal during early animal development.
Collapse
Affiliation(s)
- M Wickens
- Department of Biochemistry, Graduate School, College of Agriculture and Life Sciences, University of Wisconsin-Madison 53796
| |
Collapse
|