1
|
Jeong E, Martina JA, Contreras PS, Lee J, Puertollano R. The FACT complex facilitates expression of lysosomal and antioxidant genes through binding to TFEB and TFE3. Autophagy 2022; 18:2333-2349. [PMID: 35230915 PMCID: PMC9542721 DOI: 10.1080/15548627.2022.2029671] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
TFEB (transcription factor EB) and TFE3 (transcription factor binding to IGHM enhancer 3) orchestrate the cellular response to a variety of stressors, including nutrient deprivation, oxidative stress and pathogens. Here we describe a novel interaction of TFEB and TFE3 with the FAcilitates Chromatin Transcription (FACT) complex, a heterodimeric histone chaperone consisting of SSRP1 and SUPT16H that mediates nucleosome disassembly and assembly, thus facilitating transcription. Extracellular stimuli, such as nutrient deprivation or oxidative stress, induce nuclear translocation and activation of TFEB and TFE3, which then associate with the FACT complex to regulate stress-induced gene transcription. Depletion of FACT does not affect TFEB activation, stability, or binding to the promoter of target genes. In contrast, reduction of FACT levels by siRNA or treatment with the FACT inhibitor curaxin, severely impairs induction of numerous antioxidant and lysosomal genes, revealing a crucial role of FACT as a regulator of cellular homeostasis. Furthermore, upregulation of antioxidant genes induced by TFEB over-expression is significantly reduced by curaxin, consistent with a role of FACT as a TFEB transcriptional activator. Together, our data show that chromatin remodeling at the promoter of stress-responsive genes by FACT is important for efficient expression of TFEB and TFE3 targets, thus providing a link between environmental changes, chromatin modifications and transcriptional regulation.Abbreviations: ADNP2, ADNP homeobox 2; ATP6V0D1, ATPase H+ transporting V0 subunit d1; ATP6V1A, ATPase H+ transporting V1 subunit A; ATP6V1C1, ATPase H+ transporting V1 subunit C1; CSNK2/CK2, casein kinase 2; CLCN7, chloride voltage-gated channel 7; CTSD, cathepsin D; CTSZ, cathepsin Z; EBSS, earle's balanced salt solution; FACT complex, facilitates chromatin transcription complex; FOXO3, forkhead box O3; HEXA, hexosaminidase subunit alpha; HIF1A, hypoxia inducible factor 1 subunit alpha; HMOX1, heme oxygenase 1; LAMP1, lysosomal associated membrane protein 1; MAFF, MAF bZIP transcription factor F; MAFG, MAF bZIP transcription factor G; MCOLN1, mucolipin TRP cation channel 1; MTORC1, mechanistic target of rapamycin kinase complex 1; NaAsO2, sodium arsenite; POLR2, RNA polymerase II; PPARGC1A, PPARG coactivator 1 alpha; PYROXD1, pyridine nucleotide-disulfide oxidoreductase domain 1; RRAGC, Ras related GTP binding C; SEC13, SEC13 homolog, nuclear pore and COPII coat complex component; SLC38A9, solute carrier family 38 member 9; SSRP1, structure specific recognition protein 1; SUPT16H, SPT16 homolog, facilitates chromatin remodeling subunit; TFEB, transcription factor EB; TFE3, transcription factor binding to IGHM enhancer 3; TXNRD1, thioredoxin reductase 1; UVRAG, UV radiation resistance associated; WDR59, WD repeat domain 59.
Collapse
Affiliation(s)
- Eutteum Jeong
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - José A. Martina
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pablo S. Contreras
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Juhyung Lee
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA,CONTACT Rosa Puertollano Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Viktorovskaya O, Chuang J, Jain D, Reim NI, López-Rivera F, Murawska M, Spatt D, Churchman LS, Park PJ, Winston F. Essential histone chaperones collaborate to regulate transcription and chromatin integrity. Genes Dev 2021; 35:698-712. [PMID: 33888559 PMCID: PMC8091981 DOI: 10.1101/gad.348431.121] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022]
Abstract
Histone chaperones are critical for controlling chromatin integrity during transcription, DNA replication, and DNA repair. Three conserved and essential chaperones, Spt6, Spn1/Iws1, and FACT, associate with elongating RNA polymerase II and interact with each other physically and/or functionally; however, there is little understanding of their individual functions or their relationships with each other. In this study, we selected for suppressors of a temperature-sensitive spt6 mutation that disrupts the Spt6-Spn1 physical interaction and that also causes both transcription and chromatin defects. This selection identified novel mutations in FACT. Surprisingly, suppression by FACT did not restore the Spt6-Spn1 interaction, based on coimmunoprecipitation, ChIP, and mass spectrometry experiments. Furthermore, suppression by FACT bypassed the complete loss of Spn1. Interestingly, the FACT suppressor mutations cluster along the FACT-nucleosome interface, suggesting that they alter FACT-nucleosome interactions. In agreement with this observation, we showed that the spt6 mutation that disrupts the Spt6-Spn1 interaction caused an elevated level of FACT association with chromatin, while the FACT suppressors reduced the level of FACT-chromatin association, thereby restoring a normal Spt6-FACT balance on chromatin. Taken together, these studies reveal previously unknown regulation between histone chaperones that is critical for their essential in vivo functions.
Collapse
Affiliation(s)
- Olga Viktorovskaya
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - James Chuang
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dhawal Jain
- Department of Biomedical Informatics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Natalia I Reim
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Francheska López-Rivera
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Magdalena Murawska
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dan Spatt
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Peter J Park
- Department of Biomedical Informatics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Fred Winston
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
3
|
Formosa T, Winston F. The role of FACT in managing chromatin: disruption, assembly, or repair? Nucleic Acids Res 2020; 48:11929-11941. [PMID: 33104782 PMCID: PMC7708052 DOI: 10.1093/nar/gkaa912] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
FACT (FAcilitates Chromatin Transcription) has long been considered to be a transcription elongation factor whose ability to destabilize nucleosomes promotes RNAPII progression on chromatin templates. However, this is just one function of this histone chaperone, as FACT also functions in DNA replication. While broadly conserved among eukaryotes and essential for viability in many organisms, dependence on FACT varies widely, with some differentiated cells proliferating normally in its absence. It is therefore unclear what the core functions of FACT are, whether they differ in different circumstances, and what makes FACT essential in some situations but not others. Here, we review recent advances and propose a unifying model for FACT activity. By analogy to DNA repair, we propose that the ability of FACT to both destabilize and assemble nucleosomes allows it to monitor and restore nucleosome integrity as part of a system of chromatin repair, in which disruptions in the packaging of DNA are sensed and returned to their normal state. The requirement for FACT then depends on the level of chromatin disruption occurring in the cell, and the cell's ability to tolerate packaging defects. The role of FACT in transcription would then be just one facet of a broader system for maintaining chromatin integrity.
Collapse
Affiliation(s)
- Tim Formosa
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Fred Winston
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Herrero E, Stinus S, Bellows E, Berry LK, Wood H, Thorpe PH. Asymmetric Transcription Factor Partitioning During Yeast Cell Division Requires the FACT Chromatin Remodeler and Cell Cycle Progression. Genetics 2020; 216:701-716. [PMID: 32878900 PMCID: PMC7648576 DOI: 10.1534/genetics.120.303439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/28/2020] [Indexed: 11/18/2022] Open
Abstract
The polarized partitioning of proteins in cells underlies asymmetric cell division, which is an important driver of development and cellular diversity. The budding yeast Saccharomyces cerevisiae divides asymmetrically, like many other cells, to generate two distinct progeny cells. A well-known example of an asymmetric protein is the transcription factor Ace2, which localizes specifically to the daughter nucleus, where it drives a daughter-specific transcriptional network. We screened a collection of essential genes to analyze the effects of core cellular processes in asymmetric cell division based on Ace2 localization. This screen identified mutations that affect progression through the cell cycle, suggesting that cell cycle delay is sufficient to disrupt Ace2 asymmetry. To test this model, we blocked cells from progressing through mitosis and found that prolonged metaphase delay is sufficient to disrupt Ace2 asymmetry after release, and that Ace2 asymmetry is restored after cytokinesis. We also demonstrate that members of the evolutionarily conserved facilitates chromatin transcription (FACT) chromatin-reorganizing complex are required for both asymmetric and cell cycle-regulated localization of Ace2, and for localization of the RAM network components.
Collapse
Affiliation(s)
- Eva Herrero
- Department of Plant Sciences, University of Cambridge, CB2 3EA, United Kingdom
| | - Sonia Stinus
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle la Prolifération (LBCMCP), Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, UT3, 31062, France
| | - Eleanor Bellows
- School of Biosciences, The University of Nottingham, Sutton Bonington, LE12 5RD, United Kingdom
| | - Lisa K Berry
- School of Biological and Chemical Sciences, Queen Mary, University of London, E1 4NS, United Kingdom
| | - Henry Wood
- School of Biological and Chemical Sciences, Queen Mary, University of London, E1 4NS, United Kingdom
| | - Peter H Thorpe
- School of Biological and Chemical Sciences, Queen Mary, University of London, E1 4NS, United Kingdom
| |
Collapse
|
5
|
Campbell JB, Edwards MJ, Ozersky SA, Duina AA. Evidence that dissociation of Spt16 from transcribed genes is partially dependent on RNA Polymerase II termination. Transcription 2019; 10:195-206. [PMID: 31809228 PMCID: PMC6948958 DOI: 10.1080/21541264.2019.1685837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
FACT (FAcilitates Chromatin Transactions) is a highly conserved histone chaperone complex in eukaryotic cells that can interact and manipulate nucleosomes in order to promote a variety of DNA-based processes and to maintain the integrity of chromatin throughout the genome. Whereas key features of the physical interactions that occur between FACT and nucleosomes in vitro have been elucidated in recent years, less is known regarding FACT functional dynamics in vivo. Using the Saccharomyces cerevisiae system, we now provide evidence that at least at some genes dissociation of the FACT subunit Spt16 from their 3′ ends is partially dependent on RNA Polymerase II (Pol II) termination. Combined with other studies, our results are consistent with a two-phase mechanism for FACT dissociation from genes, one that occurs upstream from Pol II dissociation and is Pol II termination-independent and the other that occurs further downstream and is dependent on Pol II termination.
Collapse
Affiliation(s)
| | | | | | - Andrea A Duina
- Biology Department, Hendrix College, Conway, Arkansas, USA
| |
Collapse
|
6
|
Doris SM, Chuang J, Viktorovskaya O, Murawska M, Spatt D, Churchman LS, Winston F. Spt6 Is Required for the Fidelity of Promoter Selection. Mol Cell 2018; 72:687-699.e6. [PMID: 30318445 DOI: 10.1016/j.molcel.2018.09.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/20/2018] [Accepted: 08/31/2018] [Indexed: 01/06/2023]
Abstract
Spt6 is a conserved factor that controls transcription and chromatin structure across the genome. Although Spt6 is viewed as an elongation factor, spt6 mutations in Saccharomyces cerevisiae allow elevated levels of transcripts from within coding regions, suggesting that Spt6 also controls initiation. To address the requirements for Spt6 in transcription and chromatin structure, we have combined four genome-wide approaches. Our results demonstrate that Spt6 represses transcription initiation at thousands of intragenic promoters. We characterize these intragenic promoters and find sequence features conserved with genic promoters. Finally, we show that Spt6 also regulates transcription initiation at most genic promoters and propose a model of initiation site competition to account for this. Together, our results demonstrate that Spt6 controls the fidelity of transcription initiation throughout the genome.
Collapse
Affiliation(s)
- Stephen M Doris
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - James Chuang
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | | | | | - Dan Spatt
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Fred Winston
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Relationships Between RNA Polymerase II Activity and Spt Elongation Factors to Spt- Phenotype and Growth in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2016; 6:2489-504. [PMID: 27261007 PMCID: PMC4978902 DOI: 10.1534/g3.116.030346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The interplay between adjacent transcription units can result in transcription-dependent alterations in chromatin structure or recruitment of factors that determine transcription outcomes, including the generation of intragenic or other cryptic transcripts derived from cryptic promoters. Mutations in a number of genes in Saccharomyces cerevisiae confer both cryptic intragenic transcription and the Suppressor of Ty (Spt-) phenotype for the lys2-128∂ allele of the LYS2 gene. Mutants that suppress lys2-128∂ allow transcription from a normally inactive Ty1 ∂ promoter, conferring a LYS+ phenotype. The arrangement of transcription units at lys2-128∂ is reminiscent of genes containing cryptic promoters within their open reading frames. We set out to examine the relationship between RNA Polymerase II (Pol II) activity, functions of Spt elongation factors, and cryptic transcription because of the previous observation that increased-activity Pol II alleles confer an Spt- phenotype. We identify both cooperating and antagonistic genetic interactions between Pol II alleles and alleles of elongation factors SPT4, SPT5, and SPT6. We find that cryptic transcription at FLO8 and STE11 is distinct from that at lys2-128∂, though all show sensitivity to reduction in Pol II activity, especially the expression of lys2-128∂ found in Spt- mutants. We determine that the lys2-128∂ Spt- phenotypes for spt6-1004 and increased activity rpo21/rpb1 alleles each require transcription from the LYS2 promoter. Furthermore, we identify the Ty1 transcription start site (TSS) within the ∂ element as the position of Spt- transcription in tested Spt- mutants.
Collapse
|
8
|
Foltman M, Evrin C, De Piccoli G, Jones RC, Edmondson RD, Katou Y, Nakato R, Shirahige K, Labib K. Eukaryotic replisome components cooperate to process histones during chromosome replication. Cell Rep 2013; 3:892-904. [PMID: 23499444 DOI: 10.1016/j.celrep.2013.02.028] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 12/30/2012] [Accepted: 02/28/2013] [Indexed: 11/30/2022] Open
Abstract
DNA unwinding at eukaryotic replication forks displaces parental histones, which must be redeposited onto nascent DNA in order to preserve chromatin structure. By screening systematically for replisome components that pick up histones released from chromatin into a yeast cell extract, we found that the Mcm2 helicase subunit binds histones cooperatively with the FACT (facilitiates chromatin transcription) complex, which helps to re-establish chromatin during transcription. FACT does not associate with the Mcm2-7 helicase at replication origins during G1 phase but is subsequently incorporated into the replisome progression complex independently of histone binding and uniquely among histone chaperones. The amino terminal tail of Mcm2 binds histones via a conserved motif that is dispensable for DNA synthesis per se but helps preserve subtelomeric chromatin, retain the 2 micron minichromosome, and support growth in the absence of Ctf18-RFC. Our data indicate that the eukaryotic replication and transcription machineries use analogous assemblies of multiple chaperones to preserve chromatin integrity.
Collapse
Affiliation(s)
- Magdalena Foltman
- Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Garcia H, Fleyshman D, Kolesnikova K, Safina A, Commane M, Paszkiewicz G, Omelian A, Morrison C, Gurova K. Expression of FACT in mammalian tissues suggests its role in maintaining of undifferentiated state of cells. Oncotarget 2012; 2:783-96. [PMID: 21998152 PMCID: PMC3248156 DOI: 10.18632/oncotarget.340] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The Facilitates Chromatin Transcription (FACT) chromatin remodeling complex, comprised of two subunits, SSRP1 and SPT16, is involved in transcription, replication and DNA repair. We recently showed that curaxins, small molecules with anti-cancer activity, target FACT and kill tumor cells in a FACT-dependent manner. We also found that FACT is overexpressed in human and mouse tumors and that tumor cells are sensitive to FACT downregulation. To clarify the clinical potential of FACT inhibition, we were interested in physiological role(s) of FACT in multicellular organisms. We analyzed SSRP1 and SPT16 expression in different cells, tissues and conditions using Immunohistochemical (IHC) staining of mouse and human tissues and analysis of publically available high-content gene expression datasets. Both approaches demonstrated coordinated expression of the two FACT subunits, which was primarily associated with the stage of cellular differentiation. Most cells of adult tissues do not have detectable protein level of FACT. High FACT expression was associated with stem or less-differentiated cells, while low FACT levels were seen in more differentiated cells. Experimental manipulation of cell differentiation and proliferation in vitro, as well as tissue staining for the Ki67 proliferation marker, showed that FACT expression is related more to differentiation than to proliferation. Thus, FACT may be part of a stem cell-like gene expression signature and play a role in maintaining cells in an undifferentiated state, which is consistent with its potential role as an anti-cancer target.
Collapse
Affiliation(s)
- Henry Garcia
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Duina AA. Histone Chaperones Spt6 and FACT: Similarities and Differences in Modes of Action at Transcribed Genes. GENETICS RESEARCH INTERNATIONAL 2011; 2011:625210. [PMID: 22567361 PMCID: PMC3335715 DOI: 10.4061/2011/625210] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/16/2011] [Indexed: 01/08/2023]
Abstract
The process of gene transcription requires the participation of a large number of factors that collectively promote the accurate and efficient expression of an organism's genetic information. In eukaryotic cells, a subset of these factors can control the chromatin environments across the regulatory and transcribed units of genes to modulate the transcription process and to ensure that the underlying genetic information is utilized properly. This article focuses on two such factors-the highly conserved histone chaperones Spt6 and FACT-that play critical roles in managing chromatin during the gene transcription process. These factors have related but distinct functions during transcription and several recent studies have provided exciting new insights into their mechanisms of action at transcribed genes. A discussion of their respective roles in regulating gene transcription, including their shared and unique contributions to this process, is presented.
Collapse
Affiliation(s)
- Andrea A Duina
- Biology Department, Hendrix College, 1600 Washington Avenue, Conway, AR 72032, USA
| |
Collapse
|
11
|
Stevens JR, O'Donnell AF, Perry TE, Benjamin JJR, Barnes CA, Johnston GC, Singer RA. FACT, the Bur kinase pathway, and the histone co-repressor HirC have overlapping nucleosome-related roles in yeast transcription elongation. PLoS One 2011; 6:e25644. [PMID: 22022426 PMCID: PMC3192111 DOI: 10.1371/journal.pone.0025644] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/06/2011] [Indexed: 02/03/2023] Open
Abstract
Gene transcription is constrained by the nucleosomal nature of chromosomal DNA. This nucleosomal barrier is modulated by FACT, a conserved histone-binding heterodimer. FACT mediates transcription-linked nucleosome disassembly and also nucleosome reassembly in the wake of the RNA polymerase II transcription complex, and in this way maintains the repression of ‘cryptic’ promoters found within some genes. Here we focus on a novel mutant version of the yeast FACT subunit Spt16 that supplies essential Spt16 activities but impairs transcription-linked nucleosome reassembly in dominant fashion. This Spt16 mutant protein also has genetic effects that are recessive, which we used to show that certain Spt16 activities collaborate with histone acetylation and the activities of a Bur-kinase/Spt4–Spt5/Paf1C pathway that facilitate transcription elongation. These collaborating activities were opposed by the actions of Rpd3S, a histone deacetylase that restores a repressive chromatin environment in a transcription-linked manner. Spt16 activity paralleling that of HirC, a co-repressor of histone gene expression, was also found to be opposed by Rpd3S. Our findings suggest that Spt16, the Bur/Spt4–Spt5/Paf1C pathway, and normal histone abundance and/or stoichiometry, in mutually cooperative fashion, facilitate nucleosome disassembly during transcription elongation. The recessive nature of these effects of the mutant Spt16 protein on transcription-linked nucleosome disassembly, contrasted to its dominant negative effect on transcription-linked nucleosome reassembly, indicate that mutant FACT harbouring the mutant Spt16 protein competes poorly with normal FACT at the stage of transcription-linked nucleosome disassembly, but effectively with normal FACT for transcription-linked nucleosome reassembly. This functional difference is consistent with the idea that FACT association with the transcription elongation complex depends on nucleosome disassembly, and that the same FACT molecule that associates with an elongation complex through nucleosome disassembly is retained for reassembly of the same nucleosome.
Collapse
Affiliation(s)
- Jennifer R. Stevens
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Allyson F. O'Donnell
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Troy E. Perry
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jeremy J. R. Benjamin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Christine A. Barnes
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Gerald C. Johnston
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Richard A. Singer
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
12
|
Formosa T. The role of FACT in making and breaking nucleosomes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:247-55. [PMID: 21807128 DOI: 10.1016/j.bbagrm.2011.07.009] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/15/2011] [Accepted: 07/16/2011] [Indexed: 12/22/2022]
Abstract
FACT is a roughly 180kDa heterodimeric protein complex important for managing the properties of chromatin in eukaryotic cells. Chromatin is a repressive barrier that plays an important role in protecting genomic DNA and regulating access to it. This barrier must be temporarily removed during transcription, replication, and repair, but it also must be rapidly restored to the original state afterwards. Further, the properties of chromatin are dynamic and must be adjusted as conditions dictate. FACT was identified as a factor that destabilizes nucleosomes in vitro, but it has now also been implicated as a central factor in the deposition of histones to form nucleosomes, as an exchange factor that swaps the histones within existing nucleosomes for variant forms, and as a tether that prevents histones from being displaced by the passage of RNA polymerases during transcription. FACT therefore plays central roles in building, maintaining, adjusting, and overcoming the chromatin barrier. This review summarizes recent results that have begun to reveal how FACT can promote what appear to be contradictory goals, using a simple set of binding activities to both enhance and diminish the stability of nucleosomes. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.
Collapse
|
13
|
Myers CN, Berner GB, Holthoff JH, Martinez-Fonts K, Harper JA, Alford S, Taylor MN, Duina AA. Mutant versions of the S. cerevisiae transcription elongation factor Spt16 define regions of Spt16 that functionally interact with histone H3. PLoS One 2011; 6:e20847. [PMID: 21673966 PMCID: PMC3108975 DOI: 10.1371/journal.pone.0020847] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 05/09/2011] [Indexed: 11/18/2022] Open
Abstract
In eukaryotic cells, the highly conserved FACT (FAcilitates Chromatin Transcription) complex plays important roles in several chromatin-based processes including transcription initiation and elongation. During transcription elongation, the FACT complex interacts directly with nucleosomes to facilitate histone removal upon RNA polymerase II (Pol II) passage and assists in the reconstitution of nucleosomes following Pol II passage. Although the contribution of the FACT complex to the process of transcription elongation has been well established, the mechanisms that govern interactions between FACT and chromatin still remain to be fully elucidated. Using the budding yeast Saccharomyces cerevisiae as a model system, we provide evidence that the middle domain of the FACT subunit Spt16 – the Spt16-M domain – is involved in functional interactions with histone H3. Our results show that the Spt16-M domain plays a role in the prevention of cryptic intragenic transcription during transcription elongation and also suggest that the Spt16-M domain has a function in regulating dissociation of Spt16 from chromatin at the end of the transcription process. We also provide evidence for a role for the extreme carboxy terminus of Spt16 in functional interactions with histone H3. Taken together, our studies point to previously undescribed roles for the Spt16 M-domain and extreme carboxy terminus in regulating interactions between Spt16 and chromatin during the process of transcription elongation.
Collapse
Affiliation(s)
- Catherine N. Myers
- Biology Department, Hendrix College, Conway, Arkansas, United States of America
| | - Gary B. Berner
- Biology Department, Hendrix College, Conway, Arkansas, United States of America
| | - Joseph H. Holthoff
- Biology Department, Hendrix College, Conway, Arkansas, United States of America
| | | | - Jennifer A. Harper
- Biology Department, Hendrix College, Conway, Arkansas, United States of America
| | - Sarah Alford
- Biology Department, Hendrix College, Conway, Arkansas, United States of America
| | - Megan N. Taylor
- Biology Department, Hendrix College, Conway, Arkansas, United States of America
| | - Andrea A. Duina
- Biology Department, Hendrix College, Conway, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
14
|
Morillo-Huesca M, Maya D, Muñoz-Centeno MC, Singh RK, Oreal V, Reddy GU, Liang D, Géli V, Gunjan A, Chávez S. FACT prevents the accumulation of free histones evicted from transcribed chromatin and a subsequent cell cycle delay in G1. PLoS Genet 2010; 6:e1000964. [PMID: 20502685 PMCID: PMC2873916 DOI: 10.1371/journal.pgen.1000964] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 04/20/2010] [Indexed: 11/18/2022] Open
Abstract
The FACT complex participates in chromatin assembly and disassembly during transcription elongation. The yeast mutants affected in the SPT16 gene, which encodes one of the FACT subunits, alter the expression of G1 cyclins and exhibit defects in the G1/S transition. Here we show that the dysfunction of chromatin reassembly factors, like FACT or Spt6, down-regulates the expression of the gene encoding the cyclin that modulates the G1 length (CLN3) in START by specifically triggering the repression of its promoter. The G1 delay undergone by spt16 mutants is not mediated by the DNA–damage checkpoint, although the mutation of RAD53, which is otherwise involved in histone degradation, enhances the cell-cycle defects of spt16-197. We reveal how FACT dysfunction triggers an accumulation of free histones evicted from transcribed chromatin. This accumulation is enhanced in a rad53 background and leads to a delay in G1. Consistently, we show that the overexpression of histones in wild-type cells down-regulates CLN3 in START and causes a delay in G1. Our work shows that chromatin reassembly factors are essential players in controlling the free histones potentially released from transcribed chromatin and describes a new cell cycle phenomenon that allows cells to respond to excess histones before starting DNA replication. Lengthy genomic DNA is packed in a highly organized nucleoprotein structure called chromatin, whose basic subunit is the nucleosome which is formed by DNA wrapped around an octamer of proteins called histones. Nucleosomes need to be disassembled to allow DNA transcription by RNA polymerases. An essential factor for the disassembly/reassembly process during DNA transcription is the FACT complex. We investigated a phenotype of yeast FACT mutants, a delay in a specific step of the cell cycle division process immediately prior to starting DNA replication. The dysfunction caused by the FACT mutation causes a downregulation of a gene, CLN3, which controls the length of that specific step of the cell cycle. FACT dysfunction also increases the level of the free histones released from chromatin during transcription, and the phenotype of the Spt16 mutant is enhanced by a second mutation affecting a protein that regulates DNA repair and excess histone degradation. Moreover, we show that the overexpression of histones causes a cell cycle delay before DNA replication in wild-type cells. Our results point out a so-far unknown connection between chromatin dynamics and the regulation of the cell cycle.
Collapse
Affiliation(s)
| | - Douglas Maya
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | | | - Rakesh Kumar Singh
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Vincent Oreal
- Laboratoire d'Instabilité Génétique et Cancérogenèse, Institut de Biologie Struturale et Microbiologie, Centre National de la Recherche Scientifique, Marseille, France
| | - Gajjalaiahvari Ugander Reddy
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Dun Liang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Vincent Géli
- Laboratoire d'Instabilité Génétique et Cancérogenèse, Institut de Biologie Struturale et Microbiologie, Centre National de la Recherche Scientifique, Marseille, France
| | - Akash Gunjan
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Sebastián Chávez
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
- * E-mail: (SC); (MCM-C)
| |
Collapse
|
15
|
The E2F functional analogue SBF recruits the Rpd3(L) HDAC, via Whi5 and Stb1, and the FACT chromatin reorganizer, to yeast G1 cyclin promoters. EMBO J 2009; 28:3378-89. [PMID: 19745812 DOI: 10.1038/emboj.2009.270] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 08/13/2009] [Indexed: 11/09/2022] Open
Abstract
Regulation of the CLN1 and CLN2 G1 cyclin genes controls cell cycle progression. The SBF activator binds to these promoters but is kept inactive by the Whi5 and Stb1 inhibitors. The Cdc28 cyclin-dependent kinase phosphorylates Whi5, ending the inhibition. Our chromatin immunoprecipitation (ChIP) experiments show that SBF, Whi5 and Stb1 recruit both Cdc28 and the Rpd3(L) histone deacetylase to CLN promoters, extending the analogy with mammalian G1 cyclin promoters in which Rb recruits histone deacetylases. Finally, we show that the SBF subunit Swi6 recruits the FACT chromatin reorganizer to SBF- and MBF-regulated genes. Mutations affecting FACT reduce the transient nucleosome eviction seen at these promoters during a normal cell cycle and also reduce expression. Temperature-sensitive mutations affecting FACT and Cdc28 can be suppressed by disruption of STB1 and WHI5, suggesting that one critical function of FACT and Cdc28 is overcoming chromatin repression at G1 cyclin promoters. Thus, SBF recruits complexes to promoters that either enhance (FACT) or repress (Rpd3L) accessibility to chromatin, and also recruits the kinase that activates START.
Collapse
|
16
|
O'Donnell AF, Stevens JR, Kepkay R, Barnes CA, Johnston GC, Singer RA. New mutant versions of yeast FACT subunit Spt16 affect cell integrity. Mol Genet Genomics 2009; 282:487-502. [PMID: 19727824 DOI: 10.1007/s00438-009-0480-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 08/20/2009] [Indexed: 11/28/2022]
Abstract
Transcription by RNA polymerase II is impeded by the nucleosomal organization of DNA; these negative effects are modulated at several stages of nucleosomal DNA transcription by FACT, a heterodimeric transcription factor. At promoters, FACT facilitates the binding of TATA-binding factor, while during transcription elongation FACT mediates the necessary destabilization of nucleosomes and subsequent restoration of nucleosome structure in the wake of the transcription elongation complex. Altered FACT activity can impair the fidelity of transcription initiation and affect transcription patterns. Using reporter genes we have identified new mutant versions of the Spt16 subunit of yeast FACT with dominant negative effects on the fidelity of transcription initiation. Two of these spt16 mutant alleles also affect cell integrity. Cells relying on these spt16 mutant alleles display sorbitol-remediated temperature sensitivity, altered sensitivity to detergent, and abnormal morphologies, and are further inhibited by the ssd1-d mutation. The overexpression of components of protein kinase C (Pkc1) signaling diminishes this spt16 ssd1-d temperature sensitivity, whereas gene deletions eliminating components of Pkc1 signaling further impair these spt16 mutant cells. Thus, the FACT subunit Spt16 and Pkc1 signaling have an overlapping essential function, with an unexpected role for FACT in the maintenance of cell integrity.
Collapse
Affiliation(s)
- Allyson F O'Donnell
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, NS, B3H 1X5, Canada
| | | | | | | | | | | |
Collapse
|
17
|
FACT and Asf1 regulate nucleosome dynamics and coactivator binding at the HO promoter. Mol Cell 2009; 34:405-15. [PMID: 19481521 DOI: 10.1016/j.molcel.2009.04.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 02/10/2009] [Accepted: 04/09/2009] [Indexed: 11/23/2022]
Abstract
Transcriptional activators and coactivators overcome repression by chromatin, but regulation of chromatin disassembly and coactivator binding to promoters is poorly understood. Activation of the yeast HO gene follows the sequential binding of both sequence-specific DNA-binding proteins and coactivators during the cell cycle. Here, we show that the nucleosome disassembly occurs in waves both along the length of the promoter and during the cell cycle. Different chromatin modifiers are required for chromatin disassembly at different regions of the promoter, with Swi/Snf, the FACT chromatin reorganizer, and the Asf1 histone chaperone each required for nucleosome eviction at distinct promoter regions. FACT and Asf1 both bind to upstream elements of the HO promoter well before the gene is transcribed. The Swi/Snf, SAGA, and Mediator coactivators bind first to the far upstream promoter region and subsequently to a promoter proximal region, and FACT and Asf1 are both required for this coactivator re-recruitment.
Collapse
|
18
|
Birch JL, Tan BCM, Panov KI, Panova TB, Andersen JS, Owen-Hughes TA, Russell J, Lee SC, Zomerdijk JCBM. FACT facilitates chromatin transcription by RNA polymerases I and III. EMBO J 2009; 28:854-65. [PMID: 19214185 PMCID: PMC2647773 DOI: 10.1038/emboj.2009.33] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 01/21/2009] [Indexed: 01/23/2023] Open
Abstract
Efficient transcription elongation from a chromatin template requires RNA polymerases (Pols) to negotiate nucleosomes. Our biochemical analyses demonstrate that RNA Pol I can transcribe through nucleosome templates and that this requires structural rearrangement of the nucleosomal core particle. The subunits of the histone chaperone FACT (facilitates chromatin transcription), SSRP1 and Spt16, co-purify and co-immunoprecipitate with mammalian Pol I complexes. In cells, SSRP1 is detectable at the rRNA gene repeats. Crucially, siRNA-mediated repression of FACT subunit expression in cells results in a significant reduction in 47S pre-rRNA levels, whereas synthesis of the first 40 nt of the rRNA is not affected, implying that FACT is important for Pol I transcription elongation through chromatin. FACT also associates with RNA Pol III complexes, is present at the chromatin of genes transcribed by Pol III and facilitates their transcription in cells. Our findings indicate that, beyond the established role in Pol II transcription, FACT has physiological functions in chromatin transcription by all three nuclear RNA Pols. Our data also imply that local chromatin dynamics influence transcription of the active rRNA genes by Pol I and of Pol III-transcribed genes.
Collapse
Affiliation(s)
- Joanna L Birch
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
FACT is an essential component of the machinery used by eukaryotic cells both to establish and to overcome the nucleosomal barrier to DNA accessibility, and it does so without hydrolyzing ATP. FACT is a transcription elongation factor, but this review stresses additional roles in DNA replication and initiation of transcription. The widely-held model that FACT functions by displacing an H2A-H2B dimer from a nucleosome is examined, and an alternative proposal is presented in which dimer loss can occur but is a secondary effect of a primary structural change induced by FACT binding which we have called "nucleosome reorganization." The structures of two domains of FACT have been determined and they reveal multiple potential interaction sites. Roles for these binding sites in FACT function and regulation are discussed.
Collapse
Affiliation(s)
- Tim Formosa
- University of Utah School of Medicine, Department of Biochemistry, 15 N Medical Drive East RM 4100, Salt Lake City, UT 84112-5650, USA.
| |
Collapse
|
20
|
Jensen MM, Christensen MS, Bonven B, Jensen TH. Requirements for chromatin reassembly during transcriptional downregulation of a heat shock gene in Saccharomyces cerevisiae. FEBS J 2008; 275:2956-64. [DOI: 10.1111/j.1742-4658.2008.06451.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
VanDemark AP, Xin H, McCullough L, Rawlins R, Bentley S, Heroux A, Stillman DJ, Hill CP, Formosa T. Structural and functional analysis of the Spt16p N-terminal domain reveals overlapping roles of yFACT subunits. J Biol Chem 2007; 283:5058-68. [PMID: 18089575 DOI: 10.1074/jbc.m708682200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
yFACT (heterodimers of Saccharomyces cerevisiae Spt16-Pob3 combined with Nhp6) binds to and alters the properties of nucleosomes. The essential function of yFACT is not disrupted by deletion of the N-terminal domain (NTD) of Spt16 or by mutation of the middle domain of Pob3, but either alteration makes yeast cells sensitive to DNA replication stress. We have determined the structure of the Spt16 NTD and find evidence for a conserved potential peptide-binding site. Pob3-M also contains a putative binding site, and we show that these two sites perform an overlapping essential function. We find that yFACT can bind the N-terminal tails of some histones and that this interaction is important for yFACT-nucleosome binding. However, neither the Spt16 NTD nor a key residue in the putative Pob3-M-binding site was required for interactions with histone N termini or for yFACT-mediated nucleosome reorganization in vitro. Instead, both potential binding sites interact functionally with the C-terminal docking domain of the histone H2A. yFACT therefore appears to make multiple contacts with different sites within nucleosomes, and these interactions are partially redundant with one another. The docking domain of H2A is identified as an important participant in maintaining stability during yFACT-mediated nucleosome reorganization, suggesting new models for the mechanism of this activity.
Collapse
Affiliation(s)
- Andrew P VanDemark
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mongelard F, Bouvet P. Nucleolin: a multiFACeTed protein. Trends Cell Biol 2007; 17:80-6. [PMID: 17157503 DOI: 10.1016/j.tcb.2006.11.010] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 11/30/2006] [Indexed: 11/28/2022]
Abstract
Nucleolin is an abundant, ubiquitously expressed protein that is found in various cell compartments, especially in the nucleolus, of which it is a major component. This multifunctional protein has been described as being a part of many pathways, from interactions with viruses at the cellular membrane to essential processing of the ribosomal RNA in the nucleolus. However, most of the molecular details of these different functions are not understood. Here, we focus on the role of nucleolin in transcription, especially some recent findings describing the protein as a histone chaperone [with functional similarity to the facilitates chromatin transcription (FACT) complex] and a chromatin co-remodeler. These new properties could help reconcile discrepancies in the literature regarding the role of nucleolin in transcription.
Collapse
Affiliation(s)
- Fabien Mongelard
- Laboratoire Joliot-Curie, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69007 Lyon, France
| | | |
Collapse
|
23
|
Biswas D, Dutta-Biswas R, Mitra D, Shibata Y, Strahl BD, Formosa T, Stillman DJ. Opposing roles for Set2 and yFACT in regulating TBP binding at promoters. EMBO J 2006; 25:4479-89. [PMID: 16977311 PMCID: PMC1589996 DOI: 10.1038/sj.emboj.7601333] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 08/02/2006] [Indexed: 01/27/2023] Open
Abstract
Previous work links histone methylation by Set2 with transcriptional elongation. yFACT (Spt16-Pob3 and Nhp6) reorganizes nucleosomes and functions in both transcriptional initiation and elongation. We show that growth defects caused by spt16 or pob3 mutations can be suppressed by deleting SET2, suggesting that Set2 and yFACT have opposing roles. Set2 methylates K36 of histone H3, and K36 substitutions also suppress yFACT mutations. In contrast, set1 enhances yFACT mutations. Methylation at H3 K4 by Set1 is required for set2 to suppress yFACT defects. We did not detect an elongation defect at an 8 kb ORF in yFACT mutants. Instead, pob3 mutants displayed reduced binding of both pol II and TBP to the GAL1 promoter. Importantly, both GAL1 transcription and promoter binding of pol II and TBP are significantly restored in the pob3 set2 double mutant. Defects caused by an spt16 mutation are enhanced by either TBP or TFIIA mutants. These synthetic defects are suppressed by set2, demonstrating that yFACT and Set2 oppose one another during transcriptional initiation at a step involving DNA binding by TBP and TFIIA.
Collapse
Affiliation(s)
- Debabrata Biswas
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Rinku Dutta-Biswas
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Doyel Mitra
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Yoichiro Shibata
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Tim Formosa
- Department of Biochemistry, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - David J Stillman
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| |
Collapse
|
24
|
Pavri R, Zhu B, Li G, Trojer P, Mandal S, Shilatifard A, Reinberg D. Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II. Cell 2006; 125:703-17. [PMID: 16713563 DOI: 10.1016/j.cell.2006.04.029] [Citation(s) in RCA: 571] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 03/23/2006] [Accepted: 04/20/2006] [Indexed: 12/31/2022]
Abstract
Over the past years, a large number of histone posttranslational modifications have been described, some of which function to attain a repressed chromatin structure, while others facilitate activation by allowing access of regulators to DNA. Histone H2B monoubiquitination is a mark associated with transcriptional activity. Using a highly reconstituted chromatin-transcription system incorporating the inducible RARbeta2 promoter, we find that the establishment of H2B monoubiquitination by RNF20/40 and UbcH6 is dependent on the transcription elongation regulator complex PAF, the histone chaperone FACT, and transcription. H2B monoubiquitination facilitates FACT function, thereby stimulating transcript elongation and the generation of longer transcripts. These in vitro analyses and corroborating in vivo experiments demonstrate that elongation by RNA polymerase II through the nucleosomal barrier is minimally dependent upon (1) FACT and (2) the recruitment of PAF and the H2B monoubiquitination machinery.
Collapse
Affiliation(s)
- Rushad Pavri
- Howard Hughes Medical Institute, Department of Biochemistry, Division of Nucleic Acids Enzymology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 683 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
VanDemark AP, Blanksma M, Ferris E, Heroux A, Hill CP, Formosa T. The structure of the yFACT Pob3-M domain, its interaction with the DNA replication factor RPA, and a potential role in nucleosome deposition. Mol Cell 2006; 22:363-74. [PMID: 16678108 DOI: 10.1016/j.molcel.2006.03.025] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 01/10/2006] [Accepted: 03/21/2006] [Indexed: 11/30/2022]
Abstract
We report the crystal structure of the middle domain of the Pob3 subunit (Pob3-M) of S. cerevisiae FACT (yFACT, facilitates chromatin transcription), which unexpectedly adopts an unusual double pleckstrin homology (PH) architecture. A mutation within a conserved surface cluster in this domain causes a defect in DNA replication that is suppressed by mutation of replication protein A (RPA). The nucleosome reorganizer yFACT therefore interacts in a physiologically important way with the central single-strand DNA (ssDNA) binding factor RPA to promote a step in DNA replication. Purified yFACT and RPA display a weak direct physical interaction, although the genetic suppression is not explained by simple changes in affinity between the purified proteins. Further genetic analysis suggests that coordinated function by yFACT and RPA is important during nucleosome deposition. These results support the model that the FACT family has an essential role in constructing nucleosomes during DNA replication, and suggest that RPA contributes to this process.
Collapse
Affiliation(s)
- Andrew P VanDemark
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, 84132, USA
| | | | | | | | | | | |
Collapse
|
26
|
Angelov D, Bondarenko VA, Almagro S, Menoni H, Mongélard F, Hans F, Mietton F, Studitsky VM, Hamiche A, Dimitrov S, Bouvet P. Nucleolin is a histone chaperone with FACT-like activity and assists remodeling of nucleosomes. EMBO J 2006; 25:1669-79. [PMID: 16601700 PMCID: PMC1440837 DOI: 10.1038/sj.emboj.7601046] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 02/21/2006] [Indexed: 11/09/2022] Open
Abstract
Remodeling machines play an essential role in the control of gene expression, but how their activity is regulated is not known. Here we report that the nuclear protein nucleolin possesses a histone chaperone activity and that this factor greatly enhances the activity of the chromatin remodeling machineries SWI/SNF and ACF. Interestingly, nucleolin is able to induce the remodeling by SWI/SNF of macroH2A, but not of H2ABbd nucleosomes, which are otherwise resistant to remodeling. This new histone chaperone promotes the destabilization of the histone octamer, helping the dissociation of a H2A-H2B dimer, and stimulates the SWI/SNF-mediated transfer of H2A-H2B dimers. Furthermore, nucleolin facilitates transcription through the nucleosome, which is reminiscent of the activity of the FACT complex. This work defines new functions for histone chaperones in chromatin remodeling and regulation of transcription and explains how nucleolin could act on transcription.
Collapse
Affiliation(s)
- Dimitar Angelov
- Ecole Normale Supérieure de Lyon, CNRS-UMR 5161/INRA 1237/IFR128 Biosciences, Lyon-Gerland, France
- Laboratoire Joliot-Curie, Lyon, France
| | - Vladimir A Bondarenko
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Piscataway, NJ, USA
| | - Sébastien Almagro
- Ecole Normale Supérieure de Lyon, CNRS-UMR 5161/INRA 1237/IFR128 Biosciences, Lyon-Gerland, France
- Laboratoire Joliot-Curie, Lyon, France
| | - Hervé Menoni
- Ecole Normale Supérieure de Lyon, CNRS-UMR 5161/INRA 1237/IFR128 Biosciences, Lyon-Gerland, France
- Laboratoire Joliot-Curie, Lyon, France
| | - Fabien Mongélard
- Ecole Normale Supérieure de Lyon, CNRS-UMR 5161/INRA 1237/IFR128 Biosciences, Lyon-Gerland, France
- Laboratoire Joliot-Curie, Lyon, France
| | - Fabienne Hans
- Institut Albert Bonniot, INSERM U309, La Tronche Cedex, France
| | - Flore Mietton
- Institut Albert Bonniot, INSERM U309, La Tronche Cedex, France
| | - Vasily M Studitsky
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Piscataway, NJ, USA
| | - Ali Hamiche
- Institut André Lwoff, CNRS UPR 9079, Villejuif, France
| | - Stefan Dimitrov
- Laboratoire Joliot-Curie, Lyon, France
- Institut Albert Bonniot, INSERM U309, La Tronche Cedex, France
| | - Philippe Bouvet
- Ecole Normale Supérieure de Lyon, CNRS-UMR 5161/INRA 1237/IFR128 Biosciences, Lyon-Gerland, France
- Laboratoire Joliot-Curie, Lyon, France
| |
Collapse
|
27
|
Gardner RG, Nelson ZW, Gottschling DE. Degradation-mediated protein quality control in the nucleus. Cell 2005; 120:803-15. [PMID: 15797381 DOI: 10.1016/j.cell.2005.01.016] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 01/11/2005] [Accepted: 01/18/2005] [Indexed: 11/30/2022]
Abstract
Protein quality control degradation systems rid the cell of aberrant proteins, preventing detrimental effects on normal cellular function. Although such systems have been identified in most subcellular compartments, none have been found in the nucleus. Here, we report the discovery of such a system in Saccharomyces cerevisiae. It is defined by San1p, a ubiquitin-protein ligase that, in conjunction with the ubiquitin-conjugating enzymes Cdc34p and Ubc1p, targets four distinct mutant nuclear proteins for ubiquitination and destruction by the proteasome. San1p has exquisite specificity for aberrant proteins and does not target the wild-type versions of its mutant substrates. San1p is nuclear localized and requires nuclear localization for function. Loss of SAN1 results in a chronic stress response, underscoring its role of protein quality control in the cell. We propose that San1p-mediated degradation acts as the last line of proteolytic defense against the deleterious accumulation of aberrant proteins in the nucleus and that analogous systems exist in other eukaryotes.
Collapse
Affiliation(s)
- Richard G Gardner
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | |
Collapse
|
28
|
Singer RA, Johnston GC. The FACT chromatin modulator: genetic and structure/function relationships. Biochem Cell Biol 2005; 82:419-27. [PMID: 15284894 DOI: 10.1139/o04-050] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The chromatin configuration of DNA inhibits access by enzymes such as RNA polymerase II. This inhibition is alleviated by FACT, a conserved transcription elongation factor that has been found to reconfigure nucleosomes to allow transit along the DNA by RNA polymerase II, thus facilitating transcription. FACT also reorganizes nucleosomes after the passage of RNA polymerase II, as indicated by the effects of certain FACT mutations. The larger of the two subunits of FACT is Spt16/Cdc68, while the smaller is termed SSRP1 (vertebrates) or Pob3 (budding yeast). The HMG-box domain at the C terminus of SSRP1 is absent from Pob3; the function of this domain for yeast FACT is supplied by the small HMG-box protein Nhp6. In yeast, this "detachable" HMG domain is a general chromatin component, unlike FACT, which is found only in transcribed regions and associated with RNA polymerase II. The several domains of the larger FACT subunit are also likely to have different functions. Genetic studies suggest that FACT mediates nucleosome reorganization along several pathways, and reinforce the notion that protein unfolding and (or) refolding is involved in FACT activity for transcription.
Collapse
Affiliation(s)
- Richard A Singer
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Canada.
| | | |
Collapse
|
29
|
Abstract
During DNA replication, transcription and DNA repair in eukaryotes, the cellular machineries performing these tasks need to gain access to the DNA that is packaged into chromatin in the nucleus. Chromatin is a dynamic structure that modulates the access of regulatory factors to the genetic material. A precise coordination and organization of events in opening and closing of the chromatin is crucial to ensure that the correct spatial and temporal epigenetic code is maintained within the eukaryotic genome. This review will summarize the current knowledge of how chromatin remodeling and histone modifying complexes cooperate to break and remake chromatin during nuclear processes on the DNA template.
Collapse
|
30
|
Belotserkovskaya R, Saunders A, Lis JT, Reinberg D. Transcription through chromatin: understanding a complex FACT. ACTA ACUST UNITED AC 2004; 1677:87-99. [PMID: 15020050 DOI: 10.1016/j.bbaexp.2003.09.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Accepted: 09/18/2003] [Indexed: 11/22/2022]
Abstract
In eukaryotic cells, genomic DNA is assembled with chromosomal proteins, mainly histones, in a highly compact structure termed chromatin. In this form, DNA is not readily accessible to the cellular machineries, which require DNA as a template. Dynamic changes in chromatin organization play a critical role in regulation of DNA-dependent processes such as transcription, DNA replication, recombination and repair. Chromatin structure is altered in transcriptionally active loci: the basic chromatin unit, the nucleosome, appears to be depleted for one histone H2A/H2B dimer. Previously, reconstitution of RNA polymerase II (PolII)-driven transcription on chromatin templates in a highly purified in vitro system led to identification of FACT (for facilitates chromatin transcription), which was required for productive transcript elongation through nucleosomes. FACT was proposed to promote PolII transcription through nucleosomes by removing either one or both H2A/H2B dimers. Here we present an overview of the earlier studies, which resulted in the initial identification and characterization of FACT, as well as the recent findings that refine the model for the mechanism of FACT function in transcription.
Collapse
Affiliation(s)
- Rimma Belotserkovskaya
- Howard Hughes Medical Institute, Department of Biochemistry, Division of Nucleic Acids Enzymology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 663 Hoes Lane, SRB, Piscataway, NJ 08854-5635, USA
| | | | | | | |
Collapse
|
31
|
Abstract
In eukaryotic cells, transcription and replication each occur on DNA templates that are incorporated into nucleosomes. Formation of chromatin generally limits accessibility of specific DNA sequences and inhibits progression of polymerases as they copy information from the DNA. The processes that select sites for initiating either transcription or replication are therefore strongly influenced by factors that modulate the properties of chromatin proteins. Further, in order to elongate their products, both DNA and RNA polymerases must be able to overcome the inhibition presented by chromatin (Lipford and Bell 2001; Workman and Kingston 1998). One way to adjust the properties of chromatin proteins is to covalently modify them by adding or removing chemical moieties. Both histone and non-histone chromatin proteins are altered by acetylation, methylation, and other changes, and the 'nucleosome modifying' complexes that perform these reactions are important components of pathways of transcriptional regulation (Cote 2002; Orphanides and Reinberg 2000; Roth et al. 2001; Strahl and Allis 2000; Workman and Kingston 1998). Another way to alter the effects of nucleosomes is to change the position of the histone octamers relative to specific DNA sequences (Orphanides and Reinberg 2000; Verrijzer 2002; Wang 2002; Workman and Kingston 1998). Since the ability of a sequence to be bound by specific proteins can vary significantly whether the sequence is in the linkers between nucleosomes or at various positions within a nucleosome, 'nucleosome remodeling' complexes that rearrange nucleosome positioning are also important regulators of transcription. Since the DNA replication machinery has to encounter many of the same challenges posed by chromatin, it seems likely that modifying and remodeling complexes also act during duplication of the genome, but most of the current information on these factors relates to regulation of transcription. This chapter describes the factor known variously as FACT in humans, where it promotes elongation of RNA polymerase II on nucleosomal templates in vitro (Orphanides et al. 1998, 1999), DUF in frogs, where it is needed for DNA replication in oocyte extracts (Okuhara et al. 1999), and CP or SPN in yeast, where it is linked in vivo to both transcription and replication (Brewster et al. 2001; Formosa et al. 2001). Like the nucleosome modifying and remodeling complexes, it is broadly conserved among eukaryotes, affects a wide range of processes that utilize chromatin, and directly alters the properties of nucleosomes. However, it does not have nucleosome modifying or standard ATP-dependent remodeling activity, and therefore represents a third class of chromatin modulating factors. It is also presently unique in the extensive connections it displays with both transcription and replication: FACT/DUF/CP/SPN appears to modify nucleosomes in a way that is directly important for the efficient functioning of both RNA polymerases and DNA polymerases. While less is known about the mechanisms it uses to promote its functions than for other factors that affect chromatin, it is clearly an essential part of the complex mixture of activities that modulate access to DNA within chromatin. Physical and genetic interactions suggest that FACT/DUF/CP/SPN affects multiple pathways within replication and transcription as a member of several distinct complexes. Some of the interactions are easy to assimilate into models for replication or transcription, such as direct binding to DNA polymerase alpha (Wittmeyer and Formosa 1997; Wittmeyer et al. 1999), association with nucleosome modifying complexes (John et al. 2000), and interaction with factors that participate in elongation of RNA Polymerase II (Gavin et al. 2002; Squazzo et al. 2002). Others are more surprising such as an association with the 19S complex that regulates the function of the 20S proteasome (Ferdous et al. 2001; Xu et al. 1995), and the indication that FACT/DUF/CP/SPN can act as a specificity factor for casein kinase II (Keller et al. 2001). This chapter reviews the varied approaches that have each revealed different aspects of the function of FACT/DUF/CP/SPN, and presents a picture of a factor that can both alter nucleosomes and orchestrate the assembly or activity of a broad range of complexes that act upon chromatin.
Collapse
Affiliation(s)
- T Formosa
- University of Utah, Biochemistry, 20 N 1900 E RM 211, Salt Lake City, UT 84132-3201, USA.
| |
Collapse
|
32
|
Seo H, Okuhara K, Kurumizaka H, Yamada T, Shibata T, Ohta K, Akiyama T, Murofushi H. Incorporation of DUF/FACT into chromatin enhances the accessibility of nucleosomal DNA. Biochem Biophys Res Commun 2003; 303:8-13. [PMID: 12646158 DOI: 10.1016/s0006-291x(03)00307-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
DNA unwinding factor (DUF) was discovered as an essential DNA replication factor in Xenopus egg extracts. DUF consists of an HMG protein and a homolog of Cdc68p/Spt16p, and has the capability of unwinding dsDNA. Here we have examined the interaction of DUF with chromatin. DUF was incorporated into chromatin assembled from sperm heads and from plasmid DNA in egg extracts. It was revealed that the chromatin assembled in egg extracts immunodepleted of DUF is less sensitive to micrococcal nuclease (NNase) digestion than that assembled in control extracts, indicating that chromatin containing DUF has more decompact structure than that without DUF. Also we found that DUF has a high affinity for core histones in vitro. We suggest that the function of DUF may be to make the chromatin structure accessible to replication factors.
Collapse
Affiliation(s)
- Hidetaka Seo
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Formosa T, Ruone S, Adams MD, Olsen AE, Eriksson P, Yu Y, Rhoades AR, Kaufman PD, Stillman DJ. Defects in SPT16 or POB3 (yFACT) in Saccharomyces cerevisiae cause dependence on the Hir/Hpc pathway: polymerase passage may degrade chromatin structure. Genetics 2002; 162:1557-71. [PMID: 12524332 PMCID: PMC1462388 DOI: 10.1093/genetics/162.4.1557] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spt16/Cdc68, Pob3, and Nhp6 collaborate in vitro and in vivo as the yeast factor SPN, which is homologous to human FACT. SPN/FACT complexes mediate passage of polymerases through nucleosomes and are important for both transcription and replication. An spt16 mutation was found to be intolerable when combined with a mutation in any member of the set of functionally related genes HIR1, HIR2/SPT1, HIR3/HPC1, or HPC2. Mutations in POB3, but not in NHP6A/B, also display strong synthetic defects with hir/hpc mutations. A screen for other mutations that cause dependence on HIR/HPC genes revealed genes encoding members of the Paf1 complex, which also promotes transcriptional elongation. The Hir/Hpc proteins affect the expression of histone genes and also promote normal deposition of nucleosomes; either role could explain an interaction with elongation factors. We show that both spt16 and pob3 mutants respond to changes in histone gene numbers, but in opposite ways, suggesting that Spt16 and Pob3 each interact with histones but perhaps with different subsets of these proteins. Supporting this, spt16 and pob3 mutants also display different sensitivities to mutations in the N-terminal tails of histones H3 and H4 and to mutations in enzymes that modulate acetylation of these tails. Our results support a model in which SPN/FACT has two functions: it disrupts nucleosomes to allow polymerases to access DNA, and it reassembles the nucleosomes afterward. Mutations that impair the reassembly activity cause chromatin to accumulate in an abnormally disrupted state, imposing a requirement for a nucleosome reassembly function that we propose is provided by Hir/Hpc proteins.
Collapse
Affiliation(s)
- Tim Formosa
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hartzog GA, Speer JL, Lindstrom DL. Transcript elongation on a nucleoprotein template. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:276-86. [PMID: 12213658 DOI: 10.1016/s0167-4781(02)00458-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Chromatin forms a general, repeating barrier to elongation of transcripts by eukaryotic RNA polymerases. Recent studies of nucleosome structure and histone modifications reveal a set of likely mechanisms for control of elongation through chromatin. Genetic and biochemical studies of transcription have identified a set of accessory factors for transcript elongation by RNA polymerase II (Pol II) that appear to function in the context of chromatin. The C-terminal repeated domain (CTD) of Pol II may also play a role in regulating elongation through chromatin.
Collapse
Affiliation(s)
- Grant A Hartzog
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA.
| | | | | |
Collapse
|
35
|
Lindstrom DL, Hartzog GA. Genetic interactions of Spt4-Spt5 and TFIIS with the RNA polymerase II CTD and CTD modifying enzymes in Saccharomyces cerevisiae. Genetics 2001; 159:487-97. [PMID: 11606527 PMCID: PMC1461841 DOI: 10.1093/genetics/159.2.487] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic and biochemical studies have identified many factors thought to be important for transcription elongation. We investigated relationships between three classes of these factors: (1) transcription elongation factors Spt4-Spt5, TFIIS, and Spt16; (2) the C-terminal heptapeptide repeat domain (CTD) of RNA polymerase II; and (3) protein kinases that phosphorylate the CTD and a phosphatase that dephosphorylates it. We observe that spt4 and spt5 mutations cause strong synthetic phenotypes in combination with mutations that shorten or alter the composition of the CTD; affect the Kin28, Bur1, or Ctk1 CTD kinases; and affect the CTD phosphatase Fcp1. We show that Spt5 co-immunoprecipitates with RNA polymerase II that has either a hyper- or a hypophosphorylated CTD. Furthermore, mutation of the CTD or of CTD modifying enzymes does not affect the ability of Spt5 to bind RNA polymerase II. We find a similar set of genetic interactions between the CTD, CTD modifying enzymes, and TFIIS. In contrast, an spt16 mutation did not show these interactions. These results suggest that the CTD plays a key role in modulating elongation in vivo and that at least a subset of elongation factors are dependent upon the CTD for their normal function.
Collapse
Affiliation(s)
- D L Lindstrom
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, 95064, USA
| | | |
Collapse
|
36
|
Ferdous A, Gonzalez F, Sun L, Kodadek T, Johnston SA. The 19S regulatory particle of the proteasome is required for efficient transcription elongation by RNA polymerase II. Mol Cell 2001; 7:981-91. [PMID: 11389845 DOI: 10.1016/s1097-2765(01)00250-7] [Citation(s) in RCA: 220] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
It is generally thought that the primary or even sole activity of the 19S regulatory particle of the 26S proteasome is to facilitate the degradation of polyubiquitinated proteins by the 20S-core subunit. However, we present evidence that the 19S complex is required for efficient elongation of RNA polymerase II (RNAP II) in vitro and in vivo. First, yeast strains carrying alleles of SUG1 and SUG2, encoding 19S components, exhibit phenotypes indicative of elongation defects. Second, in vitro transcription is inhibited by antibodies raised against Sug1, or by heat-inactivating temperature-sensitive Sug1 mutants with restoration of elongation by addition of immunopurified 19S complex. Finally, Cdc68, a known elongation factor, coimmunoprecipitates with the 19S complex, indicating a physical interaction. Inhibition of the 20S proteolytic core of the proteasome has no effect on elongation. This work defines a nonproteolytic role for the 19S complex in RNAP II transcription.
Collapse
Affiliation(s)
- A Ferdous
- Departments of Internal Medicine and Biochemistry, Ryburn Center for Molecular Cardiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX7 5390-8573, USA
| | | | | | | | | |
Collapse
|
37
|
Costa PJ, Arndt KM. Synthetic lethal interactions suggest a role for the Saccharomyces cerevisiae Rtf1 protein in transcription elongation. Genetics 2000; 156:535-47. [PMID: 11014804 PMCID: PMC1461271 DOI: 10.1093/genetics/156.2.535] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Strong evidence indicates that transcription elongation by RNA polymerase II (pol II) is a highly regulated process. Here we present genetic results that indicate a role for the Saccharomyces cerevisiae Rtf1 protein in transcription elongation. A screen for synthetic lethal mutations was carried out with an rtf1 deletion mutation to identify factors that interact with Rtf1 or regulate the same process as Rtf1. The screen uncovered mutations in SRB5, CTK1, FCP1, and POB3. These genes encode an Srb/mediator component, a CTD kinase, a CTD phosphatase, and a protein involved in the regulation of transcription by chromatin structure, respectively. All of these gene products have been directly or indirectly implicated in transcription elongation, indicating that Rtf1 may also regulate this process. In support of this view, we show that RTF1 functionally interacts with genes that encode known elongation factors, including SPT4, SPT5, SPT16, and PPR2. We also show that a deletion of RTF1 causes sensitivity to 6-azauracil and mycophenolic acid, phenotypes correlated with a transcription elongation defect. Collectively, our results suggest that Rtf1 may function as a novel transcription elongation factor in yeast.
Collapse
Affiliation(s)
- P J Costa
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
38
|
Abstract
The machinery that transcribes protein-coding genes in eukaryotic cells must contend with repressive chromatin structures in order to find its target DNA sequences. Diverse arrays of proteins modify the structure of chromatin at gene promoters to help transcriptional regulatory proteins access their DNA recognition sites. The way in which disruption of chromatin structure at a promoter is transmitted through a whole gene has not been defined. Recent breakthroughs suggest that the passage of an RNA polymerase through a gene is coupled to mechanisms that propagate the breakdown of chromatin.
Collapse
Affiliation(s)
- G Orphanides
- Zeneca Central Toxicology Laboratory, Alderley Park, Cheshire, UK
| | | |
Collapse
|
39
|
Schlesinger MB, Formosa T. POB3 is required for both transcription and replication in the yeast Saccharomyces cerevisiae. Genetics 2000; 155:1593-606. [PMID: 10924459 PMCID: PMC1461200 DOI: 10.1093/genetics/155.4.1593] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Spt16 and Pob3 form stable heterodimers in Saccharomyces cerevisiae, and homologous proteins have also been purified as complexes from diverse eukaryotes. This conserved factor has been implicated in both transcription and replication and may affect both by altering the characteristics of chromatin. Here we describe the isolation and properties of a set of pob3 mutants and confirm that they have defects in both replication and transcription. Mutation of POB3 caused the Spt(-) phenotype, spt16 and pob3 alleles displayed severe synthetic defects, and elevated levels of Pob3 suppressed some spt16 phenotypes. These results are consistent with previous reports that Spt16 and Pob3 act in a complex that modulates transcription. Additional genetic interactions were observed between pob3 mutations and the genes encoding several DNA replication factors, including POL1, CTF4, DNA2, and CHL12. pob3 alleles caused sensitivity to the ribonucleotide reductase inhibitor hydroxyurea, indicating a defect in a process requiring rapid dNTP synthesis. Mutation of the S phase checkpoint gene MEC1 caused pob3 mutants to lose viability rapidly under restrictive conditions, revealing defects in a process monitored by Mec1. Direct examination of DNA contents by flow cytometry showed that S phase onset and progression were delayed when POB3 was mutated. We conclude that Pob3 is required for normal replication as well as for transcription.
Collapse
Affiliation(s)
- M B Schlesinger
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA
| | | |
Collapse
|
40
|
Röttgers K, Krohn NM, Lichota J, Stemmer C, Merkle T, Grasser KD. DNA-interactions and nuclear localisation of the chromosomal HMG domain protein SSRP1 from maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 23:395-405. [PMID: 10929132 DOI: 10.1046/j.1365-313x.2000.00801.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The structure-specific recognition protein 1 (SSRP1) is a member of the protein family containing a high mobility group (HMG) domain DNA-binding motif. We have functionally characterised the 71.4 kDa Zm-SSRP1 protein from maize. The chromatin-associated Zm-SSRP1 is detected by immunoblot analysis in maize leaves, kernels and suspension culture cells, but not in roots. Mediated by its HMG domain, recombinant Zm-SSRP1 interacts structure-specifically with supercoiled DNA and DNA minicircles when compared with linear DNA. In linear duplex DNA, the protein does not recognise a specific sequence, but it binds preferentially to sequences containing the deformable dinucleotide TG, as demonstrated by a random oligonucleotide selection experiment. Zm-SSRP1 modulates DNA structure by bending the target sequence, since it promotes the circularisation of short DNA fragments in the presence of DNA ligase. Moreover, Zm-SSRP1 facilitates the formation of nucleoprotein structures, as measured using the bacterial site-specific beta-mediated recombination reaction. Analysis of the subcellular localisation of various SSRP1-GFP fusions revealed that, in contrast to HMG domain transcription factors, the nuclear localisation sequence of Zm-SSRP1 is situated within a 20-amino acid residue region adjacent to the HMG domain rather than within the DNA-binding domain. The results are discussed in the context of the likely function of SSRP1 proteins in transcription and replication.
Collapse
Affiliation(s)
- K Röttgers
- Institut für Biologie III, Albert-Ludwigs-Universität Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
41
|
John S, Howe L, Tafrov ST, Grant PA, Sternglanz R, Workman JL. The something about silencing protein, Sas3, is the catalytic subunit of NuA3, a yTAF(II)30-containing HAT complex that interacts with the Spt16 subunit of the yeast CP (Cdc68/Pob3)-FACT complex. Genes Dev 2000; 14:1196-208. [PMID: 10817755 PMCID: PMC316621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/1999] [Accepted: 03/28/2000] [Indexed: 02/16/2023]
Abstract
We have purified and characterized a Gcn5-independent nucleosomal histone H3 HAT complex, NuA3 (Nucleosomal Acetyltransferase of histone H3). Peptide sequencing of proteins from the purified NuA3 complex identified Sas3 as the catalytic HAT subunit of the complex. Sas3 is the yeast homolog of the human MOZ oncogene. Sas3 is required for both the HAT activity and the integrity of the NuA3 complex. In addition, NuA3 contains the TBP- associated factor, yTAF(II)30, which is also a component of the TFIID, TFIIF, and SWI/SNF complexes. Sas3 mediates interaction of the NuA3 complex with Spt16 both in vivo and in vitro. Spt16 functions as a component of the yeast CP (Cdc68/Pob3) and mammalian FACT (facilitates chromatin transcription) complexes, which are involved in transcription elongation and DNA replication. This interaction suggests that the NuA3 complex might function in concert with FACT-CP to stimulate transcription or replication elongation through nucleosomes by providing a coupled acetyltransferase activity.
Collapse
Affiliation(s)
- S John
- Howard Hughes Medical Institute (HHMI), Penn State University, University Park, Pennsylvania 16802-4500, USA
| | | | | | | | | | | |
Collapse
|
42
|
Kang SW, Kuzuhara T, Horikoshi M. Functional interaction of general transcription initiation factor TFIIE with general chromatin factor SPT16/CDC68. Genes Cells 2000; 5:251-63. [PMID: 10792464 DOI: 10.1046/j.1365-2443.2000.00323.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Transcriptional initiation of class II genes is one of the major targets for the regulation of gene expression and is carried out by RNA polymerase II and many auxiliary factors, which include general transcription initiation factors (GTFs). TFIIE, one of the GTFs, functions at the later stage of transcription initiation. As recent studies indicated the possibility that TFIIE may have a role in chromatin transcriptional regulation, we isolated TFIIE-interacting factors which have chromatin-related functions. RESULTS Using the yeast two-hybrid screening system, we isolated the C-terminal part of the human homologue of Saccharomyces cerevisiae (y) Spt16p/Cdc68p, a general chromatin factor. The C-terminal part of human SPT16/CDC68 directly interacts with TFIIE, and ySpt16p/Cdc68p also interacts with yTFIIE (Tfa1p/Tfa2p), thus indicating the existence of an evolutionarily conserved interaction between TFIIE and SPT16/CDC68. Functional interaction of yTFIIE and ySpt16p/Cdc68p was examined using a conditional yTFIIE-alpha mutant strain. Over-expression of ySpt16p/Cdc68p suppressed the phenotype of cold sensitivity of the yTFIIE-alpha-cs mutant strain, and in vitro binding assays revealed that yTFIIE-alpha-cs mutant protein showed diminished binding affinity to ySpt16p/Cdc68p. CONCLUSIONS These observations indicate that general transcription initiation factor TFIIE functionally interacts with general chromatin factor SPT16/CDC68, a finding which provides new insight into the involvement of TFIIE in chromatin transcription. This may well lead to a breakthrough in relationships between the transcription initiation process and structural changes in chromatin.
Collapse
Affiliation(s)
- S W Kang
- Laboratory of Developmental Biology, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | |
Collapse
|
43
|
Yamada T, Okuhara K, Iwamatsu A, Seo H, Ohta K, Shibata T, Murofushi H. p97 ATPase, an ATPase involved in membrane fusion, interacts with DNA unwinding factor (DUF) that functions in DNA replication. FEBS Lett 2000; 466:287-91. [PMID: 10682845 DOI: 10.1016/s0014-5793(99)01673-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA unwinding factor (DUF) unwinds duplex DNA and is supposed to function in DNA replication in Xenopus egg extracts. Here we report the isolation and analysis of a DUF-interacting factor. By immunoprecipitation, we found that p97 ATPase (p97) interacts with DUF in Xenopus egg extracts. This interaction was confirmed by the in vitro binding of purified p97 with DUF. When sperm chromatin was added to Xenopus egg extracts to construct nuclei active in DNA replication, p97 was incorporated into the nuclei. These data suggest that the complex of DUF and p97 may function in DNA replication.
Collapse
Affiliation(s)
- T Yamada
- Cellular and Molecular Biology Laboratory, Saitama, Japan.
| | | | | | | | | | | | | |
Collapse
|
44
|
Orphanides G, Wu WH, Lane WS, Hampsey M, Reinberg D. The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature 1999; 400:284-8. [PMID: 10421373 DOI: 10.1038/22350] [Citation(s) in RCA: 434] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The regulation of gene expression depends critically upon chromatin structure. Transcription of protein-coding genes can be reconstituted on naked DNA with only the general transcription factors and RNA polymerase II. This minimal system cannot transcribe DNA packaged into chromatin, indicating that accessory factors may facilitate access to DNA. Two classes of accessory factor, ATP-dependent chromatin-remodelling enzymes and histone acetyltransferases, facilitate transcription initiation from chromatin templates. FACT (for facilitates chromatin transcription) is a chromatin-specific elongation factor required for transcription of chromatin templates in vitro. Here we show that FACT comprises a new human homologue of the Saccharomyces cerevisiae Spt16/Cdc68 protein and the high-mobility group-1-like protein structure-specific recognition protein-1. Yeast SPT16/CDC68 is an essential gene that has been implicated in transcription and cell-cycle regulation. Consistent with our biochemical analysis of FACT, we provide evidence that Spt16/Cdc68 is involved in transcript elongation in vivo. Moreover, FACT specifically interacts with nucleosomes and histone H2A/H2B dimers, indicating that it may work by promoting nucleosome disassembly upon transcription. In support of this model, we show that FACT activity is abrogated by covalently crosslinking nucleosomal histones.
Collapse
Affiliation(s)
- G Orphanides
- Howard Hughes Medical Institute, Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway 08854, USA
| | | | | | | | | |
Collapse
|
45
|
Okuhara K, Ohta K, Seo H, Shioda M, Yamada T, Tanaka Y, Dohmae N, Seyama Y, Shibata T, Murofushi H. A DNA unwinding factor involved in DNA replication in cell-free extracts of Xenopus eggs. Curr Biol 1999; 9:341-50. [PMID: 10209116 DOI: 10.1016/s0960-9822(99)80160-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Alteration of chromatin structure is a key step in various aspects of DNA metabolism. DNA unwinding factors such as the high mobility group (HMG) proteins are thought to play a general role in controlling chromatin structure and a specific role in controlling DNA replication. For instance, in the in vitro simian virus 40 replication system, minichromosomes containing HMG-17 replicate more efficiently than those without it, suggesting that HMG-17 enhances the rate of replication of a chromatin template by unfolding the higher-order chromatin structure. At present, however, only limited data suggest an involvement of DNA unwinding factors in DNA replication. RESULTS We purified from Xenopus eggs a novel heterodimeric factor, termed DNA unwinding factor (DUF), that consists of 87 kDa and 140 kDa polypeptides. DUF unwinds closed-circular duplex DNA in the presence of topoisomerase I, but it does not possess a DNA gyrase activity: it does not introduce negative supercoils into DNA at the expense of ATP hydrolysis. Cloning and sequencing of the cDNAs encoding the two polypeptides revealed that the 87 kDa polypeptide is homologous to a mammalian HMG protein, T160/structure-specific recognition protein. The 140 kDa polypeptide is homologous to yeast Cdc68, a protein that controls the expression of several genes during the G1 phase of the cell cycle by modulating chromatin structure. Immunodepletion of DUF from Xenopus egg extracts drastically reduced the ability of the extract to replicate exogenously added sperm chromatin or plasmid DNA. CONCLUSIONS We propose that DUF plays a role in DNA replication in Xenopus egg extracts.
Collapse
Affiliation(s)
- K Okuhara
- Laboratory of Cellular and Molecular Biology, The Institute of Physicaland Chemical Research (RIKEN), Wako, Saitama, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Spychala J, Chen V, Oka J, Mitchell BS. ATP and phosphate reciprocally affect subunit association of human recombinant High Km 5'-nucleotidase. Role for the C-terminal polyglutamic acid tract in subunit association and catalytic activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 259:851-8. [PMID: 10092873 DOI: 10.1046/j.1432-1327.1999.00099.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
IMP-specific, High Km 5'-nucleotidase (EC 3.1.3.5) is an ubiquitous enzyme, the activity of which is highly regulated by substrate, ATP, and inorganic phosphate. The cDNA encoding this enzyme has recently been cloned and found to contain a unique stretch of nine glutamic and four aspartic acid residues at the C-terminus. To study the effects of this acidic tail, and of ATP and inorganic phosphate on enzyme function, we generated several structural modifications of the 5'-nucleotidase cDNA, expressed the corresponding proteins in Escherichia coli and compared their molecular and kinetic properties. As with the enzyme purified from human placenta, all recombinant proteins were activated by ATP and inhibited by inorganic phosphate. Although the S0.5-values were higher, the specific activities of the purified protein variants (except that truncated at the C-terminus) were similar. The molecular mass of the full-length enzyme subunit has been estimated at 57.3 kDa and the molecular mass of the native protein, as determined by gel-filtration chromatography, was estimated to be 195 kDa. Increasing the concentration of NaCl to 0.3 M promoted oligomerization of the protein and the formation of aggregates of 332 kDa. ATP induced further oligomerization to 715 kDa, while inorganic phosphate reduced the estimated molecular mass to 226 kDa. In contrast to the truncation of 30 amino acids at the N-terminus, which did not alter enzyme properties, the removal of the polyglutamic/aspartic acid tail of 13 residues at the C-terminus caused profound kinetic and structural changes, including a 29-fold decrease in specific activity and a significant increase in the sensitivity to inhibition by inorganic phosphate in the presence of AMP. Structurally, there was a dramatic loss of the ability to form oligomers at physiological salt concentration which was only partially restored by the addition of NaCl or ATP. These data suggest an important function of the polyglutamic acid tract in the process of association and dissociation of 5'-nucleotidase subunits.
Collapse
Affiliation(s)
- J Spychala
- Department of Pharmacology, University of North Carolina at Chapel Hill 27599-7365, USA.
| | | | | | | |
Collapse
|
47
|
Evans DR, Brewster NK, Xu Q, Rowley A, Altheim BA, Johnston GC, Singer RA. The yeast protein complex containing cdc68 and pob3 mediates core-promoter repression through the cdc68 N-terminal domain. Genetics 1998; 150:1393-405. [PMID: 9832518 PMCID: PMC1460419 DOI: 10.1093/genetics/150.4.1393] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Transcription of nuclear genes usually involves trans-activators, whereas repression is exerted by chromatin. For several genes the transcription mediated by trans-activators and the repression mediated by chromatin depend on the CP complex, a recently described abundant yeast nuclear complex of the Pob3 and Cdc68/Spt16 proteins. We report that the N-terminal third of the Saccharomyces cerevisiae Cdc68 protein is dispensable for gene activation but necessary for the maintenance of chromatin repression. The absence of this 300-residue N-terminal domain also decreases the need for the Swi/Snf chromatin-remodeling complex in transcription and confers an Spt- effect characteristic of chromatin alterations. The repression domain, and indeed the entire Cdc68 protein, is highly conserved, as shown by the sequence of the Cdc68 functional homolog from the yeast Kluyveromyces lactis and by database searches. The repression-defective (truncated) form of Cdc68 is stable but less active at high temperatures, whereas the known point-mutant form of Cdc68, encoded by three independent mutant alleles, alters the N-terminal repression domain and destabilizes the mutant protein.
Collapse
Affiliation(s)
- D R Evans
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Replication of the two template strands at eukaryotic cell DNA replication forks is a highly coordinated process that ensures accurate and efficient genome duplication. Biochemical studies, principally of plasmid DNAs containing the Simian Virus 40 origin of DNA replication, and yeast genetic studies have uncovered the fundamental mechanisms of replication fork progression. At least two different DNA polymerases, a single-stranded DNA-binding protein, a clamp-loading complex, and a polymerase clamp combine to replicate DNA. Okazaki fragment synthesis involves a DNA polymerase-switching mechanism, and maturation occurs by the recruitment of specific nucleases, a helicase, and a ligase. The process of DNA replication is also coupled to cell-cycle progression and to DNA repair to maintain genome integrity.
Collapse
Affiliation(s)
- S Waga
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | |
Collapse
|
49
|
Brewster NK, Johnston GC, Singer RA. Characterization of the CP complex, an abundant dimer of Cdc68 and Pob3 proteins that regulates yeast transcriptional activation and chromatin repression. J Biol Chem 1998; 273:21972-9. [PMID: 9705338 DOI: 10.1074/jbc.273.34.21972] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Cdc68 protein of the yeast Saccharomyces cerevisiae is an essential nuclear protein that has been shown to be necessary for the trans-activation of many genes as well as for the maintenance of chromatin-mediated repression in the absence of trans-activation. These activities implicate the Cdc68 protein in the regulation of chromatin structure and/or function. Here we report that Cdc68 is found in association with another essential nuclear protein, Pob3, in what we term the CP complex. This dimer of Cdc68 with Pob3 is stable to partial purification, so that the functions of gene activation and repression that are assigned to Cdc68 are likely to be properties of the CP complex. The CP complex is highly abundant, suggesting that it may be widespread throughout chromatin.
Collapse
Affiliation(s)
- N K Brewster
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | | | |
Collapse
|
50
|
Levine K, Tinkelenberg AH, Cross F. The CLN gene family: central regulators of cell cycle Start in budding yeast. PROGRESS IN CELL CYCLE RESEARCH 1998; 1:101-14. [PMID: 9552356 DOI: 10.1007/978-1-4615-1809-9_8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Start transition in the budding yeast cell cycle is the point of most physiological regulation of cell cycle commitment. This transition is controlled by the CLN1,2,3 gene family. We review what is known about the regulation, inter-regulation and function of these genes in controlling the Start transition.
Collapse
Affiliation(s)
- K Levine
- Rockefeller University, New York, NY 10021, USA
| | | | | |
Collapse
|