1
|
Mao Y, Chen C. The Hap Complex in Yeasts: Structure, Assembly Mode, and Gene Regulation. Front Microbiol 2019; 10:1645. [PMID: 31379791 PMCID: PMC6652802 DOI: 10.3389/fmicb.2019.01645] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/03/2019] [Indexed: 01/19/2023] Open
Abstract
The CCAAT box-harboring proteins represent a family of heterotrimeric transcription factors which is highly conserved in eukaryotes. In fungi, one of the particularly important homologs of this family is the Hap complex that separates the DNA-binding domain from the activation domain and imposes essential impacts on regulation of a wide range of cellular functions. So far, a comprehensive summary of this complex has been described in filamentous fungi but not in the yeast. In this review, we summarize a number of studies related to the structure and assembly mode of the Hap complex in a list of representative yeasts. Furthermore, we emphasize recent advances in understanding the regulatory functions of this complex, with a special focus on its role in regulating respiration, production of reactive oxygen species (ROS) and iron homeostasis.
Collapse
Affiliation(s)
- Yinhe Mao
- Key Laboratory of Molecular Virology and Immunology, Unit of Pathogenic Fungal Infection and Host Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Changbin Chen
- Key Laboratory of Molecular Virology and Immunology, Unit of Pathogenic Fungal Infection and Host Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
2
|
Petryk N, Zhou YF, Sybirna K, Mucchielli MH, Guiard B, Bao WG, Stasyk OV, Stasyk OG, Krasovska OS, Budin K, Reymond N, Imbeaud S, Coudouel S, Delacroix H, Sibirny A, Bolotin-Fukuhara M. Functional study of the Hap4-like genes suggests that the key regulators of carbon metabolism HAP4 and oxidative stress response YAP1 in yeast diverged from a common ancestor. PLoS One 2014; 9:e112263. [PMID: 25479159 PMCID: PMC4257542 DOI: 10.1371/journal.pone.0112263] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 10/06/2014] [Indexed: 12/05/2022] Open
Abstract
The transcriptional regulator HAP4, induced by respiratory substrates, is involved in the balance between fermentation and respiration in S. cerevisiae. We identified putative orthologues of the Hap4 protein in all ascomycetes, based only on a conserved sixteen amino acid-long motif. In addition to this motif, some of these proteins contain a DNA-binding motif of the bZIP type, while being nonetheless globally highly divergent. The genome of the yeast Hansenula polymorpha contains two HAP4-like genes encoding the protein HpHap4-A which, like ScHap4, is devoid of a bZIP motif, and HpHap4-B which contains it. This species has been chosen for a detailed examination of their respective properties. Based mostly on global gene expression studies performed in the S. cerevisiae HAP4 disruption mutant (ScΔhap4), we show here that HpHap4-A is functionally equivalent to ScHap4, whereas HpHap4-B is not. Moreover HpHAP4-B is able to complement the H2O2 hypersensitivity of the ScYap1 deletant, YAP1 being, in S. cerevisiae, the main regulator of oxidative stress. Finally, a transcriptomic analysis performed in the ScΔyap1 strain overexpressing HpHAP4-B shows that HpHap4-B acts both on oxidative stress response and carbohydrate metabolism in a manner different from both ScYap1 and ScHap4. Deletion of these two genes in their natural host, H. polymorpha, confirms that HpHAP4-A participates in the control of the fermentation/respiration balance, while HpHAP4-B is involved in oxidative stress since its deletion leads to hypersensitivity to H2O2. These data, placed in an evolutionary context, raise new questions concerning the evolution of the HAP4 transcriptional regulation function and suggest that Yap1 and Hap4 have diverged from a unique regulatory protein in the fungal ancestor.
Collapse
Affiliation(s)
- Nataliya Petryk
- Institut de Génétique et Microbiologie, IFR Génome 115, Université Paris-Sud and CNRS, Orsay, France
- Institute of Cell Biology, National Academy of Sciences, Lviv, Ukraine
- Centre de Génétique Moléculaire, CNRS, Gif sur Yvette, France
| | - You-Fang Zhou
- Institut de Génétique et Microbiologie, IFR Génome 115, Université Paris-Sud and CNRS, Orsay, France
| | - Kateryna Sybirna
- Institut de Génétique et Microbiologie, IFR Génome 115, Université Paris-Sud and CNRS, Orsay, France
| | - Marie-Hélène Mucchielli
- Gif/Orsay DNA MicroArray Platform, Gif sur Yvette, France
- Centre de Génétique Moléculaire, CNRS, Gif sur Yvette, France
| | - Bernard Guiard
- Centre de Génétique Moléculaire, CNRS, Gif sur Yvette, France
| | - Wei-Guo Bao
- Institut de Génétique et Microbiologie, IFR Génome 115, Université Paris-Sud and CNRS, Orsay, France
| | - Oleh V. Stasyk
- Institute of Cell Biology, National Academy of Sciences, Lviv, Ukraine
| | - Olena G. Stasyk
- Institute of Cell Biology, National Academy of Sciences, Lviv, Ukraine
- Department of Biochemistry, Ivan Franko Lviv National University, Lviv, Ukraine
| | | | - Karine Budin
- Institut de Génétique et Microbiologie, IFR Génome 115, Université Paris-Sud and CNRS, Orsay, France
- Gif/Orsay DNA MicroArray Platform, Gif sur Yvette, France
| | - Nancie Reymond
- Gif/Orsay DNA MicroArray Platform, Gif sur Yvette, France
- Centre de Génétique Moléculaire, CNRS, Gif sur Yvette, France
| | | | | | - Hervé Delacroix
- Gif/Orsay DNA MicroArray Platform, Gif sur Yvette, France
- Centre de Génétique Moléculaire, CNRS, Gif sur Yvette, France
| | - Andriy Sibirny
- Institute of Cell Biology, National Academy of Sciences, Lviv, Ukraine
- University of Rzeszow, Rzeszow, Poland
| | - Monique Bolotin-Fukuhara
- Institut de Génétique et Microbiologie, IFR Génome 115, Université Paris-Sud and CNRS, Orsay, France
- * E-mail:
| |
Collapse
|
3
|
Diverse Hap43-independent functions of the Candida albicans CCAAT-binding complex. EUKARYOTIC CELL 2013; 12:804-15. [PMID: 23543673 DOI: 10.1128/ec.00014-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The CCAAT motif is ubiquitous in promoters of eukaryotic genomes. The CCAAT-binding complex (CBC) is conserved across a wide range of organisms, specifically recognizes the CCAAT motif, and modulates transcription directly or in cooperation with other transcription factors. In Candida albicans, CBC is known to interact with the repressor Hap43 to negatively regulate iron utilization genes in response to iron deprivation. However, the extent of additional functions of CBC is unclear. In this study, we explored new roles of CBC in C. albicans and found that CBC pleiotropically regulates many virulence traits in vitro, including negative control of genes responsible for ribosome biogenesis and translation and positive regulation of low-nitrogen-induced filamentation. In addition, C. albicans CBC is involved in utilization of host proteins as nitrogen sources and in repression of cellular flocculation and adhesin gene expression. Moreover, our epistasis analyses suggest that CBC acts as a downstream effector of Rhb1-TOR signaling and controls low-nitrogen-induced filamentation via the Mep2-Ras1-protein kinase A (PKA)/mitogen-activated protein kinase (MAPK) pathway. Importantly, the phenotypes identified here are all independent of Hap43. Finally, deletion of genes encoding CBC components slightly attenuated C. albicans virulence in both zebrafish and murine models of infection. Our results thus highlight new roles of C. albicans CBC in regulating multiple virulence traits in response to environmental perturbations and, finally, suggest potential targets for antifungal therapies as well as extending our understanding of the pathogenesis of other fungal pathogens.
Collapse
|
4
|
Important characteristics of sequence-specific recombination hotspots in Schizosaccharomyces pombe. Genetics 2010; 187:385-96. [PMID: 21098718 DOI: 10.1534/genetics.110.124636] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In many organisms, meiotic recombination occurs preferentially at a limited number of sites in the genome known as hotspots. In the fission yeast Schizosaccharomyces pombe, simple sequence motifs determine the location of at least some, and possibly most or all, hotspots. Recently, we showed that a large number of different sequences can create hotspots. Among those sequences we identified some recurring motifs that fell into at least five distinct families, including the well-characterized CRE family of hotspots. Here we report the essential sequence for activity of two of the novel hotspots, the oligo-C and CCAAT hotspots, and identify associated trans-acting factors required for hotspot activity. The oligo-C hotspot requires a unique 8-bp sequence, CCCCGCAC, though hotspot activity is also significantly affected by adjacent nucleotides. The CCAAT hotspot requires a more complex and degenerate sequence, including the originally identified seven nucleotide CCAATCA sequence at its core. We identified transcription factors, the CCAAT-binding factor (CBF) and Rst2, which are required specifically for activity of the CCAAT hotspots and oligo-C hotspots, respectively. Each of these factors binds to its respective motifs in vitro. However, unlike CRE, the sequence required for hotspot activity is larger than the sequence required for binding, suggesting the involvement of additional factors.
Collapse
|
5
|
Thön M, Al Abdallah Q, Hortschansky P, Scharf DH, Eisendle M, Haas H, Brakhage AA. The CCAAT-binding complex coordinates the oxidative stress response in eukaryotes. Nucleic Acids Res 2009; 38:1098-113. [PMID: 19965775 PMCID: PMC2831313 DOI: 10.1093/nar/gkp1091] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The heterotrimeric CCAAT-binding complex is evolutionary conserved in eukaryotic organisms. The corresponding Aspergillus nidulans CCAAT- binding factor (AnCF) consists of the subunits HapB, HapC and HapE. All of the three subunits are necessary for DNA binding. Here, we demonstrate that AnCF senses the redox status of the cell via oxidative modification of thiol groups within the histone fold motif of HapC. Mutational and in vitro interaction analyses revealed that two of these cysteine residues are indispensable for stable HapC/HapE subcomplex formation and high-affinity DNA binding of AnCF. Oxidized HapC is unable to participate in AnCF assembly and localizes in the cytoplasm, but can be recycled by the thioredoxin system in vitro and in vivo. Furthermore, deletion of the hapC gene led to an impaired oxidative stress response. Therefore, the central transcription factor AnCF is regulated at the post-transcriptional level by the redox status of the cell serving for a coordinated activation and deactivation of antioxidative defense mechanisms including the specific transcriptional activator NapA, production of enzymes such as catalase, thioredoxin or peroxiredoxin, and maintenance of a distinct glutathione homeostasis. The underlying fine-tuned mechanism very likely represents a general feature of the CCAAT-binding complexes in eukaryotes.
Collapse
Affiliation(s)
- Marcel Thön
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, D-07745 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
6
|
Mercier A, Watt S, Bähler J, Labbé S. Key function for the CCAAT-binding factor Php4 to regulate gene expression in response to iron deficiency in fission yeast. EUKARYOTIC CELL 2008; 7:493-508. [PMID: 18223116 PMCID: PMC2268518 DOI: 10.1128/ec.00446-07] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/08/2007] [Accepted: 01/18/2008] [Indexed: 12/30/2022]
Abstract
The fission yeast Schizosaccharomyces pombe responds to the deprivation of iron by inducing the expression of the php4+ gene, which encodes a negative regulatory subunit of the heteromeric CCAAT-binding factor. Once formed, the Php2/3/4/5 transcription complex is required to inactivate a subset of genes encoding iron-using proteins. Here, we used a pan-S. pombe microarray to study the transcriptional response to iron starvation and identified 86 genes that exhibit php4+-dependent changes on a genome-wide scale. One of these genes encodes the iron-responsive transcriptional repressor Fep1, whose mRNA levels were decreased after treatment with the permeant iron chelator 2,2'-dipyridyl. In addition, several genes encoding the components of iron-dependent biochemical pathways, including the tricarboxylic acid cycle, mitochondrial respiration, amino acid biosynthesis, and oxidative stress defense, were downregulated in response to iron deficiency. Furthermore, Php4 repressed transcription when brought to a promoter using a yeast DNA-binding domain, and iron deprivation was required for this repression. On the other hand, Php4 was constitutively active when glutathione levels were depleted within the cell. Based on these and previous results, we propose that iron-dependent inactivation of Php4 is regulated at two distinct levels: first, at the transcriptional level by the iron-responsive GATA factor Fep1 and second, at the posttranscriptional level by a mechanism yet to be identified, which inhibits Php4-mediated repressive function when iron is abundant.
Collapse
Affiliation(s)
- Alexandre Mercier
- Département de Biochimie, Faculté de Médecine, Université de Sherbrooke, 3001, 12e Ave. Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | | | | | | |
Collapse
|
7
|
Green CD, Thompson PD, Johnston PG, El-Tanani MK. Interaction between transcription factor, basal transcription factor 3, and the NH2-terminal domain of human estrogen receptor alpha. Mol Cancer Res 2007; 5:1191-1200. [PMID: 18025262 DOI: 10.1158/1541-7786.mcr-07-0123] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The estrogen receptor (ER), like other members of the nuclear receptor superfamily, possesses two separate transcriptional activation functions, AF-1 and AF-2. Although a variety of coactivators and corepressors of AF-2 have been identified, less is known of the mechanism of action of AF-1. We have used the yeast two-hybrid system to isolate a cDNA coding for a protein that binds specifically to the AF-1 region of human ERalpha. This cDNA codes for the transcription factor basal transcription factor 3 (BTF3). The specificity of the interaction between BTF3 and ERalpha has been confirmed in vivo and in vitro. Transient transfection experiments reveal that overexpression of BTF3 modulates the transcriptional response of reporter genes to ERalpha. BTF3 interacts with ERalpha that has been activated either by 17beta-estradiol (ligand-dependent activation) or by epidermal growth factor (ligand-independent activation). The effects of BTF3 on the reporter genes requires the presence of ERalpha containing an active AF-1 function. BTF3 may be a component of the mechanism by which the AF-1 function of ERalpha stimulates gene transcription.
Collapse
Affiliation(s)
- Chris D Green
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, University Floor, Belfast City Hospital, Lisburn Road, Belfast BT9 7AB, United Kingdom
| | | | | | | |
Collapse
|
8
|
Mercier A, Pelletier B, Labbé S. A transcription factor cascade involving Fep1 and the CCAAT-binding factor Php4 regulates gene expression in response to iron deficiency in the fission yeast Schizosaccharomyces pombe. EUKARYOTIC CELL 2006; 5:1866-1881. [PMID: 16963626 PMCID: PMC1694796 DOI: 10.1128/ec.00199-06] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 08/31/2006] [Indexed: 11/20/2022]
Abstract
We have identified genes encoding candidate proteins involved in iron storage (pcl1+), the tricarboxylic acid cycle (sdh4+), and iron-sulfur cluster assembly (isa1+) that are negatively regulated in response to iron deprivation. Promoter deletion and site-directed mutagenesis permitted identification of a new cis-regulatory element in the promoter region of the pcl1+ gene. This cis-acting regulatory sequence containing the pentanucleotide sequence CCAAT is responsible for transcriptional repression of pcl1+ under low iron supply conditions. In Schizosaccharomyces pombe, the CCAAT-binding factor is a heteromeric DNA-binding complex that contains three subunits, designated Php2, Php3, and Php5. Inactivation of the php2+ locus negatively affects the transcriptional competency of pcl1+. A fourth subunit, designated Php4, is not essential for the transcriptional activation of target genes under basal and iron-replete conditions. We demonstrate that, in response to iron-limiting conditions, Php4 is required for down-regulation of pcl1+, sdh4+, and isa1+ mRNA levels. In vivo RNase protection studies reveal that the expression of php4+ is negatively regulated by iron and that this regulated expression requires a functional fep1+ gene. The results of these studies reveal that Fep1 represses php4+ expression in response to iron. In contrast, when iron is scarce, Fep1 becomes inactive and php4+ is expressed to act as a regulatory subunit of the CCAAT-binding factor that is required to block pcl1+, sdh4+, and isa1+ gene transcription.
Collapse
Affiliation(s)
- Alexandre Mercier
- Département de Biochimie, Faculté de Médecine, Université de Sherbrooke, 3001 12e Ave. Nord, Sherbrooke, Québec J1H 5N4, Canada
| | | | | |
Collapse
|
9
|
Serra E, Zemzoumi K, di Silvio A, Mantovani R, Lardans V, Dissous C. Conservation and divergence of NF-Y transcriptional activation function. Nucleic Acids Res 1998; 26:3800-5. [PMID: 9685499 PMCID: PMC147774 DOI: 10.1093/nar/26.16.3800] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The CCAAT-binding protein NF-Y is involved in the regulation of a variety of eukaryotic genes and is formed in higher eukaryotes by three subunits NF-YA/B/C. We have characterized NF-Y of the trematode parasite Schistosoma mansoni and studied the structure and the function of the SMNF-YA subunit. In this work, we present the cloning and sequence analysis of the B subunit of the parasite factor. SMNF-YB contains the conserved HAP-3 homology domain but the remaining part of the protein was found to be highly divergent from all other species. We demonstrated by transfections of GAL4 fusion constructs, that mouse NF-YB does not contain activation domains while the C-terminal part of SMNF-YB has transcriptional activation potential. On the other hand, the N-terminal parts of SMNF-YA and mouse NF-YA were shown to mediate transactivation; the integrity of a large 160 amino acid glutamine-rich domain of NF-YA was required for this function and an adjacent serine- and threonine-rich domain was necessary for full activity in HepG2, but redundant in other cell types. Transactivation domains identified in SMNF-YB are also rich in serine and threonine residues. Our results indicate that serine/threonine-richsequences from helminth parasites potentiate trans-cription and that such structures have diverged during evolution within the same transcription factor.
Collapse
Affiliation(s)
- E Serra
- Unité INSERM 167, Institut Pasteur Lille, 1, rue du Professeur Calmette, 59019 Lille, France
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Glucose and related sugars repress the transcription of genes encoding enzymes required for the utilization of alternative carbon sources; some of these genes are also repressed by other sugars such as galactose, and the process is known as catabolite repression. The different sugars produce signals which modify the conformation of certain proteins that, in turn, directly or through a regulatory cascade affect the expression of the genes subject to catabolite repression. These genes are not all controlled by a single set of regulatory proteins, but there are different circuits of repression for different groups of genes. However, the protein kinase Snf1/Cat1 is shared by the various circuits and is therefore a central element in the regulatory process. Snf1 is not operative in the presence of glucose, and preliminary evidence suggests that Snf1 is in a dephosphorylated state under these conditions. However, the enzymes that phosphorylate and dephosphorylate Snf1 have not been identified, and it is not known how the presence of glucose may affect their activity. What has been established is that Snf1 remains active in mutants lacking either the proteins Grr1/Cat80 or Hxk2 or the Glc7 complex, which functions as a protein phosphatase. One of the main roles of Snf1 is to relieve repression by the Mig1 complex, but it is also required for the operation of transcription factors such as Adr1 and possibly other factors that are still unidentified. Although our knowledge of catabolite repression is still very incomplete, it is possible in certain cases to propose a partial model of the way in which the different elements involved in catabolite repression may be integrated.
Collapse
Affiliation(s)
- J M Gancedo
- Instituto de Investigaciones Biomédicas, Unidad de Bioquímica y Genética de Levaduras, CSIC, 28029 Madrid, Spain.
| |
Collapse
|
11
|
Abstract
The CCAAT box is one of the most common elements in eukaryotic promoters, found in the forward or reverse orientation. Among the various DNA binding proteins that interact with this sequence, only NF-Y (CBF, HAP2/3/4/5) has been shown to absolutely require all 5 nt. Analysis of a database with 178 bona fide NF-Y binding sites in 96 unrelated promoters confirms this need and points to specific additional flanking nucleotides (C, Pu, Pu on the 5'-side and C/G, A/G, G,A/C, G on the 3'-side) required for efficient binding. The frequency of CCAAT boxes appears to be relatively higher in TATA-less promoters, particularly in the reverse ATTGG orientation. In TATA-containing promoters the CCAAT box is preferentially located in the -80/-100 region (mean position -89) and is not found nearer to the Start site than -50. In TATA-less promoters it is usually closer to the +1 signal (at -66 on average) and is sometimes present in proximity to the Cap site. The consensus and location of NF-Y binding sites parallel almost perfectly a previous general statistical study on CCAAT boxes in 502 unrelated promoters. This is an indication that NF-Y is the major, if not the sole, CCAAT box recognizing protein and that it might serve different roles in TATA-containing and TATA-less promoters.
Collapse
Affiliation(s)
- R Mantovani
- Dipartimento di Genetica e Biologia dei Microrganismi, Università di Milano, Via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
12
|
McNabb DS, Tseng KA, Guarente L. The Saccharomyces cerevisiae Hap5p homolog from fission yeast reveals two conserved domains that are essential for assembly of heterotetrameric CCAAT-binding factor. Mol Cell Biol 1997; 17:7008-18. [PMID: 9372932 PMCID: PMC232557 DOI: 10.1128/mcb.17.12.7008] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The CCAAT-binding factor is an evolutionarily conserved heteromeric transcription factor that binds to CCAAT box-containing upstream activation sites within the promoters of numerous eukaryotic genes. The CCAAT-binding factor from Saccharomyces cerevisiae is a heterotetramer that contains the subunits Hap2p, Hap3p, Hap4p, and Hap5p and that functions in the activation of genes involved in respiratory metabolism. Here we describe the isolation of the cDNA encoding the Schizosaccharomyces pombe homolog of Hap5p, designated php5+. We have shown that Php5p is a subunit of the CCAAT-binding factor in fission yeast and is required for transcription of the S. pombe cyc1+ gene. Analysis of the evolutionarily conserved regions of Hap5p, Php5p, and the mammalian homolog CBF-C revealed two essential domains within Hap5p that are required for DNA binding and transcriptional activation. One is an 87-amino-acid core domain that is conserved among Hap5p, Php5p, and CBF-C and that is required for the assembly of the Hap2p-Hap3p-Hap5p heterotrimer both in vitro and in vivo. A second domain that is essential for the recruitment of Hap4p into the CCAAT-binding complex was identified in Hap5p and Php5p.
Collapse
Affiliation(s)
- D S McNabb
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
13
|
Papagiannopoulos P, Andrianopoulos A, Sharp JA, Davis MA, Hynes MJ. The hapC gene of Aspergillus nidulans is involved in the expression of CCAAT-containing promoters. MOLECULAR & GENERAL GENETICS : MGG 1996; 251:412-21. [PMID: 8709944 DOI: 10.1007/bf02172369] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The 5' regulatory region of the amdS gene of Aspergillus nidulans, which encodes an acetamidase required for growth on acetamide as a carbon and nitrogen source, contains a CCAAT sequence which is required for setting the basal level of amdS expression. Mobility shift studies have identified a factor in A. nidulans nuclear extracts which binds to this CCAAT sequence. In Saccharomyces cerevisiae the HAP3 gene encodes one component of a multisubunit complex that binds CCAAT sequences. A search of the EMBL and SwissProt databases has revealed an A. nidulans sequence with significant homology to the HAP3 gene adjacent to the previously cloned regulatory gene amdR. Sequencing of the remainder of this region has confirmed the presence of a gene, designated hapC, with extensive homology to HAP3. The predicted amino acid sequence of HapC shows extensive identity to HAP3 in the central conserved domain, but shows little conservation in the flanking sequences. A haploid carrying a hapC deletion has been created and is viable, but grows poorly on all media tested. This null mutant grows especially slowly on acetamide as a sole carbon and nitrogen source, indicating that hapC plays a role in amdS expression. In agreement with this notion, it has been shown that the hapC deletion results in reduced levels of expression of an amdS::lacZ reporter gene and this effect is particularly evident under conditions of carbon limitation. Nuclear extracts prepared from the hapC deletion mutant show no CCAAT binding activity to the amdS or gatA promoters, indicating that hapC may encode a component of the complex binding at this sequence.
Collapse
Affiliation(s)
- P Papagiannopoulos
- Department of Genetics, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
14
|
Chen H, Kinsey JA. Purification of a heteromeric CCAAT binding protein from Neurospora crassa. MOLECULAR & GENERAL GENETICS : MGG 1995; 249:301-8. [PMID: 7500955 DOI: 10.1007/bf00290531] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Expression of the Neurospora crassa am (NADP-specific glutamate dehydrogenase) gene is controlled by two upstream enhancer-like elements designated URSam alpha and URSam beta. URSam alpha is localized between - 1.3 and - 1.4 kb with respect to the major transcriptional start site. Deletion of a 90 bp sequence containing this element resulted in the loss of approximately 50% of normal glutamate dehydrogenase expression. Gel mobility shift analysis indicated that a nuclear protein from Neurospora binds in a specific manner to sequences within the 90 bp fragment. We have now used a combination of ion-exchange and affinity chromatography to purify this nuclear protein, which we call Am Alpha Binding protein (AAB). The activity was monitored by gel shift analysis. The protein was purified more than 14,000-fold with a yield of approximately 7%. The purified protein appears as a heteromer on denaturing polyacrylamide gel electrophoresis, with only two strong bands visible in silver-stained preparations. One band has an apparent molecular mass of 40 kDa, the other appears as a doublet with an apparent molecular mass of 30 kDa. DNAse I protection analysis indicated a protected region consisting of 30 bp, which contains a CCAAT pentanucleotide motif. Mutagenesis of the CCAAT motif abolished the binding of AAB to the DNA fragment.
Collapse
Affiliation(s)
- H Chen
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City 66160, USA
| | | |
Collapse
|
15
|
Ronchi A, Bellorini M, Mongelli N, Mantovani R. CCAAT-box binding protein NF-Y (CBF, CP1) recognizes the minor groove and distorts DNA. Nucleic Acids Res 1995; 23:4565-72. [PMID: 8524643 PMCID: PMC307426 DOI: 10.1093/nar/23.22.4565] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The CCAAT box is one of the most common promoter elements. The evolutionarily conserved heteromeric factor NF-Y binds this sequence with high affinity and specificity. By comparing the methylation interference patterns of different sites, performing electrophoretic mobility shift assays (EMSA) with IC-substituted oligonucleotides and competition experiments with the minor groove binding (MGB) drugs distamicin A, tallimustine and Hoechst 33258 we show that NF-Y makes key minor groove interactions. Circular permutation assays on four CCAAT boxes, MHC Class II Ea, HSP70, epsilon-globin and MSV, indicate that NF-Y is able to distort the double helix by angles of 62-82 degrees, depending on the site used, and suggest that nucleotides flanking the CCAAT pentanucleotide influence the degree of bending.
Collapse
Affiliation(s)
- A Ronchi
- Dipartimento di Genetica e Biologia del Microganismi, Università di Milano, Italy
| | | | | | | |
Collapse
|
16
|
Bonnefoy N, Copsey J, Hynes MJ, Davis MA. Yeast proteins can activate expression through regulatory sequences of the amdS gene of Aspergillus nidulans. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:223-7. [PMID: 7862093 DOI: 10.1007/bf00294685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The upstream regulatory region of the amdS gene of Aspergillus nidulans contains a CCAAT sequence known to be important in setting both basal and depressed levels of expression. We have investigated whether the CCAAT-binding HAP2/3/4 complex of the yeast Saccharomyces cerevisiae can recognise this sequence in an amdS context. Sequences from the 5' region of amdS were cloned in front of the CYC1-lacZ fusion gene bearing a minimal promoter and transformed into wild-type and hap2 strains of yeast. This study has indicated that amdS sequences are capable of promoting regulated expression of the fusion gene in response to carbon limitation. The yeast HAP2/3/4 complex can recognise the amdS CCAAT sequence and activate expression from this sequence. In addition, the results indicate that other yeast proteins can also regulate expression from the A. nidulans amdS 5'sequences under carbon-limiting conditions.
Collapse
Affiliation(s)
- N Bonnefoy
- Department of Genetics, University of Melbourne, Parkville, Australia
| | | | | | | |
Collapse
|
17
|
Mulder W, Scholten IH, de Boer RW, Grivell LA. Sequence of the HAP3 transcription factor of Kluyveromyces lactis predicts the presence of a novel 4-cysteine zinc-finger motif. MOLECULAR & GENERAL GENETICS : MGG 1994; 245:96-106. [PMID: 7845362 DOI: 10.1007/bf00279755] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Kluyveromyces lactis homologue of the Saccharomyces cerevisiae HAP3 gene was isolated by functional complementation of the respiratory-deficient phenotype of the S. cerevisiae hap3::HIS4 strain SHY40. The KlHAP3 gene encodes a protein of 205 amino acids, of which the central B-domain of 90 residues is highly homologous to HAP3 counterparts of S. cerevisiae and higher eukaryotes. The protein contains a novel 4-cysteine zinc-finger motif and we propose by analogy that all other homologous HAP3 proteins contain the same motif, with the position containing the third cysteine being occupied by a serine residue. In contrast to the situation in S. cerevisiae, disruption of the KlHAP3 gene in K. lactis does not result in a respiratory-deficient phenotype and the growth of the null strain is indistinguishable from wild type. There is also no effect on the expression of the carbon source-regulated KlCYC1 gene, suggesting either a different role for the HAP2/3/4 complex, or the existence of a different mechanism of carbon source regulation. Sequence verification of the S. cerevisiae HAP3 locus reveals that, just as in K. lactis, a long open reading frame (ORF) is present upstream of the HAP3 gene. These highly homologous ORFs are predicted to have at least eight membrane-spanning fragments, but do not show significant homology to any known sequence present in databases. The ScORFX gene is transcribed in the opposite direction to ScHAP3, but, in contrast to an earlier report by Hahn et al. (1988), the transcripts of the two genes do not overlap. The model proposed by these authors, in which the ScHAP3 gene is regulated by an anti-sense non-coding mRNA, is therefore not correct.
Collapse
Affiliation(s)
- W Mulder
- Section for Molecular Biology, Institute for Molecular Cell Biology, Biocentrum Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
18
|
Xing Y, Zhang S, Olesen JT, Rich A, Guarente L. Subunit interaction in the CCAAT-binding heteromeric complex is mediated by a very short alpha-helix in HAP2. Proc Natl Acad Sci U S A 1994; 91:3009-13. [PMID: 8159696 PMCID: PMC43504 DOI: 10.1073/pnas.91.8.3009] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We dissected the domain of HAP2 that mediates subunit association in the heteromeric CCAAT-binding complex, first by genetic mutational analysis and then by structural studies. The mutational data suggest that a very short region in HAP2 mediates protein-protein association and that the structure of this domain is likely to be an alpha-helix. The CD analyses of a 15-residue synthetic oligopeptide covering this region confirm this surmise. The oligopeptide indeed formed an unusually thermal stable alpha-helix in aqueous solution. Eight amino acids that lie along one face of this helix, including three arginines, are found to be critical for protein-protein association. The partner that interacts with this helical motif is likely to be another subunit in the HAP complex, since the CCAAT-binding factor is shown to contain one molecule of HAP2. Our results suggest that very short regions in proteins can encode precise structures and mediate stable and specific protein-protein recognition and interactions.
Collapse
Affiliation(s)
- Y Xing
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139-4307
| | | | | | | | | |
Collapse
|
19
|
Dhawale SS, Lane AC. Compilation of sequence-specific DNA-binding proteins implicated in transcriptional control in fungi. Nucleic Acids Res 1993; 21:5537-46. [PMID: 8284197 PMCID: PMC310513 DOI: 10.1093/nar/21.24.5537] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- S S Dhawale
- Indiana University, Purdue University at Fort Wayne 46805
| | | |
Collapse
|
20
|
Abstract
We describe a detailed genetic analysis of the DNA-binding regions in the HAP2/HAP3 CCAAT-binding heteromeric complex. The DNA-binding domain of HAP2 is shown to be a 21 residue region containing three critical histidines and three critical arginines. Mutation of an arginine at position 199 to leucine alters the DNA-binding specificity of the complex to favor CCAAC over CCAAT. Residues in HAP3 that are critical for DNA-binding comprise a short, seven amino acid region. Three different mutations in the HAP2 DNA-binding domain are suppressed by a mutation in the HAP3 DNA-binding domain. This HAP3 mutation also suppresses mutations in a different region of HAP2 which promotes subunit assembly of the complex. These findings suggest that short regions of HAP2 and HAP3 comprise a hybrid DNA-binding domain and that this domain can help hold the two subunits together in the CCAAT-binding complex.
Collapse
Affiliation(s)
- Y Xing
- Department of Biology, MIT, Cambridge, MA 02139
| | | | | |
Collapse
|
21
|
Davis MA, Kelly JM, Hynes MJ. Fungal catabolic gene regulation: molecular genetic analysis of the amdS gene of Aspergillus nidulans. Genetica 1993; 90:133-45. [PMID: 8119589 DOI: 10.1007/bf01435035] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Aspergillus nidulans is an excellent experimental organism for the study of gene regulation. Genetic and molecular analyses of trans-acting and cis-acting mutations have revealed a complex pattern of regulation involving multiple independent controls. Expression of the amdS gene is regulated by the facB and amdA genes which encode positively acting regulatory proteins mediating a major and a minor form of acetate induction respectively. The product of the amdR gene mediates omega amino acid induction of amdS. The binding sites for each of these proteins have been localised through amdS cis-acting mutations which specifically affect the interaction with the regulatory protein. The global controls of nitrogen metabolite repression and carbon catabolite repression regulate the expression of many catabolic genes, including amdS. Nitrogen control is exerted through the positively acting areA gene product and carbon control is dependent on the creA gene product. Each of the characterized regulatory genes encodes a DNA-binding protein which recognises particular sequences in the amdS promoter to activate or repress gene expression. In addition, there is evidence for other genetically uncharacterized proteins, including a CCAAT-binding complex, which interact with the 5' region of the amdS gene.
Collapse
Affiliation(s)
- M A Davis
- Department of Genetics, University of Melbourne, Parkville, Australia
| | | | | |
Collapse
|
22
|
Prentice HL, Kingston RE. Mammalian promoter element function in the fission yeast Schizosaccharomyces pombe. Nucleic Acids Res 1992; 20:3383-90. [PMID: 1321414 PMCID: PMC312493 DOI: 10.1093/nar/20.13.3383] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have analyzed the function of several mammalian promoter elements in the fission yeast, Schizosaccharomyces pombe. Mutants of the human HSP70 promoter were introduced into S. pombe as single copy integrants at a specific location. Transcription initiation sites utilized in S. pombe with the HSP70 TATA element were similar to those used in mammalian cells. Of three mammalian TATA elements tested, only the HSP70 TATA element functioned in S. pombe. The adenovirus Ella TATA element had little or no activity in S. pombe, indicating that S. pombe is deficient in the factor(s) necessary for recognition of this element. Of upstream promoter elements tested, the CCAAT, Sp1 binding, ATF binding and heat shock elements were functional in S. pombe. Strains containing mutant promoters fused to the ble gene were used to demonstrate that phleomycin can be used as a graded selection in S. pombe. These data demonstrate that S. pombe should provide a useful system in which to characterize and isolate mammalian factors involved in initiation site determination and transcriptional regulation.
Collapse
Affiliation(s)
- H L Prentice
- Department of Genetics, Harvard Medical School, Boston, MA
| | | |
Collapse
|
23
|
Abstract
As an aid to the fission yeast genome project, we describe a database for Schizosaccharomyces pombe consisting of both genetic and physical information. As presented, it is therefore both an updated gene list of all the nuclear genes of the fission yeast, and provides an estimate of the physical distance between two mapped genes. Additionally, a field indicates whether the sequence of the gene is available. Currently, sequence information is available for 135 of the 501 known genes.
Collapse
Affiliation(s)
- G G Lennon
- Biomed. Div. L-452, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | | |
Collapse
|
24
|
Abstract
Mitochondrial biogenesis requires the coordinate induction of hundreds of genes that reside in the nucleus. We describe here a study of the regulation of the nuclear-encoded cytochrome c1 of the b-c1 complex. Unlike cytochrome c, which is encoded by two genes, CYC1 and CYC7, c1 is encoded by a single gene, CYT1. The regulatory region of the CYT1 promoter contains binding sites for the HAP1 and HAP2/3/4 transactivators that regulate CYC1. The binding of HAP1 to the CYT1 element was studied in detail and found to differ in two important respects from binding to the CYC1 element. First, while CYC1 contains two sites that bind HAP1 cooperatively, CYT1 has a single high-affinity site. Second, while the CYT1 site and the stronger HAP1-binding site of CYC1 share a large block of homology, the HAP1 footprints at these sites are offset by several nucleotides. We discuss how these differences in HAP1 binding might relate to the difference in the biology of cytochrome c and cytochrome c1.
Collapse
|
25
|
Schneider JC, Guarente L. Regulation of the yeast CYT1 gene encoding cytochrome c1 by HAP1 and HAP2/3/4. Mol Cell Biol 1991; 11:4934-42. [PMID: 1656218 PMCID: PMC361470 DOI: 10.1128/mcb.11.10.4934-4942.1991] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mitochondrial biogenesis requires the coordinate induction of hundreds of genes that reside in the nucleus. We describe here a study of the regulation of the nuclear-encoded cytochrome c1 of the b-c1 complex. Unlike cytochrome c, which is encoded by two genes, CYC1 and CYC7, c1 is encoded by a single gene, CYT1. The regulatory region of the CYT1 promoter contains binding sites for the HAP1 and HAP2/3/4 transactivators that regulate CYC1. The binding of HAP1 to the CYT1 element was studied in detail and found to differ in two important respects from binding to the CYC1 element. First, while CYC1 contains two sites that bind HAP1 cooperatively, CYT1 has a single high-affinity site. Second, while the CYT1 site and the stronger HAP1-binding site of CYC1 share a large block of homology, the HAP1 footprints at these sites are offset by several nucleotides. We discuss how these differences in HAP1 binding might relate to the difference in the biology of cytochrome c and cytochrome c1.
Collapse
Affiliation(s)
- J C Schneider
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139-4307
| | | |
Collapse
|