1
|
Li J, Yang Y, Huang H, Yu J, Zhou Q, Jia Z, Chen S. Genome-wide analysis of the phosphate transporter gene family in oats: insights into phosphorus and water deficiency responses. J Appl Genet 2025:10.1007/s13353-025-00965-5. [PMID: 40164903 DOI: 10.1007/s13353-025-00965-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/06/2025] [Accepted: 03/14/2025] [Indexed: 04/02/2025]
Abstract
Phosphorus (P) and water are essential for plant growth and development, exerting a significant influence on global crop production. The phosphate transporter (PHT) gene family plays a pivotal role in phosphate (Pi) uptake, transport, and homeostasis under diverse environmental conditions. In this study, we conducted a comprehensive genome-wide identification and characterization of the PHT gene family in Avena sativa. A total of 32 non-redundant AsPHT genes were identified in the OT3098 genome, classified into two subfamilies: AsPHT1 (21 genes) and AsPHO (11 genes). AsPHT1 proteins were predominantly hydrophobic with one or two exons, whereas AsPHO proteins were hydrophilic, exhibiting a more complex structure with 13-15 exons. Cis-regulatory element analysis revealed an abundance of hormone- and stress-responsive elements in the promoters of AsPHT genes, indicating their potential roles in adaptive responses to Pi and water deficiency. Gene expression profiling under low Pi and drought conditions demonstrated differential expression of 22 AsPHT genes in roots and leaves at the seedling stage, with distinct responses to the two stresses, highlighting the functional diversity of the AsPHT gene family. These findings provide valuable insights into the molecular mechanisms underlying Pi and water acquisition in oats and offer potential applications for developing varieties with enhanced Pi use efficiency and drought tolerance.
Collapse
Affiliation(s)
- Jin Li
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, China
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, No. 16, South Section 4, Ring Road 1, Chengdu, Sichuan, 610041, China
| | - Yanjiao Yang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, No. 16, South Section 4, Ring Road 1, Chengdu, Sichuan, 610041, China
| | - Hualing Huang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, No. 16, South Section 4, Ring Road 1, Chengdu, Sichuan, 610041, China
| | - Jing Yu
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, No. 16, South Section 4, Ring Road 1, Chengdu, Sichuan, 610041, China
| | - Qingping Zhou
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, No. 16, South Section 4, Ring Road 1, Chengdu, Sichuan, 610041, China
| | - Zhifeng Jia
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, China
| | - Shiyong Chen
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, No. 16, South Section 4, Ring Road 1, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
2
|
Boocock J, Alexander N, Alamo Tapia L, Walter-McNeill L, Patel SP, Munugala C, Bloom JS, Kruglyak L. Single-cell eQTL mapping in yeast reveals a tradeoff between growth and reproduction. eLife 2025; 13:RP95566. [PMID: 40073070 PMCID: PMC11903034 DOI: 10.7554/elife.95566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
Expression quantitative trait loci (eQTLs) provide a key bridge between noncoding DNA sequence variants and organismal traits. The effects of eQTLs can differ among tissues, cell types, and cellular states, but these differences are obscured by gene expression measurements in bulk populations. We developed a one-pot approach to map eQTLs in Saccharomyces cerevisiae by single-cell RNA sequencing (scRNA-seq) and applied it to over 100,000 single cells from three crosses. We used scRNA-seq data to genotype each cell, measure gene expression, and classify the cells by cell-cycle stage. We mapped thousands of local and distant eQTLs and identified interactions between eQTL effects and cell-cycle stages. We took advantage of single-cell expression information to identify hundreds of genes with allele-specific effects on expression noise. We used cell-cycle stage classification to map 20 loci that influence cell-cycle progression. One of these loci influenced the expression of genes involved in the mating response. We showed that the effects of this locus arise from a common variant (W82R) in the gene GPA1, which encodes a signaling protein that negatively regulates the mating pathway. The 82R allele increases mating efficiency at the cost of slower cell-cycle progression and is associated with a higher rate of outcrossing in nature. Our results provide a more granular picture of the effects of genetic variants on gene expression and downstream traits.
Collapse
Affiliation(s)
- James Boocock
- Department of Human Genetics, University of California, Los AngelesLos AngelesUnited States
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Noah Alexander
- Department of Human Genetics, University of California, Los AngelesLos AngelesUnited States
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Leslie Alamo Tapia
- Department of Human Genetics, University of California, Los AngelesLos AngelesUnited States
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Laura Walter-McNeill
- Department of Human Genetics, University of California, Los AngelesLos AngelesUnited States
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Shivani Prashant Patel
- Department of Human Genetics, University of California, Los AngelesLos AngelesUnited States
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Chetan Munugala
- Department of Human Genetics, University of California, Los AngelesLos AngelesUnited States
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Joshua S Bloom
- Department of Human Genetics, University of California, Los AngelesLos AngelesUnited States
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Leonid Kruglyak
- Department of Human Genetics, University of California, Los AngelesLos AngelesUnited States
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
3
|
Deitert A, Fees J, Mertens A, Nguyen Van D, Maares M, Haase H, Blank LM, Keil C. Rapid Fluorescence Assay for Polyphosphate in Yeast Extracts Using JC-D7. Yeast 2024; 41:593-604. [PMID: 39262085 DOI: 10.1002/yea.3979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024] Open
Abstract
Polyphosphate (polyP) is an intriguing molecule that is found in almost any organism, covering a multitude of cellular functions. In industry, polyP is used due to its unique physiochemical properties, including pH buffering, water binding, and bacteriostatic activities. Despite the importance of polyP, its analytics is still challenging, with the gold standard being 31P NMR. Here, we present a simple staining method using the fluorescent dye JC-D7 for the semi-quantitative polyP evaluation in yeast extracts. Notably, fluorescence response was affected by polyP concentration and polymer chain length in the 0.5-500 µg/mL polyP concentration range. Hence, for polyP samples of unknown chain compositions, JC-D7 cannot be used for absolute quantification. Fluorescence of JC-D7 was unaffected by inorganic phosphate up to 50 mM. Trace elements (FeSO4 > CuSO4 > CoCl2 > ZnSO4) and toxic mineral salts (PbNO3 and HgCl2) diminished polyP-induced JC-D7 fluorescence, affecting its applicability to samples containing polyP-metal complexes. The fluorescence was only marginally affected by other parameters, such as pH and temperature. After validation, this simple assay was used to elucidate the degree of polyP production by yeast strains carrying gene deletions in (poly)phosphate homeostasis. The results suggest that staining with JC-D7 provides a robust and sensitive method for detecting polyP in yeast extracts and likely in extracts of other microbes. The simplicity of the assay enables high-throughput screening of microbes to fully elucidate and potentially enhance biotechnological polyP production, ultimately contributing to a sustainable phosphorus utilization.
Collapse
Affiliation(s)
- Alexander Deitert
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Aachen, Germany
| | - Jana Fees
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Aachen, Germany
| | - Anna Mertens
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Aachen, Germany
| | - Duc Nguyen Van
- Department of Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Maria Maares
- Department of Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Hajo Haase
- Department of Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Lars Mathias Blank
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Aachen, Germany
| | - Claudia Keil
- Department of Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
4
|
Martín JF. Interaction of calcium responsive proteins and transcriptional factors with the PHO regulon in yeasts and fungi. Front Cell Dev Biol 2023; 11:1225774. [PMID: 37601111 PMCID: PMC10437122 DOI: 10.3389/fcell.2023.1225774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Phosphate and calcium ions are nutrients that play key roles in growth, differentiation and the production of bioactive secondary metabolites in filamentous fungi. Phosphate concentration regulates the biosynthesis of hundreds of fungal metabolites. The central mechanisms of phosphate transport and regulation, mediated by the master Pho4 transcriptional factor are known, but many aspects of the control of gene expression need further research. High ATP concentration in the cells leads to inositol pyrophosphate molecules formation, such as IP3 and IP7, that act as phosphorylation status reporters. Calcium ions are intracellular messengers in eukaryotic organisms and calcium homeostasis follows elaborated patterns in response to different nutritional and environmental factors, including cross-talking with phosphate concentrations. A large part of the intracellular calcium is stored in vacuoles and other organelles forming complexes with polyphosphate. The free cytosolic calcium concentration is maintained by transport from the external medium or by release from the store organelles through calcium permeable transient receptor potential (TRP) ion channels. Calcium ions, particularly the free cytosolic calcium levels, control the biosynthesis of fungal metabolites by two mechanisms, 1) direct interaction of calcium-bound calmodulin with antibiotic synthesizing enzymes, and 2) by the calmodulin-calcineurin signaling cascade. Control of very different secondary metabolites, including pathogenicity determinants, are mediated by calcium through the Crz1 factor. Several interactions between calcium homeostasis and phosphate have been demonstrated in the last decade: 1) The inositol pyrophosphate IP3 triggers the release of calcium ions from internal stores into the cytosol, 2) Expression of the high affinity phosphate transporter Pho89, a Na+/phosphate symporter, is controlled by Crz1. Also, mutants defective in the calcium permeable TRPCa7-like of Saccharomyces cerevisiae shown impaired expression of Pho89. This information suggests that CrzA and Pho89 play key roles in the interaction of phosphate and calcium regulatory pathways, 3) Finally, acidocalcisomes organelles have been found in mycorrhiza and in some melanin producing fungi that show similar characteristics as protozoa calcisomes. In these organelles there is a close interaction between orthophosphate, pyrophosphate and polyphosphate and calcium ions that are absorbed in the polyanionic polyphosphate matrix. These advances open new perspectives for the control of fungal metabolism.
Collapse
Affiliation(s)
- Juan F. Martín
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, León, Spain
| |
Collapse
|
5
|
Ojima Y, Naoi K, Akiyoshi R, Azuma M. Quantitative analysis of phosphate accumulation in PHO regulatory system-mutant strains of Saccharomyces cerevisiae. Arch Microbiol 2023; 205:138. [PMID: 36961589 DOI: 10.1007/s00203-023-03488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023]
Abstract
PHO-mutant strains of Saccharomyces cerevisiae, NOF-1 and NBD82-1, which constitutively express PHO81 and PHO4, respectively, have been reported to accumulate phosphate in high-phosphate conditions. However, detailed analysis, including a quantitative evaluation of the accumulated phosphate, has not been performed for these mutants. In this study, NOF-1 and NBD82-1 mutant and double mutant strains were cultured in a high-phosphate medium to quantitatively analyze the amount, accumulation form, and physiological use of the accumulated phosphate in the cells. In control strains (BY4741 and NBW7), the percentage of phosphorus in total dry weight of cell was approximately 2%TDW; for the NBD82-1 mutant and double mutant strains, it was approximately 6%TDW; and for strain NOF-1, it was 8.5%TDW. When cells of the mutant strains were stained with 4',6-diamidino-2-phenylindole (DAPI), they showed a fluorescence peak at 540 nm, suggesting that phosphate accumulated as polyphosphoric acid (polyP). Quantitative evaluation revealed that for strain NOF-1, the percentage of phosphorus exiting as polyP in total dry weight of cell was approximately 5.0%TDW, equivalent to 60% of the total phosphorus in the cells. We also demonstrated that the mutant strains could grow well in phosphate-free medium, suggesting that phosphate accumulated in the cells was used as a phosphorus source. This is the first report concerning the quantitative analysis of phosphate accumulation and utilization of PHO regulatory system-mutant strains of Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Yoshihiro Ojima
- Department of Chemistry and Bioengineering, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan.
| | - Kyohei Naoi
- Department of Chemistry and Bioengineering, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan
| | - Riho Akiyoshi
- Department of Chemistry and Bioengineering, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan
| | - Masayuki Azuma
- Department of Chemistry and Bioengineering, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan
| |
Collapse
|
6
|
Lacerda-Abreu MA, Dick CF, Meyer-Fernandes JR. The Role of Inorganic Phosphate Transporters in Highly Proliferative Cells: From Protozoan Parasites to Cancer Cells. MEMBRANES 2022; 13:42. [PMID: 36676849 PMCID: PMC9860751 DOI: 10.3390/membranes13010042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
In addition to their standard inorganic phosphate (Pi) nutritional function, Pi transporters have additional roles in several cells, including Pi sensing (the so-called transceptor) and a crucial role in Pi metabolism, where they control several phenotypes, such as virulence in pathogens and tumour aggressiveness in cancer cells. Thus, intracellular Pi concentration should be tightly regulated by the fine control of intake and storage in organelles. Pi transporters are classified into two groups: the Pi transporter (PiT) family, also known as the Pi:Na+ symporter family; and the Pi:H+ symporter (PHS) family. Highly proliferative cells, such as protozoan parasites and cancer cells, rely on aerobic glycolysis to support the rapid generation of biomass, which is equated with the well-known Warburg effect in cancer cells. In protozoan parasite cells, Pi transporters are strongly associated with cell proliferation, possibly through their action as intracellular Pi suppliers for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity. Similarly, the growth rate hypothesis (GRH) proposes that the high Pi demands of tumours when achieving accelerated proliferation are mainly due to increased allocation to P-rich nucleic acids. The purpose of this review was to highlight recent advances in understanding the role of Pi transporters in unicellular eukaryotes and tumorigenic cells, correlating these roles with metabolism in these cells.
Collapse
Affiliation(s)
- Marco Antonio Lacerda-Abreu
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Claudia Fernanda Dick
- National Center of Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - José Roberto Meyer-Fernandes
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
7
|
Guo Z, Cao H, Zhao J, Bai S, Peng W, Li J, Sun L, Chen L, Lin Z, Shi C, Yang Q, Yang Y, Wang X, Tian J, Chen Z, Liao H. A natural uORF variant confers phosphorus acquisition diversity in soybean. Nat Commun 2022; 13:3796. [PMID: 35778398 PMCID: PMC9249851 DOI: 10.1038/s41467-022-31555-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/22/2022] [Indexed: 01/04/2023] Open
Abstract
Phosphorus (P) is an essential element for all organisms. Because P fertilizers are a non-renewable resource and high fixation in soils, sustainable agriculture requires researchers to improve crop P acquisition efficiency. Here, we report a strong association signal at a locus of CPU1 (component of phosphorus uptake 1), from a genome-wide association study of P acquisition efficiency in a soybean core collection grown in the field. A SEC12-like gene, GmPHF1, is identified as the causal gene for CPU1. GmPHF1 facilitates the ER (endoplasmic reticulum) exit of the phosphate transporter, GmPT4, to the plasma membrane of root epidermal cells. A common SNP in an upstream open reading frame (uORF) of GmPHF1, which alters the abundance of GmPHF1 in a tissue-specific manner, contributes to P acquisition diversity in soybean. A natural genetic variation conditions diversity in soybean P acquisition, which can be used to develop P-efficient soybean genotypes.
Collapse
Affiliation(s)
- Zilong Guo
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongrui Cao
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Zhao
- Root Biology Center, South China Agricultural University, Guangzhou, China
| | - Shuang Bai
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenting Peng
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jian Li
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lili Sun
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liyu Chen
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhihao Lin
- Root Biology Center, South China Agricultural University, Guangzhou, China
| | - Chen Shi
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qing Yang
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yongqing Yang
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiurong Wang
- Root Biology Center, South China Agricultural University, Guangzhou, China
| | - Jiang Tian
- Root Biology Center, South China Agricultural University, Guangzhou, China
| | - Zhichang Chen
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Hong Liao
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
8
|
Robinson JR, Isikhuemhen OS, Anike FN. Fungal-Metal Interactions: A Review of Toxicity and Homeostasis. J Fungi (Basel) 2021; 7:225. [PMID: 33803838 PMCID: PMC8003315 DOI: 10.3390/jof7030225] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022] Open
Abstract
Metal nanoparticles used as antifungals have increased the occurrence of fungal-metal interactions. However, there is a lack of knowledge about how these interactions cause genomic and physiological changes, which can produce fungal superbugs. Despite interest in these interactions, there is limited understanding of resistance mechanisms in most fungi studied until now. We highlight the current knowledge of fungal homeostasis of zinc, copper, iron, manganese, and silver to comprehensively examine associated mechanisms of resistance. Such mechanisms have been widely studied in Saccharomyces cerevisiae, but limited reports exist in filamentous fungi, though they are frequently the subject of nanoparticle biosynthesis and targets of antifungal metals. In most cases, microarray analyses uncovered resistance mechanisms as a response to metal exposure. In yeast, metal resistance is mainly due to the down-regulation of metal ion importers, utilization of metallothionein and metallothionein-like structures, and ion sequestration to the vacuole. In contrast, metal resistance in filamentous fungi heavily relies upon cellular ion export. However, there are instances of resistance that utilized vacuole sequestration, ion metallothionein, and chelator binding, deleting a metal ion importer, and ion storage in hyphal cell walls. In general, resistance to zinc, copper, iron, and manganese is extensively reported in yeast and partially known in filamentous fungi; and silver resistance lacks comprehensive understanding in both.
Collapse
Affiliation(s)
| | - Omoanghe S. Isikhuemhen
- Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA; (J.R.R.); (F.N.A.)
| | | |
Collapse
|
9
|
Gupta R, Laxman S. Cycles, sources, and sinks: Conceptualizing how phosphate balance modulates carbon flux using yeast metabolic networks. eLife 2021; 10:e63341. [PMID: 33544078 PMCID: PMC7864628 DOI: 10.7554/elife.63341] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
Phosphates are ubiquitous molecules that enable critical intracellular biochemical reactions. Therefore, cells have elaborate responses to phosphate limitation. Our understanding of long-term transcriptional responses to phosphate limitation is extensive. Contrastingly, a systems-level perspective presenting unifying biochemical concepts to interpret how phosphate balance is critically coupled to (and controls) metabolic information flow is missing. To conceptualize such processes, utilizing yeast metabolic networks we categorize phosphates utilized in metabolism into cycles, sources and sinks. Through this, we identify metabolic reactions leading to putative phosphate sources or sinks. With this conceptualization, we illustrate how mass action driven flux towards sources and sinks enable cells to manage phosphate availability during transient/immediate phosphate limitations. We thereby identify how intracellular phosphate availability will predictably alter specific nodes in carbon metabolism, and determine signature cellular metabolic states. Finally, we identify a need to understand intracellular phosphate pools, in order to address mechanisms of phosphate regulation and restoration.
Collapse
Affiliation(s)
- Ritu Gupta
- Institute for Stem Cell Science and Regenerative Medicine (inStem)BangaloreIndia
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (inStem)BangaloreIndia
| |
Collapse
|
10
|
Asady B, Dick CF, Ehrenman K, Sahu T, Romano JD, Coppens I. A single Na+-Pi cotransporter in Toxoplasma plays key roles in phosphate import and control of parasite osmoregulation. PLoS Pathog 2021; 16:e1009067. [PMID: 33383579 PMCID: PMC7817038 DOI: 10.1371/journal.ppat.1009067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 01/20/2021] [Accepted: 10/14/2020] [Indexed: 11/22/2022] Open
Abstract
Inorganic ions such as phosphate, are essential nutrients required for a broad spectrum of cellular functions and regulation. During infection, pathogens must obtain inorganic phosphate (Pi) from the host. Despite the essentiality of phosphate for all forms of life, how the intracellular parasite Toxoplasma gondii acquires Pi from the host cell is still unknown. In this study, we demonstrated that Toxoplasma actively internalizes exogenous Pi by exploiting a gradient of Na+ ions to drive Pi uptake across the plasma membrane. The Na+-dependent phosphate transport mechanism is electrogenic and functionally coupled to a cipargarmin sensitive Na+-H+-ATPase. Toxoplasma expresses one transmembrane Pi transporter harboring PHO4 binding domains that typify the PiT Family. This transporter named TgPiT, localizes to the plasma membrane, the inward buds of the endosomal organelles termed VAC, and many cytoplasmic vesicles. Upon Pi limitation in the medium, TgPiT is more abundant at the plasma membrane. We genetically ablated the PiT gene, and ΔTgPiT parasites are impaired in importing Pi and synthesizing polyphosphates. Interestingly, ΔTgPiT parasites accumulate 4-times more acidocalcisomes, storage organelles for phosphate molecules, as compared to parental parasites. In addition, these mutants have a reduced cell volume, enlarged VAC organelles, defects in calcium storage and a slightly alkaline pH. Overall, these mutants exhibit severe growth defects and have reduced acute virulence in mice. In survival mode, ΔTgPiT parasites upregulate several genes, including those encoding enzymes that cleave or transfer phosphate groups from phosphometabolites, transporters and ions exchangers localized to VAC or acidocalcisomes. Taken together, these findings point to a critical role of TgPiT for Pi supply for Toxoplasma and also for protection against osmotic stresses. Inorganic phosphate (Pi) is indispensable for the biosynthesis of key cellular components, and is involved in many metabolic and signaling pathways. Transport across the plasma membrane is the first step in the utilization of Pi. The import mechanism of Pi by the intracellular parasite Toxoplasma is unknown. We characterized a transmembrane, high-affinity Na+-Pi cotransporter, named TgPiT, expressed by the parasite at the plasma membrane for Pi uptake. Interestingly, TgPiT is also localized to inward buds of the endosomal VAC organelles and some cytoplasmic vesicles. Loss of TgPiT results in a severe reduction in Pi internalization and polyphosphate levels, but stimulation of the biogenesis of phosphate-enriched acidocalcisomes. ΔTgPiT parasites have a shrunken cell body, enlarged VAC organelles, poor release of stored calcium and a mildly alkaline pH, suggesting a role for TgPiT in the maintenance of overall ionic homeostasis. ΔTgPiT parasites are poorly infectious in vitro and in mice. The mutant appears to partially cope with the absence of TgPiT by up-regulating genes coding for ion transporters and enzymes catalyzing phosphate group transfer. Our data highlight a scenario in which the role of TgPiT in Pi and Na+ transport is functionally coupled with osmoregulation activities central to sustain Toxoplasma survival.
Collapse
Affiliation(s)
- Beejan Asady
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore Maryland, United States of America
| | - Claudia F. Dick
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore Maryland, United States of America
| | - Karen Ehrenman
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore Maryland, United States of America
| | - Tejram Sahu
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore Maryland, United States of America
| | - Julia D. Romano
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore Maryland, United States of America
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore Maryland, United States of America
- * E-mail:
| |
Collapse
|
11
|
Van Zeebroeck G, Demuyser L, Zhang Z, Cottignie I, Thevelein JM. Nutrient sensing and cAMP signaling in yeast: G-protein coupled receptor versus transceptor activation of PKA. MICROBIAL CELL (GRAZ, AUSTRIA) 2020; 8:17-27. [PMID: 33490229 PMCID: PMC7780724 DOI: 10.15698/mic2021.01.740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 09/12/2020] [Accepted: 09/17/2020] [Indexed: 11/13/2022]
Abstract
A major signal transduction pathway regulating cell growth and many associated physiological properties as a function of nutrient availability in the yeast Saccharomyces cerevisiae is the protein kinase A (PKA) pathway. Glucose activation of PKA is mediated by G-protein coupled receptor (GPCR) Gpr1, and secondary messenger cAMP. Other nutrients, including nitrogen, phosphate and sulfate, activate PKA in accordingly-starved cells through nutrient transceptors, but apparently without cAMP signaling. We have now used an optimized EPAC-based fluorescence resonance energy transfer (FRET) sensor to precisely monitor in vivo cAMP levels after nutrient addition. We show that GPCR-mediated glucose activation of PKA is correlated with a rapid transient increase in the cAMP level in vivo, whereas nutrient transceptor-mediated activation by nitrogen, phosphate or sulfate, is not associated with any significant increase in cAMP in vivo. We also demonstrate direct physical interaction between the Gap1 amino acid transceptor and the catalytic subunits of PKA, Tpk1, 2 and 3. In addition, we reveal a conserved consensus motif in the nutrient transceptors that is also present in Bcy1, the regulatory subunit of PKA. This suggests that nutrient transceptor activation of PKA may be mediated by direct release of bound PKA catalytic subunits, triggered by the conformational changes occurring during transport of the substrate by the transceptor. Our results support a model in which nutrient transceptors are evolutionary ancestors of GPCRs, employing a more primitive direct signaling mechanism compared to the indirect cAMP second-messenger signaling mechanism used by GPCRs for activation of PKA.
Collapse
Affiliation(s)
- Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven-Heverlee, Flanders, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
- These authors made an equal contribution to this work
| | - Liesbeth Demuyser
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven-Heverlee, Flanders, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
- These authors made an equal contribution to this work
| | - Zhiqiang Zhang
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven-Heverlee, Flanders, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Ines Cottignie
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven-Heverlee, Flanders, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Johan M. Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven-Heverlee, Flanders, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| |
Collapse
|
12
|
Miyasaka M, Mioka T, Kishimoto T, Itoh E, Tanaka K. A complex genetic interaction implicates that phospholipid asymmetry and phosphate homeostasis regulate Golgi functions. PLoS One 2020; 15:e0236520. [PMID: 32730286 PMCID: PMC7392219 DOI: 10.1371/journal.pone.0236520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/07/2020] [Indexed: 11/24/2022] Open
Abstract
In eukaryotic cells, phospholipid flippases translocate phospholipids from the exoplasmic to the cytoplasmic leaflet of the lipid bilayer. Budding yeast contains five flippases, of which Cdc50p-Drs2p and Neo1p are primarily involved in membrane trafficking in endosomes and Golgi membranes. The ANY1/CFS1 gene was identified as a suppressor of growth defects in the neo1Δ and cdc50Δ mutants. Cfs1p is a membrane protein of the PQ-loop family and is localized to endosomal/Golgi membranes, but its relationship to phospholipid asymmetry remains unknown. The neo1Δ cfs1Δ mutant appears to function normally in membrane trafficking but may function abnormally in the regulation of phospholipid asymmetry. To identify a gene that is functionally relevant to NEO1 and CFS1, we isolated a mutation that is synthetically lethal with neo1Δ cfs1Δ and identified ERD1. Erd1p is a Golgi membrane protein that is involved in the transport of phosphate (Pi) from the Golgi lumen to the cytoplasm. The Neo1p-depleted cfs1Δ erd1Δ mutant accumulated plasma membrane proteins in the Golgi, perhaps due to a lack of phosphatidylinositol 4-phosphate. The Neo1p-depleted cfs1Δ erd1Δ mutant also exhibited abnormal structure of the endoplasmic reticulum (ER) and induced an unfolded protein response, likely due to defects in the retrieval pathway from the cis-Golgi region to the ER. Genetic analyses suggest that accumulation of Pi in the Golgi lumen is responsible for defects in Golgi functions in the Neo1p-depleted cfs1Δ erd1Δ mutant. Thus, the luminal ionic environment is functionally relevant to phospholipid asymmetry. Our results suggest that flippase-mediated phospholipid redistribution and luminal Pi concentration coordinately regulate Golgi membrane functions.
Collapse
Affiliation(s)
- Mamoru Miyasaka
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Hokkaido, Japan
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido, Japan
| | - Tetsuo Mioka
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Hokkaido, Japan
| | - Takuma Kishimoto
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Hokkaido, Japan
| | - Eriko Itoh
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Hokkaido, Japan
| | - Kazuma Tanaka
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Hokkaido, Japan
- * E-mail:
| |
Collapse
|
13
|
Austin S, Mayer A. Phosphate Homeostasis - A Vital Metabolic Equilibrium Maintained Through the INPHORS Signaling Pathway. Front Microbiol 2020; 11:1367. [PMID: 32765429 PMCID: PMC7381174 DOI: 10.3389/fmicb.2020.01367] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Cells face major changes in demand for and supply of inorganic phosphate (Pi). Pi is often a limiting nutrient in the environment, particularly for plants and microorganisms. At the same time, the need for phosphate varies, establishing conflicts of goals. Cells experience strong peaks of Pi demand, e.g., during the S-phase, when DNA, a highly abundant and phosphate-rich compound, is duplicated. While cells must satisfy these Pi demands, they must safeguard themselves against an excess of Pi in the cytosol. This is necessary because Pi is a product of all nucleotide-hydrolyzing reactions. An accumulation of Pi shifts the equilibria of these reactions and reduces the free energy that they can provide to drive endergonic metabolic reactions. Thus, while Pi starvation may simply retard growth and division, an elevated cytosolic Pi concentration is potentially dangerous for cells because it might stall metabolism. Accordingly, the consequences of perturbed cellular Pi homeostasis are severe. In eukaryotes, they range from lethality in microorganisms such as yeast (Sethuraman et al., 2001; Hürlimann, 2009), severe growth retardation and dwarfism in plants (Puga et al., 2014; Liu et al., 2015; Wild et al., 2016) to neurodegeneration or renal Fanconi syndrome in humans (Legati et al., 2015; Ansermet et al., 2017). Intracellular Pi homeostasis is thus not only a fundamental topic of cell biology but also of growing interest for medicine and agriculture.
Collapse
Affiliation(s)
- Sisley Austin
- Département de Biochimie, Université de Lausanne, Lausanne, Switzerland
| | - Andreas Mayer
- Département de Biochimie, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Eide DJ. Transcription factors and transporters in zinc homeostasis: lessons learned from fungi. Crit Rev Biochem Mol Biol 2020; 55:88-110. [PMID: 32192376 DOI: 10.1080/10409238.2020.1742092] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Zinc is an essential nutrient for all organisms because this metal serves as a critical structural or catalytic cofactor for many proteins. These zinc-dependent proteins are abundant in the cytosol as well as within organelles of eukaryotic cells such as the nucleus, mitochondria, endoplasmic reticulum, Golgi, and storage compartments such as the fungal vacuole. Therefore, cells need zinc transporters so that they can efficiently take up the metal and move it around within cells. In addition, because zinc levels in the environment can vary drastically, the activity of many of these transporters and other components of zinc homeostasis is regulated at the level of transcription by zinc-responsive transcription factors. Mechanisms of post-transcriptional control are also important for zinc homeostasis. In this review, the focus will be on our current knowledge of zinc transporters and their regulation by zinc-responsive transcription factors and other mechanisms in fungi because these organisms have served as useful paradigms of zinc homeostasis in all organisms. With this foundation, extension to other organisms will be made where warranted.
Collapse
Affiliation(s)
- David J Eide
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
15
|
Gallagher JE, Ser SL, Ayers MC, Nassif C, Pupo A. The Polymorphic PolyQ Tail Protein of the Mediator Complex, Med15, Regulates the Variable Response to Diverse Stresses. Int J Mol Sci 2020; 21:ijms21051894. [PMID: 32164312 PMCID: PMC7094212 DOI: 10.3390/ijms21051894] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 01/01/2023] Open
Abstract
The Mediator is composed of multiple subunits conserved from yeast to humans and plays a central role in transcription. The tail components are not required for basal transcription but are required for responses to different stresses. While some stresses are familiar, such as heat, desiccation, and starvation, others are exotic, yet yeast can elicit a successful stress response. 4-Methylcyclohexane methanol (MCHM) is a hydrotrope that induces growth arrest in yeast. We found that a naturally occurring variation in the Med15 allele, a component of the Mediator tail, altered the stress response to many chemicals in addition to MCHM. Med15 contains two polyglutamine repeats (polyQ) of variable lengths that change the gene expression of diverse pathways. The Med15 protein existed in multiple isoforms and its stability was dependent on Ydj1, a protein chaperone. The protein level of Med15 with longer polyQ tracts was lower and turned over faster than the allele with shorter polyQ repeats. MCHM sensitivity via variation of Med15 was regulated by Snf1 in a Myc-tag-dependent manner. Tagging Med15 with Myc altered its function in response to stress. Genetic variation in transcriptional regulators magnified genetic differences in response to environmental changes. These polymorphic control genes were master variators.
Collapse
|
16
|
Identification of the Genetic Requirements for Zinc Tolerance and Toxicity in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2020; 10:479-488. [PMID: 31836620 PMCID: PMC7003084 DOI: 10.1534/g3.119.400933] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Zinc is essential for almost all living organisms, since it serves as a crucial cofactor for transcription factors and enzymes. However, it is toxic to cell growth when present in excess. The present work aims to investigate the toxicity mechanisms induced by zinc stress in yeast cells. To this end, 108 yeast single-gene deletion mutants were identified sensitive to 6 mM ZnCl2 through a genome-wide screen. These genes were predominantly related to the biological processes of vacuolar acidification and transport, polyphosphate metabolic process, cytosolic transport, the process utilizing autophagic mechanism. A result from the measurement of intracellular zinc content showed that 64 mutants accumulated higher intracellular zinc under zinc stress than the wild-type cells. We further measured the intracellular ROS (reactive oxygen species) levels of 108 zinc-sensitive mutants treated with 3 mM ZnCl2. We showed that the intracellular ROS levels in 51 mutants were increased by high zinc stress, suggesting their possible involvement in regulating ROS homeostasis in response to high zinc. The results also revealed that excess zinc could generate oxidative damage and then activate the expression of several antioxidant defenses genes. Taken together, the data obtained indicated that excess zinc toxicity might be mainly due to the high intracellular zinc levels and ROS levels induced by zinc stress in yeast cells. Our current findings would provide a basis to understand the molecular mechanisms of zinc toxicity in yeast cells.
Collapse
|
17
|
Whiteside MD, Werner GDA, Caldas VEA, Van't Padje A, Dupin SE, Elbers B, Bakker M, Wyatt GAK, Klein M, Hink MA, Postma M, Vaitla B, Noë R, Shimizu TS, West SA, Kiers ET. Mycorrhizal Fungi Respond to Resource Inequality by Moving Phosphorus from Rich to Poor Patches across Networks. Curr Biol 2019; 29:2043-2050.e8. [PMID: 31178314 PMCID: PMC6584331 DOI: 10.1016/j.cub.2019.04.061] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/04/2019] [Accepted: 04/23/2019] [Indexed: 01/01/2023]
Abstract
The world's ecosystems are characterized by an unequal distribution of resources [1]. Trade partnerships between organisms of different species-mutualisms-can help individuals cope with such resource inequality [2-4]. Trade allows individuals to exchange commodities they can provide at low cost for resources that are otherwise impossible or more difficult to access [5, 6]. However, as resources become increasingly patchy in time or space, it is unknown how organisms alter their trading strategies [7, 8]. Here, we show how a symbiotic fungus mediates trade with a host root in response to different levels of resource inequality across its network. We developed a quantum-dot-tracking technique to quantify phosphorus-trading strategies of arbuscular mycorrhizal fungi simultaneously exposed to rich and poor resource patches. By following fluorescent nanoparticles of different colors across fungal networks, we determined where phosphorus was hoarded, relocated, and transferred to plant hosts. We found that increasing exposure to inequality stimulated trade. Fungi responded to high resource variation by (1) increasing the total amount of phosphorus distributed to host roots, (2) decreasing allocation to storage, and (3) differentially moving resources within the network from rich to poor patches. Using single-particle tracking and high-resolution video, we show how dynamic resource movement may help the fungus capitalize on value differences across the trade network, physically moving resources to areas of high demand to gain better returns. Such translocation strategies can help symbiotic organisms cope with exposure to resource inequality.
Collapse
Affiliation(s)
- Matthew D Whiteside
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 108, 1081 HV Amsterdam, the Netherlands
| | - Gijsbert D A Werner
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK; Balliol College, University of Oxford, Oxford OX1 3BJ, UK
| | - Victor E A Caldas
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 108, 1081 HV Amsterdam, the Netherlands; AMOLF Institute, Science Park 104, 1098 XG Amsterdam, the Netherlands
| | - Anouk Van't Padje
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 108, 1081 HV Amsterdam, the Netherlands
| | - Simon E Dupin
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 108, 1081 HV Amsterdam, the Netherlands
| | - Bram Elbers
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 108, 1081 HV Amsterdam, the Netherlands
| | - Milenka Bakker
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 108, 1081 HV Amsterdam, the Netherlands
| | - Gregory A K Wyatt
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Malin Klein
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 108, 1081 HV Amsterdam, the Netherlands
| | - Mark A Hink
- Section of Molecular Cytology and van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - Marten Postma
- Section of Molecular Cytology and van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - Bapu Vaitla
- Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - Ronald Noë
- Faculté Psychologie, Université de Strasbourg, 12 Rue Goethe, 67000 Strasbourg, France
| | - Thomas S Shimizu
- AMOLF Institute, Science Park 104, 1098 XG Amsterdam, the Netherlands
| | - Stuart A West
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - E Toby Kiers
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 108, 1081 HV Amsterdam, the Netherlands.
| |
Collapse
|
18
|
Abstract
Phosphorous is important for life but often limiting for plants. The symbiotic pathway of phosphate uptake via arbuscular mycorrhizal fungi (AMF) is evolutionarily ancient and today occurs in natural and agricultural ecosystems alike. Plants capable of this symbiosis can obtain up to all of the phosphate from symbiotic fungi, and this offers potential means to develop crops less dependent on unsustainable P fertilizers. Here, we review the mechanisms and insights gleaned from the fine-tuned signal exchanges that orchestrate the intimate mutualistic symbiosis between plants and AMF. As the currency of trade, nutrients have signaling functions beyond being the nutritional goal of mutualism. We propose that such signaling roles and metabolic reprogramming may represent commitments for a mutualistic symbiosis that act across the stages of symbiosis development.
Collapse
Affiliation(s)
- Chai Hao Chiu
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Uta Paszkowski
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
19
|
Xu H, Yang D, Jiang D, Chen HY. Phosphate Assay Kit in One Cell for Electrochemical Detection of Intracellular Phosphate Ions at Single Cells. Front Chem 2019; 7:360. [PMID: 31179270 PMCID: PMC6542946 DOI: 10.3389/fchem.2019.00360] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/01/2019] [Indexed: 11/21/2022] Open
Abstract
In this paper, phosphate assay kit in one cell is realized for the electrochemical detection of intracellular phosphate ions at single cells. The components of the phosphate assay kit, including maltose phosphorylase, maltose, mutarotase, and glucose oxidase, are electrochemically injected into a living cell through a nanometer-sized capillary with the ring electrode at the tip. These components react with phosphate ions inside the cell to generate hydrogen peroxide that is electrochemically oxidized at the ring electrode for the qualification of intracellular phosphate ions. An average 1.7 nA charge was collected from eight individual cells, suggesting an intracellular phosphate concentration of 2.1 mM. The establishment in the electrochemical measurement of phosphate ions provides a special strategy to monitor the fluctuation of intracellular phosphate at single cells, which is significant for the future investigation of phosphate signal transduction pathway.
Collapse
Affiliation(s)
- Haiyan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Dandan Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
20
|
Zhang Y, Hu L, Yu D, Xu K, Zhang J, Li X, Wang P, Chen G, Liu Z, Peng C, Li C, Guo T. Integrative Analysis of the Wheat PHT1 Gene Family Reveals A Novel Member Involved in Arbuscular Mycorrhizal Phosphate Transport and Immunity. Cells 2019; 8:E490. [PMID: 31121904 PMCID: PMC6562588 DOI: 10.3390/cells8050490] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 11/16/2022] Open
Abstract
Phosphorus (P) deficiency is one of the main growth-limiting factors for plants. However, arbuscular mycorrhizal (AM) symbiosis can significantly promote P uptake. Generally, PHT1 transporters play key roles in plants' P uptake, and thus, PHT1 genes have been investigated in some plants, but the regulation and functions of these genes in wheat (TaPHT1) during AM symbiosis have not been studied in depth. Therefore, a comprehensive analysis of TaPHT1 genes was performed, including sequence, phylogeny, cis-elements, expression, subcellular localization and functions, to elucidate their roles in AM-associated phosphate transport and immunity. In total, 35 TaPHT1s were identified in the latest high-quality bread wheat genome, 34 of which were unevenly distributed on 13 chromosomes, and divided into five groups. Sequence analysis indicated that there are 11 types of motif architectures and five types of exon-intron structures in the TaPHT1 family. Duplication mode analysis indicated that the TaPHT1 family has expanded mainly through segmental and tandem duplication events, and that all duplicated gene pairs have been under purifying selection. Transcription analysis of the 35 TaPHT1s revealed that not only known the mycorrhizal-specific genes TaPht-myc, TaPT15-4B (TaPT11) and TaPT19-4D (TaPT10), but also four novel mycorrhizal-specific/inducible genes (TaPT3-2D, TaPT11-4A, TaPT29-6A, and TaPT31-7A) are highly up-regulated in AM wheat roots. Furthermore, the mycorrhizal-specific/inducible genes are significantly induced in wheat roots at different stages of infection by colonizing fungi. Transient Agrobacterium tumefaciens-mediated transformation expression in onion epidermal cells showed that TaPT29-6A is a membrane-localized protein. In contrast to other AM-specific/inducible PHT1 genes, TaPT29-6A is apparently required for the symbiotic and direct Pi pathway. TaPT29-6A-silenced lines exhibited reduced levels of AM fungal colonization and arbuscules, but increased susceptibility to biotrophic, hemi-biotrophic and necrotrophic pathogens. In conclusion, TaPT29-6A was not only essential for the AM symbiosis, but also played vital roles in immunity.
Collapse
Affiliation(s)
- Yi Zhang
- The Collaborative Innovation Center of Henan Food Crops, Agronomy College, Henan Agricultural University, Zhengzhou 450002, China.
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China.
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou Normal University, Zhoukou 466001, China.
| | - Lizong Hu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China.
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou Normal University, Zhoukou 466001, China.
| | - Deshui Yu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China.
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou Normal University, Zhoukou 466001, China.
| | - Kedong Xu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China.
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou Normal University, Zhoukou 466001, China.
| | - Ju Zhang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China.
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou Normal University, Zhoukou 466001, China.
| | - Xiaoli Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China.
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou Normal University, Zhoukou 466001, China.
| | - Pengfei Wang
- The Collaborative Innovation Center of Henan Food Crops, Agronomy College, Henan Agricultural University, Zhengzhou 450002, China.
| | - Guo Chen
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China.
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou Normal University, Zhoukou 466001, China.
| | - Zhihui Liu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China.
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou Normal University, Zhoukou 466001, China.
| | - Chunfeng Peng
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China.
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou Normal University, Zhoukou 466001, China.
| | - Chengwei Li
- The Collaborative Innovation Center of Henan Food Crops, Agronomy College, Henan Agricultural University, Zhengzhou 450002, China.
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China.
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou Normal University, Zhoukou 466001, China.
- Henan Engineering Research Center of Grain Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Tiancai Guo
- The Collaborative Innovation Center of Henan Food Crops, Agronomy College, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
21
|
Chia SZ, Lai YW, Yagoub D, Lev S, Hamey JJ, Pang CNI, Desmarini D, Chen Z, Djordjevic JT, Erce MA, Hart-Smith G, Wilkins MR. Knockout of the Hmt1p Arginine Methyltransferase in Saccharomyces cerevisiae Leads to the Dysregulation of Phosphate-associated Genes and Processes. Mol Cell Proteomics 2018; 17:2462-2479. [PMID: 30206180 PMCID: PMC6283299 DOI: 10.1074/mcp.ra117.000214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/14/2018] [Indexed: 11/06/2022] Open
Abstract
Hmt1p is the predominant arginine methyltransferase in Saccharomyces cerevisiae Its substrate proteins are involved in transcription, transcriptional regulation, nucleocytoplasmic transport and RNA splicing. Hmt1p-catalyzed methylation can also modulate protein-protein interactions. Hmt1p is conserved from unicellular eukaryotes through to mammals where its ortholog, PRMT1, is lethal upon knockout. In yeast, however, the effect of knockout on the transcriptome and proteome has not been described. Transcriptome analysis revealed downregulation of phosphate-responsive genes in hmt1Δ, including acid phosphatases PHO5, PHO11, and PHO12, phosphate transporters PHO84 and PHO89 and the vacuolar transporter chaperone VTC3 Analysis of the hmt1Δ proteome revealed decreased abundance of phosphate-associated proteins including phosphate transporter Pho84p, vacuolar alkaline phosphatase Pho8p, acid phosphatase Pho3p and subunits of the vacuolar transporter chaperone complex Vtc1p, Vtc3p and Vtc4p. Consistent with this, phosphate homeostasis was dysregulated in hmt1Δ cells, showing decreased extracellular phosphatase levels and decreased total Pi in phosphate-depleted medium. In vitro, we showed that transcription factor Pho4p can be methylated at Arg-241, which could explain phosphate dysregulation in hmt1Δ if interplay exists with phosphorylation at Ser-242 or Ser-243, or if Arg-241 methylation affects the capacity of Pho4p to homodimerize or interact with Pho2p. However, the Arg-241 methylation site was not validated in vivo and the localization of a Pho4p-GFP fusion in hmt1Δ was not different from wild type. To our knowledge, this is the first study to reveal an association between Hmt1p and phosphate homeostasis and one which suggests a regulatory link between S-adenosyl methionine and intracellular phosphate.
Collapse
Affiliation(s)
- Samantha Z Chia
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yu-Wen Lai
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Daniel Yagoub
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sophie Lev
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute and Sydney Medical School, University of Sydney at Westmead Hospital, Westmead, New South Wales, Australia
| | - Joshua J Hamey
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chi Nam Ignatius Pang
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Desmarini Desmarini
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute and Sydney Medical School, University of Sydney at Westmead Hospital, Westmead, New South Wales, Australia
| | - Zhiliang Chen
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Julianne T Djordjevic
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute and Sydney Medical School, University of Sydney at Westmead Hospital, Westmead, New South Wales, Australia
| | - Melissa A Erce
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Gene Hart-Smith
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Marc R Wilkins
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
22
|
Karginov AV, Fokina AV, Kang HA, Kalebina TS, Sabirzyanova TA, Ter-Avanesyan MD, Agaphonov MO. Dissection of differential vanadate sensitivity in two Ogataea species links protein glycosylation and phosphate transport regulation. Sci Rep 2018; 8:16428. [PMID: 30401924 PMCID: PMC6219546 DOI: 10.1038/s41598-018-34888-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/24/2018] [Indexed: 11/08/2022] Open
Abstract
The closely related yeasts Ogataea polymorpha and O. parapolymorpha differ drastically from each other by sensitivity to the toxic phosphate analog vanadate. Search for genes underlying this difference revealed two genes, one designated as ABV1 (Alcian Blue staining, Vanadate resistance), which encodes a homologue of Saccharomyces cerevisiae Mnn4 responsible for attachment of mannosylphosphate to glycoside chains of secretory proteins, and the other designated as its S. cerevisiae homologue PHO87, encoding the plasma membrane low affinity phosphate sensor/transporter. The effect of Pho87 on vanadate resistance was bidirectional, since it decreased the resistance on phosphate-depleted medium, but was required for pronounced protection against vanadate by external phosphate. This highlights the dual function of this protein as a low affinity phosphate transporter and an external phosphate sensor. Involvement of Pho87 in phosphate sensing was confirmed by its effects on regulation of the promoter of the PHO84 gene, encoding a high affinity phosphate transporter. The effect of Abv1 was also complex, since it influenced Pho87 level and enhanced repression of the PHO84 promoter via a Pho87-independent pathway. Role of the identified genes in the difference in vanadate resistance between O. polymorpha and O. parapolymorpha is discussed.
Collapse
Affiliation(s)
- Azamat V Karginov
- Bach Institute of Biochemistry, Research Center of Biotechnology RAS, Moscow, Russian Federation
| | - Anastasia V Fokina
- Bach Institute of Biochemistry, Research Center of Biotechnology RAS, Moscow, Russian Federation
| | - Hyun Ah Kang
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Tatyana S Kalebina
- Department of Molecular Biology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Tatyana A Sabirzyanova
- Department of Molecular Biology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Michael D Ter-Avanesyan
- Bach Institute of Biochemistry, Research Center of Biotechnology RAS, Moscow, Russian Federation
| | - Michael O Agaphonov
- Bach Institute of Biochemistry, Research Center of Biotechnology RAS, Moscow, Russian Federation.
| |
Collapse
|
23
|
Guo J, Wilken S, Jimenez V, Choi CJ, Ansong C, Dannebaum R, Sudek L, Milner DS, Bachy C, Reistetter EN, Elrod VA, Klimov D, Purvine SO, Wei CL, Kunde-Ramamoorthy G, Richards TA, Goodenough U, Smith RD, Callister SJ, Worden AZ. Specialized proteomic responses and an ancient photoprotection mechanism sustain marine green algal growth during phosphate limitation. Nat Microbiol 2018; 3:781-790. [PMID: 29946165 DOI: 10.1038/s41564-018-0178-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 05/16/2018] [Indexed: 01/05/2023]
Abstract
Marine algae perform approximately half of global carbon fixation, but their growth is often limited by the availability of phosphate or other nutrients1,2. As oceans warm, the area of phosphate-limited surface waters is predicted to increase, resulting in ocean desertification3,4. Understanding the responses of key eukaryotic phytoplankton to nutrient limitation is therefore critical5,6. We used advanced photo-bioreactors to investigate how the widespread marine green alga Micromonas commoda grows under transitions from replete nutrients to chronic phosphate limitation and subsequent relief, analysing photosystem changes and broad cellular responses using proteomics, transcriptomics and biophysical measurements. We find that physiological and protein expression responses previously attributed to stress are critical to supporting stable exponential growth when phosphate is limiting. Unexpectedly, the abundance of most proteins involved in light harvesting does not change, but an ancient light-harvesting-related protein, LHCSR, is induced and dissipates damaging excess absorbed light as heat throughout phosphate limitation. Concurrently, a suite of uncharacterized proteins with narrow phylogenetic distributions increase multifold. Notably, of the proteins that exhibit significant changes, 70% are not differentially expressed at the mRNA transcript level, highlighting the importance of post-transcriptional processes in microbial eukaryotes. Nevertheless, transcript-protein pairs with concordant changes were identified that will enable more robust interpretation of eukaryotic phytoplankton responses in the field from metatranscriptomic studies. Our results show that P-limited Micromonas responds quickly to a fresh pulse of phosphate by rapidly increasing replication, and that the protein network associated with this ability is composed of both conserved and phylogenetically recent proteome systems that promote dynamic phosphate homeostasis. That an ancient mechanism for mitigating light stress is central to sustaining growth during extended phosphate limitation highlights the possibility of interactive effects arising from combined stressors under ocean change, which could reduce the efficacy of algal strategies for optimizing marine photosynthesis.
Collapse
Affiliation(s)
- Jian Guo
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Susanne Wilken
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA.,Department of Freshwater and Marine Ecology, University of Amsterdam, Amsterdam, the Netherlands
| | - Valeria Jimenez
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA.,Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Chang Jae Choi
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Charles Ansong
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Richard Dannebaum
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA.,Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, CA, USA
| | - Lisa Sudek
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | | | - Charles Bachy
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | | | | | - Denis Klimov
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | | | - Chia-Lin Wei
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, CA, USA.,The Jackson Laboratory, Farmington, CT, USA
| | - Govindarajan Kunde-Ramamoorthy
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, CA, USA.,The Jackson Laboratory, Farmington, CT, USA
| | | | | | | | | | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA. .,Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
24
|
Pontes MH, Groisman EA. Protein synthesis controls phosphate homeostasis. Genes Dev 2018; 32:79-92. [PMID: 29437726 PMCID: PMC5828397 DOI: 10.1101/gad.309245.117] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/27/2017] [Indexed: 12/22/2022]
Abstract
In this study, Pontes et al. show that impaired protein synthesis alone triggers a Pi starvation response even when Pi is plentiful in the extracellular milieu in yeast and bacteria. Their findings identify a regulatory connection between protein synthesis and Pi homeostasis that is widespread in nature. Phosphorus is an essential element assimilated largely as orthophosphate (Pi). Cells respond to Pi starvation by importing Pi from their surroundings. We now report that impaired protein synthesis alone triggers a Pi starvation response even when Pi is plentiful in the extracellular milieu. In the bacterium Salmonella enterica serovar Typhimurium, this response entails phosphorylation of the regulatory protein PhoB and transcription of PhoB-dependent Pi transporter genes and is eliminated upon stimulation of adenosine triphosphate (ATP) hydrolysis. When protein synthesis is impaired due to low cytoplasmic magnesium (Mg2+), Salmonella triggers the Pi starvation response because ribosomes are destabilized, which reduces ATP consumption and thus free cytoplasmic Pi. This response is transient because low cytoplasmic Mg2+ promotes an uptake in Mg2+ and a decrease in ATP levels, which stabilizes ribosomes, resulting in ATP consumption and Pi increase, thus ending the response. Notably, pharmacological inhibition of protein synthesis also elicited a Pi starvation response in the bacterium Escherichia coli and the yeast Saccharomyces cerevisiae. Our findings identify a regulatory connection between protein synthesis and Pi homeostasis that is widespread in nature.
Collapse
Affiliation(s)
- Mauricio H Pontes
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, USA.,Yale Microbial Sciences Institute, West Haven, Connecticut 06516, USA
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, USA.,Yale Microbial Sciences Institute, West Haven, Connecticut 06516, USA
| |
Collapse
|
25
|
Gurvich Y, Leshkowitz D, Barkai N. Dual role of starvation signaling in promoting growth and recovery. PLoS Biol 2017; 15:e2002039. [PMID: 29236696 PMCID: PMC5728490 DOI: 10.1371/journal.pbio.2002039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 11/01/2017] [Indexed: 11/19/2022] Open
Abstract
Growing cells are subject to cycles of nutrient depletion and repletion. A shortage of nutrients activates a starvation program that promotes growth in limiting conditions. To examine whether nutrient-deprived cells prepare also for their subsequent recovery, we followed the transcription program activated in budding yeast transferred to low-phosphate media and defined its contribution to cell growth during phosphate limitation and upon recovery. An initial transcription wave was induced by moderate phosphate depletion that did not affect cell growth. A second transcription wave followed when phosphate became growth limiting. The starvation program contributed to growth only in the second, growth-limiting phase. Notably, the early response, activated at moderate depletion, promoted recovery from starvation by increasing phosphate influx upon transfer to rich medium. Our results suggest that cells subject to nutrient depletion prepare not only for growth in the limiting conditions but also for their predicted recovery once nutrients are replenished.
Collapse
Affiliation(s)
- Yonat Gurvich
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Dena Leshkowitz
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
26
|
H + and Pi Byproducts of Glycosylation Affect Ca 2+ Homeostasis and Are Retrieved from the Golgi Complex by Homologs of TMEM165 and XPR1. G3-GENES GENOMES GENETICS 2017; 7:3913-3924. [PMID: 29042410 PMCID: PMC5714488 DOI: 10.1534/g3.117.300339] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glycosylation reactions in the Golgi complex and the endoplasmic reticulum utilize nucleotide sugars as donors and produce inorganic phosphate (Pi) and acid (H+) as byproducts. Here we show that homologs of mammalian XPR1 and TMEM165 (termed Erd1 and Gdt1) recycle luminal Pi and exchange luminal H+ for cytoplasmic Ca2+, respectively, thereby promoting growth of yeast cells in low Pi and low Ca2+ environments. As expected for reversible H+/Ca2+ exchangers, Gdt1 also promoted growth in high Ca2+ environments when the Golgi-localized V-ATPase was operational but had the opposite effect when the V-ATPase was eliminated. Gdt1 activities were negatively regulated by calcineurin signaling and by Erd1, which recycled the Pi byproduct of glycosylation reactions and prevented the loss of this nutrient to the environment via exocytosis. Thus, Erd1 transports Pi in the opposite direction from XPR1 and other EXS family proteins and facilitates byproduct removal from the Golgi complex together with Gdt1.
Collapse
|
27
|
Two Distinct Regulatory Mechanisms of Transcriptional Initiation in Response to Nutrient Signaling. Genetics 2017; 208:191-205. [PMID: 29141908 DOI: 10.1534/genetics.117.300518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/26/2017] [Indexed: 12/19/2022] Open
Abstract
SAGA (Spt-Ada-Gcn5-Acetyltransferase) and TFIID (transcription factor IID) have been previously shown to facilitate the formation of the PIC (pre-initiation complex) at the promoters of two distinct sets of genes. Here, we demonstrate that TFIID and SAGA differentially participate in the stimulation of PIC formation (and hence transcriptional initiation) at the promoter of PHO84, a gene for the high-affinity inorganic phosphate (Pi) transporter for crucial cellular functions, in response to nutrient signaling. We show that transcriptional initiation of PHO84 occurs predominantly in a TFIID-dependent manner in the absence of Pi in the growth medium. Such TFIID dependency is mediated via the NuA4 (nucleosome acetyltransferase of H4) histone acetyltransferase (HAT). Intriguingly, transcriptional initiation of PHO84 also occurs in the presence of Pi in the growth medium, predominantly via the SAGA complex, but independently of NuA4 HAT. Thus, Pi in the growth medium switches transcriptional initiation of PHO84 from NuA4-TFIID to SAGA dependency. Further, we find that both NuA4-TFIID- and SAGA-dependent transcriptional initiations of PHO84 are facilitated by the 19S proteasome subcomplex or regulatory particle (RP) via enhanced recruitment of the coactivators SAGA and NuA4 HAT, which promote TFIID-independent and -dependent PIC formation for transcriptional initiation, respectively. NuA4 HAT does not regulate activator binding to PHO84, but rather facilitates PIC formation for transcriptional initiation in the absence of Pi in the growth medium. On the other hand, SAGA promotes activator recruitment to PHO84 for transcriptional initiation in the growth medium containing Pi. Collectively, our results demonstrate two distinct stimulatory pathways for PIC formation (and hence transcriptional initiation) at PHO84 by TFIID, SAGA, NuA4, and 19S RP in the presence and absence of an essential nutrient, Pi, in the growth media, thus providing new regulatory mechanisms of transcriptional initiation in response to nutrient signaling.
Collapse
|
28
|
Smukowski Heil CS, DeSevo CG, Pai DA, Tucker CM, Hoang ML, Dunham MJ. Loss of Heterozygosity Drives Adaptation in Hybrid Yeast. Mol Biol Evol 2017; 34:1596-1612. [PMID: 28369610 PMCID: PMC5455960 DOI: 10.1093/molbev/msx098] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hybridization is often considered maladaptive, but sometimes hybrids can invade new ecological niches and adapt to novel or stressful environments better than their parents. The genomic changes that occur following hybridization that facilitate genome resolution and/or adaptation are not well understood. Here, we examine hybrid genome evolution using experimental evolution of de novo interspecific hybrid yeast Saccharomyces cerevisiae × Saccharomyces uvarum and their parentals. We evolved these strains in nutrient-limited conditions for hundreds of generations and sequenced the resulting cultures identifying numerous point mutations, copy number changes, and loss of heterozygosity (LOH) events, including species-biased amplification of nutrient transporters. We focused on a particularly interesting example, in which we saw repeated LOH at the high-affinity phosphate transporter gene PHO84 in both intra- and interspecific hybrids. Using allele replacement methods, we tested the fitness of different alleles in hybrid and S. cerevisiae strain backgrounds and found that the LOH is indeed the result of selection on one allele over the other in both S. cerevisiae and the hybrids. This is an example where hybrid genome resolution is driven by positive selection on existing heterozygosity and demonstrates that even infrequent outcrossing may have lasting impacts on adaptation.
Collapse
Affiliation(s)
| | - Christopher G DeSevo
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ
| | - Dave A Pai
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ
| | - Cheryl M Tucker
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ
| | - Margaret L Hoang
- Department of Embryology, Howard Hughes Medical Institute, Carnegie Institution, Baltimore, MD.,Department of Biology, Johns Hopkins University, Baltimore, MD
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, WA
| |
Collapse
|
29
|
Teunissen JHM, Crooijmans ME, Teunisse PPP, van Heusden GPH. Lack of 14-3-3 proteins in Saccharomyces cerevisiae results in cell-to-cell heterogeneity in the expression of Pho4-regulated genes SPL2 and PHO84. BMC Genomics 2017; 18:701. [PMID: 28877665 PMCID: PMC5588707 DOI: 10.1186/s12864-017-4105-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/31/2017] [Indexed: 01/16/2023] Open
Abstract
Background Ion homeostasis is an essential property of living organisms. The yeast Saccharomyces cerevisiae is an ideal model organism to investigate ion homeostasis at all levels. In this yeast genes involved in high-affinity phosphate uptake (PHO genes) are strongly induced during both phosphate and potassium starvation, indicating a link between phosphate and potassium homeostasis. However, the signal transduction processes involved are not completely understood. As 14-3-3 proteins are key regulators of signal transduction processes, we investigated the effect of deletion of the 14-3-3 genes BMH1 or BMH2 on gene expression during potassium starvation and focused especially on the expression of genes involved in phosphate uptake. Results Genome-wide analysis of the effect of disruption of either BMH1 or BMH2 revealed that the mRNA levels of the PHO genes PHO84 and SPL2 are greatly reduced in the mutant strains compared to the levels in wild type strains. This was especially apparent at standard potassium and phosphate concentrations. Furthermore the promoter of these genes is less active after deletion of BMH1. Microscopic and flow cytometric analysis of cells with GFP-tagged SPL2 showed that disruption of BMH1 resulted in two populations of genetically identical cells, cells expressing the protein and the majority of cells with no detectible expression. Heterogeneity was also observed for the expression of GFP under control of the PHO84 promoter. Upon deletion of PHO80 encoding a regulator of the transcription factor Pho4, the effect of the BMH1 deletion on SPL2 and PHO84 promoter was lost, suggesting that the BMH1 deletion mainly influences processes upstream of the Pho4 transcription factor. Conclusion Our data indicate that that yeast cells can be in either of two states, expressing or not expressing genes required for high-affinity phosphate uptake and that 14-3-3 proteins are involved in the process(es) that establish the activation state of the PHO regulon. Electronic supplementary material The online version of this article (10.1186/s12864-017-4105-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janneke H M Teunissen
- Institute of Biology, Leiden University, Sylviusweg 72, NL-2333BE, Leiden, the Netherlands
| | - Marjolein E Crooijmans
- Institute of Biology, Leiden University, Sylviusweg 72, NL-2333BE, Leiden, the Netherlands
| | - Pepijn P P Teunisse
- Institute of Biology, Leiden University, Sylviusweg 72, NL-2333BE, Leiden, the Netherlands
| | - G Paul H van Heusden
- Institute of Biology, Leiden University, Sylviusweg 72, NL-2333BE, Leiden, the Netherlands.
| |
Collapse
|
30
|
Phosphate is the third nutrient monitored by TOR in Candida albicans and provides a target for fungal-specific indirect TOR inhibition. Proc Natl Acad Sci U S A 2017; 114:6346-6351. [PMID: 28566496 DOI: 10.1073/pnas.1617799114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Target of Rapamycin (TOR) pathway regulates morphogenesis and responses to host cells in the fungal pathogen Candida albicans Eukaryotic Target of Rapamycin complex 1 (TORC1) induces growth and proliferation in response to nitrogen and carbon source availability. Our unbiased genetic approach seeking unknown components of TORC1 signaling in C. albicans revealed that the phosphate transporter Pho84 is required for normal TORC1 activity. We found that mutants in PHO84 are hypersensitive to rapamycin and in response to phosphate feeding, generate less phosphorylated ribosomal protein S6 (P-S6) than the WT. The small GTPase Gtr1, a component of the TORC1-activating EGO complex, links Pho84 to TORC1. Mutants in Gtr1 but not in another TORC1-activating GTPase, Rhb1, are defective in the P-S6 response to phosphate. Overexpression of Gtr1 and a constitutively active Gtr1Q67L mutant suppresses TORC1-related defects. In Saccharomyces cerevisiae pho84 mutants, constitutively active Gtr1 suppresses a TORC1 signaling defect but does not rescue rapamycin hypersensitivity. Hence, connections from phosphate homeostasis (PHO) to TORC1 may differ between C. albicans and S. cerevisiae The converse direction of signaling from TORC1 to the PHO regulon previously observed in S. cerevisiae was genetically shown in C. albicans using conditional TOR1 alleles. A small molecule inhibitor of Pho84, a Food and Drug Administration-approved drug, inhibits TORC1 signaling and potentiates the activity of the antifungals amphotericin B and micafungin. Anabolic TORC1-dependent processes require significant amounts of phosphate. Our study shows that phosphate availability is monitored and also controlled by TORC1 and that TORC1 can be indirectly targeted by inhibiting Pho84.
Collapse
|
31
|
Choi J, Rajagopal A, Xu YF, Rabinowitz JD, O’Shea EK. A systematic genetic screen for genes involved in sensing inorganic phosphate availability in Saccharomyces cerevisiae. PLoS One 2017; 12:e0176085. [PMID: 28520786 PMCID: PMC5435139 DOI: 10.1371/journal.pone.0176085] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/05/2017] [Indexed: 01/10/2023] Open
Abstract
Saccharomyces cerevisiae responds to changes in extracellular inorganic phosphate (Pi) availability by regulating the activity of the phosphate-responsive (PHO) signaling pathway, enabling cells to maintain intracellular levels of the essential nutrient Pi. Pi-limitation induces upregulation of inositol heptakisphosphate (IP7) synthesized by the inositol hexakisphosphate kinase Vip1, triggering inhibition of the Pho80/Pho85 cyclin-cyclin dependent kinase (CDK) complex by the CDK inhibitor Pho81, which upregulates the PHO regulon through the CDK target and transcription factor Pho4. To identify genes that are involved in signaling upstream of the Pho80/Pho85/Pho81 complex and how they interact with each other to regulate the PHO pathway, we performed genome-wide screens with the synthetic genetic array method. We identified more than 300 mutants with defects in signaling upstream of the Pho80/Pho85/Pho81 complex, including AAH1, which encodes an adenine deaminase that negatively regulates the PHO pathway in a Vip1-dependent manner. Furthermore, we showed that even in the absence of VIP1, the PHO pathway can be activated under prolonged periods of Pi starvation, suggesting complexity in the mechanisms by which the PHO pathway is regulated.
Collapse
Affiliation(s)
- Joonhyuk Choi
- Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, United States of America
| | - Abbhirami Rajagopal
- Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Yi-Fan Xu
- Department of Chemistry, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Joshua D. Rabinowitz
- Department of Chemistry, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Erin K. O’Shea
- Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
32
|
Rios-Anjos RM, Camandona VDL, Bleicher L, Ferreira-Junior JR. Structural and functional mapping of Rtg2p determinants involved in retrograde signaling and aging of Saccharomyces cerevisiae. PLoS One 2017; 12:e0177090. [PMID: 28472157 PMCID: PMC5417653 DOI: 10.1371/journal.pone.0177090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 04/21/2017] [Indexed: 01/27/2023] Open
Abstract
In Saccharomyces cerevisiae mitochondrial dysfunction induces retrograde signaling, a pathway of communication from mitochondria to the nucleus that promotes a metabolic remodeling to ensure sufficient biosynthetic precursors for replication. Rtg2p is a positive modulator of this pathway that is also required for cellular longevity. This protein belongs to the ASKHA superfamily, and contains a putative N-terminal ATP-binding domain, but there is no detailed structural and functional map of the residues in this domain that accounts for their contribution to retrograde signaling and aging. Here we use Decomposition of Residue Correlation Networks and site-directed mutagenesis to identify Rtg2p structural determinants of retrograde signaling and longevity. We found that most of the residues involved in retrograde signaling surround the ATP-binding loops, and that Rtg2p N-terminus is divided in three regions whose mutants have different aging phenotypes. We also identified E137, D158 and S163 as possible residues involved in stabilization of ATP at the active site. The mutants shown here may be used to map other Rtg2p activities that crosstalk to other pathways of the cell related to genomic stability and aging.
Collapse
Affiliation(s)
| | | | - Lucas Bleicher
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | |
Collapse
|
33
|
Schothorst J, Zeebroeck GV, Thevelein JM. Identification of Ftr1 and Zrt1 as iron and zinc micronutrient transceptors for activation of the PKA pathway in Saccharomyces cerevisiae. MICROBIAL CELL 2017; 4:74-89. [PMID: 28357393 PMCID: PMC5349193 DOI: 10.15698/mic2017.03.561] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Multiple types of nutrient transceptors, membrane proteins that combine a
transporter and receptor function, have now been established in a variety of
organisms. However, so far all established transceptors utilize one of the
macronutrients, glucose, amino acids, ammonium, nitrate, phosphate or sulfate,
as substrate. This is also true for the Saccharomyces
cerevisiae transceptors mediating activation of the PKA pathway
upon re-addition of a macronutrient to glucose-repressed cells starved for that
nutrient, re-establishing a fermentable growth medium. We now show that the
yeast high-affinity iron transporter Ftr1 and high-affinity zinc transporter
Zrt1 function as transceptors for the micronutrients iron and zinc.
We show that replenishment of iron to iron-starved cells or zinc to
zinc-starved cells triggers within 1-2 minutes a rapid surge in trehalase
activity, a well-established PKA target. The activation with iron is dependent
on Ftr1 and with zinc on Zrt1, and we show that it is independent of
intracellular iron and zinc levels. Similar to the transceptors for
macronutrients, Ftr1 and Zrt1 are strongly induced upon iron and zinc
starvation, respectively, and they are rapidly downregulated by
substrate-induced endocytosis. Our results suggest that transceptor-mediated
signaling to the PKA pathway may occur in all cases where glucose-repressed
yeast cells have been starved first for an essential nutrient, causing arrest of
growth and low activity of the PKA pathway, and subsequently replenished with
the lacking nutrient to re-establish a fermentable growth medium. The broadness
of the phenomenon also makes it likely that nutrient transceptors use a common
mechanism for signaling to the PKA pathway.
Collapse
Affiliation(s)
- Joep Schothorst
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Belgium. ; Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Griet V Zeebroeck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Belgium. ; Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Belgium. ; Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| |
Collapse
|
34
|
de Vries RP, Riley R, Wiebenga A, Aguilar-Osorio G, Amillis S, Uchima CA, Anderluh G, Asadollahi M, Askin M, Barry K, Battaglia E, Bayram Ö, Benocci T, Braus-Stromeyer SA, Caldana C, Cánovas D, Cerqueira GC, Chen F, Chen W, Choi C, Clum A, dos Santos RAC, Damásio ARDL, Diallinas G, Emri T, Fekete E, Flipphi M, Freyberg S, Gallo A, Gournas C, Habgood R, Hainaut M, Harispe ML, Henrissat B, Hildén KS, Hope R, Hossain A, Karabika E, Karaffa L, Karányi Z, Kraševec N, Kuo A, Kusch H, LaButti K, Lagendijk EL, Lapidus A, Levasseur A, Lindquist E, Lipzen A, Logrieco AF, MacCabe A, Mäkelä MR, Malavazi I, Melin P, Meyer V, Mielnichuk N, Miskei M, Molnár ÁP, Mulé G, Ngan CY, Orejas M, Orosz E, Ouedraogo JP, Overkamp KM, Park HS, Perrone G, Piumi F, Punt PJ, Ram AFJ, Ramón A, Rauscher S, Record E, Riaño-Pachón DM, Robert V, Röhrig J, Ruller R, Salamov A, Salih NS, Samson RA, Sándor E, Sanguinetti M, Schütze T, Sepčić K, Shelest E, Sherlock G, Sophianopoulou V, Squina FM, Sun H, Susca A, Todd RB, Tsang A, Unkles SE, van de Wiele N, van Rossen-Uffink D, Oliveira JVDC, Vesth TC, Visser J, Yu JH, Zhou M, Andersen MR, et alde Vries RP, Riley R, Wiebenga A, Aguilar-Osorio G, Amillis S, Uchima CA, Anderluh G, Asadollahi M, Askin M, Barry K, Battaglia E, Bayram Ö, Benocci T, Braus-Stromeyer SA, Caldana C, Cánovas D, Cerqueira GC, Chen F, Chen W, Choi C, Clum A, dos Santos RAC, Damásio ARDL, Diallinas G, Emri T, Fekete E, Flipphi M, Freyberg S, Gallo A, Gournas C, Habgood R, Hainaut M, Harispe ML, Henrissat B, Hildén KS, Hope R, Hossain A, Karabika E, Karaffa L, Karányi Z, Kraševec N, Kuo A, Kusch H, LaButti K, Lagendijk EL, Lapidus A, Levasseur A, Lindquist E, Lipzen A, Logrieco AF, MacCabe A, Mäkelä MR, Malavazi I, Melin P, Meyer V, Mielnichuk N, Miskei M, Molnár ÁP, Mulé G, Ngan CY, Orejas M, Orosz E, Ouedraogo JP, Overkamp KM, Park HS, Perrone G, Piumi F, Punt PJ, Ram AFJ, Ramón A, Rauscher S, Record E, Riaño-Pachón DM, Robert V, Röhrig J, Ruller R, Salamov A, Salih NS, Samson RA, Sándor E, Sanguinetti M, Schütze T, Sepčić K, Shelest E, Sherlock G, Sophianopoulou V, Squina FM, Sun H, Susca A, Todd RB, Tsang A, Unkles SE, van de Wiele N, van Rossen-Uffink D, Oliveira JVDC, Vesth TC, Visser J, Yu JH, Zhou M, Andersen MR, Archer DB, Baker SE, Benoit I, Brakhage AA, Braus GH, Fischer R, Frisvad JC, Goldman GH, Houbraken J, Oakley B, Pócsi I, Scazzocchio C, Seiboth B, vanKuyk PA, Wortman J, Dyer PS, Grigoriev IV. Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biol 2017; 18:28. [PMID: 28196534 PMCID: PMC5307856 DOI: 10.1186/s13059-017-1151-0] [Show More Authors] [Citation(s) in RCA: 331] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 01/10/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The fungal genus Aspergillus is of critical importance to humankind. Species include those with industrial applications, important pathogens of humans, animals and crops, a source of potent carcinogenic contaminants of food, and an important genetic model. The genome sequences of eight aspergilli have already been explored to investigate aspects of fungal biology, raising questions about evolution and specialization within this genus. RESULTS We have generated genome sequences for ten novel, highly diverse Aspergillus species and compared these in detail to sister and more distant genera. Comparative studies of key aspects of fungal biology, including primary and secondary metabolism, stress response, biomass degradation, and signal transduction, revealed both conservation and diversity among the species. Observed genomic differences were validated with experimental studies. This revealed several highlights, such as the potential for sex in asexual species, organic acid production genes being a key feature of black aspergilli, alternative approaches for degrading plant biomass, and indications for the genetic basis of stress response. A genome-wide phylogenetic analysis demonstrated in detail the relationship of the newly genome sequenced species with other aspergilli. CONCLUSIONS Many aspects of biological differences between fungal species cannot be explained by current knowledge obtained from genome sequences. The comparative genomics and experimental study, presented here, allows for the first time a genus-wide view of the biological diversity of the aspergilli and in many, but not all, cases linked genome differences to phenotype. Insights gained could be exploited for biotechnological and medical applications of fungi.
Collapse
Affiliation(s)
- Ronald P. de Vries
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Robert Riley
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Ad Wiebenga
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Guillermo Aguilar-Osorio
- Department of Food Science and Biotechnology, Faculty of Chemistry, National University of Mexico, Ciudad Universitaria, D.F. C.P. 04510 Mexico
| | - Sotiris Amillis
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15781 Athens, Greece
| | - Cristiane Akemi Uchima
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192 CEP 13083-970, Campinas, São Paulo Brasil
- Present address: VTT Brasil, Alameda Inajá, 123, CEP 06460-055 Barueri, São Paulo Brazil
| | - Gregor Anderluh
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Mojtaba Asadollahi
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Marion Askin
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
- Present address: CSIRO Publishing, Unipark, Building 1 Level 1, 195 Wellington Road, Clayton, VIC 3168 Australia
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Evy Battaglia
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Özgür Bayram
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, Georg August University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
- Department of Biology, Maynooth University, Maynooth, Co. Kildare Ireland
| | - Tiziano Benocci
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Susanna A. Braus-Stromeyer
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, Georg August University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Camila Caldana
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192 CEP 13083-970, Campinas, São Paulo Brasil
- Max Planck Partner Group, Brazilian Bioethanol Science and Technology Laboratory, CEP 13083-100 Campinas, Sao Paulo Brazil
| | - David Cánovas
- Department of Genetics, Faculty of Biology, University of Seville, Avda de Reina Mercedes 6, 41012 Sevilla, Spain
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU) Vienna, Vienna, Austria
| | | | - Fusheng Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Wanping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Cindy Choi
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Alicia Clum
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Renato Augusto Corrêa dos Santos
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192 CEP 13083-970, Campinas, São Paulo Brasil
| | - André Ricardo de Lima Damásio
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192 CEP 13083-970, Campinas, São Paulo Brasil
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, CEP 13083-862 Campinas, SP Brazil
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15781 Athens, Greece
| | - Tamás Emri
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Erzsébet Fekete
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Michel Flipphi
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Susanne Freyberg
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, Georg August University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Antonia Gallo
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), via Provinciale Lecce-Monteroni, 73100 Lecce, Italy
| | - Christos Gournas
- Institute of Biosciences and Applications, Microbial Molecular Genetics Laboratory, National Center for Scientific Research, Demokritos (NCSRD), Athens, Greece
- Present address: Université Libre de Bruxelles Institute of Molecular Biology and Medicine (IBMM), Brussels, Belgium
| | - Rob Habgood
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | | | - María Laura Harispe
- Institut Pasteur de Montevideo, Unidad Mixta INIA-IPMont, Mataojo 2020, CP11400 Montevideo, Uruguay
- Present address: Instituto de Profesores Artigas, Consejo de Formación en Educación, ANEP, CP 11800, Av. del Libertador 2025, Montevideo, Uruguay
| | - Bernard Henrissat
- CNRS, Aix-Marseille Université, Marseille, France
- INRA, USC 1408 AFMB, 13288 Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kristiina S. Hildén
- Department of Food and Environmental Sciences, University of Helsinki, Viikinkaari 9, Helsinki, Finland
| | - Ryan Hope
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Abeer Hossain
- Dutch DNA Biotech BV, Utrechtseweg 48, 3703AJ Zeist, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Eugenia Karabika
- School of Biology, University of St Andrews, St Andrews, Fife KY16 9TH UK
- Present Address: Department of Chemistry, University of Ioannina, Ioannina, 45110 Greece
| | - Levente Karaffa
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Zsolt Karányi
- Department of Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Nada Kraševec
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Harald Kusch
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, Georg August University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
- Department of Medical Informatics, University Medical Centre, Robert-Koch-Str.40, 37075 Göttingen, Germany
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, Göttingen, 37073 Germany
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Ellen L. Lagendijk
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Alla Lapidus
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
- Present address: Center for Algorithmic Biotechnology, St.Petersburg State University, St. Petersburg, Russia
| | - Anthony Levasseur
- INRA, Aix-Marseille Univ, BBF, Biodiversité et Biotechnologie Fongiques, Marseille, France
- Present address: Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, INSERM U1095, IHU Méditerranée Infection, Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Erika Lindquist
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Antonio F. Logrieco
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Andrew MacCabe
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Miia R. Mäkelä
- Department of Food and Environmental Sciences, University of Helsinki, Viikinkaari 9, Helsinki, Finland
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo Brazil
| | - Petter Melin
- Uppsala BioCenter, Department of Microbiology, Swedish University of Agricultural Sciences, P.O. Box 7025, 750 07 Uppsala, Sweden
- Present address: Swedish Chemicals Agency, Box 2, 172 13 Sundbyberg, Sweden
| | - Vera Meyer
- Institute of Biotechnology, Department Applied and Molecular Microbiology, Berlin University of Technology, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Natalia Mielnichuk
- Department of Genetics, Faculty of Biology, University of Seville, Avda de Reina Mercedes 6, 41012 Sevilla, Spain
- Present address: Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, CONICET, Saladillo 2468 C1440FFX, Ciudad de Buenos Aires, Argentina
| | - Márton Miskei
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- MTA-DE Momentum, Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Nagyerdei krt.98., 4032 Debrecen, Hungary
| | - Ákos P. Molnár
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Giuseppina Mulé
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Chew Yee Ngan
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Margarita Orejas
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Erzsébet Orosz
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Jean Paul Ouedraogo
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
- Present address: Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6 Canada
| | - Karin M. Overkamp
- Dutch DNA Biotech BV, Utrechtseweg 48, 3703AJ Zeist, The Netherlands
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 702-701 Republic of Korea
| | - Giancarlo Perrone
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Francois Piumi
- INRA, Aix-Marseille Univ, BBF, Biodiversité et Biotechnologie Fongiques, Marseille, France
- Present address: INRA UMR1198 Biologie du Développement et de la Reproduction - Domaine de Vilvert, Jouy en Josas, 78352 Cedex France
| | - Peter J. Punt
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
- Dutch DNA Biotech BV, Utrechtseweg 48, 3703AJ Zeist, The Netherlands
| | - Arthur F. J. Ram
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Ana Ramón
- Sección Bioquímica, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Stefan Rauscher
- Department of Microbiology, Karlsruhe Institute of Technology, Institute for Applied Biosciences, Hertzstrasse 16,, 76187 Karlsruhe, Germany
| | - Eric Record
- INRA, Aix-Marseille Univ, BBF, Biodiversité et Biotechnologie Fongiques, Marseille, France
| | - Diego Mauricio Riaño-Pachón
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192 CEP 13083-970, Campinas, São Paulo Brasil
| | - Vincent Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Julian Röhrig
- Department of Microbiology, Karlsruhe Institute of Technology, Institute for Applied Biosciences, Hertzstrasse 16,, 76187 Karlsruhe, Germany
| | - Roberto Ruller
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192 CEP 13083-970, Campinas, São Paulo Brasil
| | - Asaf Salamov
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Nadhira S. Salih
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
- Department of Biology, School of Science, University of Sulaimani, Al Sulaymaneyah, Iraq
| | - Rob A. Samson
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Erzsébet Sándor
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
| | - Manuel Sanguinetti
- Sección Bioquímica, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Tabea Schütze
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
- Present address: Department Applied and Molecular Microbiology, Institute of Biotechnology, Berlin University of Technology, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Ekaterina Shelest
- Systems Biology/Bioinformatics group, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Gavin Sherlock
- Department of Genetics, Stanford University, Stanford, CA 94305-5120 USA
| | - Vicky Sophianopoulou
- Institute of Biosciences and Applications, Microbial Molecular Genetics Laboratory, National Center for Scientific Research, Demokritos (NCSRD), Athens, Greece
| | - Fabio M. Squina
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192 CEP 13083-970, Campinas, São Paulo Brasil
| | - Hui Sun
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Antonia Susca
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Richard B. Todd
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506 USA
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6 Canada
| | - Shiela E. Unkles
- School of Biology, University of St Andrews, St Andrews, Fife KY16 9TH UK
| | - Nathalie van de Wiele
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Diana van Rossen-Uffink
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
- Present address: BaseClear B.V., Einsteinweg 5, 2333 CC Leiden, The Netherlands
| | - Juliana Velasco de Castro Oliveira
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192 CEP 13083-970, Campinas, São Paulo Brasil
| | - Tammi C. Vesth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, 2800 Kongens Lyngby, Denmark
| | - Jaap Visser
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Jae-Hyuk Yu
- Departments of Bacteriology and Genetics, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706 USA
| | - Miaomiao Zhou
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Mikael R. Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, 2800 Kongens Lyngby, Denmark
| | - David B. Archer
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Scott E. Baker
- Fungal Biotechnology Team, Pacific Northwest National Laboratory, Richland, Washington, 99352 USA
| | - Isabelle Benoit
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Present address: Centre of Functional and Structure Genomics Biology Department Concordia University, 7141 Sherbrooke St. W., Montreal, QC H4B 1R6 Canada
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI) and Institute for Microbiology, Friedrich Schiller University Jena, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, Georg August University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Reinhard Fischer
- Department of Microbiology, Karlsruhe Institute of Technology, Institute for Applied Biosciences, Hertzstrasse 16,, 76187 Karlsruhe, Germany
| | - Jens C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, 2800 Kongens Lyngby, Denmark
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café S/N, CEP 14040-903 Ribeirão Preto, São Paulo Brazil
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Berl Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045 USA
| | - István Pócsi
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Claudio Scazzocchio
- Department of Microbiology, Imperial College, London, SW7 2AZ UK
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris‐Sud, Université Paris‐Saclay, 91198 Gif‐sur‐Yvette cedex, France
| | - Bernhard Seiboth
- Research Division Biochemical Technology, Institute of Chemical Engineering, TU Wien, Gumpendorferstraße 1a, 1060 Vienna, Austria
| | - Patricia A. vanKuyk
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Jennifer Wortman
- Broad Institute, 415 Main St, Cambridge, MA 02142 USA
- Present address: Seres Therapeutics, 200 Sidney St, Cambridge, MA 02139 USA
| | - Paul S. Dyer
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| |
Collapse
|
35
|
Russo-Abrahão T, Koeller CM, Steinmann ME, Silva-Rito S, Marins-Lucena T, Alves-Bezerra M, Lima-Giarola NL, de-Paula IF, Gonzalez-Salgado A, Sigel E, Bütikofer P, Gondim KC, Heise N, Meyer-Fernandes JR. H +-dependent inorganic phosphate uptake in Trypanosoma brucei is influenced by myo-inositol transporter. J Bioenerg Biomembr 2017; 49:183-194. [PMID: 28185085 DOI: 10.1007/s10863-017-9695-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 01/22/2017] [Indexed: 10/20/2022]
Abstract
Trypanosoma brucei is an extracellular protozoan parasite that causes human African trypanosomiasis or "sleeping sickness". During the different phases of its life cycle, T. brucei depends on exogenous inorganic phosphate (Pi), but little is known about the transport of Pi in this organism. In the present study, we showed that the transport of 32Pi across the plasma membrane follows Michaelis-Menten kinetics and is modulated by pH variation, with higher activity at acidic pH. Bloodstream forms presented lower Pi transport in comparison to procyclic forms, that displayed an apparent K0.5 = 0.093 ± 0.008 mM. Additionally, FCCP (H+-ionophore), valinomycin (K+-ionophore) and SCH28080 (H+, K+-ATPase inhibitor) inhibited the Pi transport. Gene Tb11.02.3020, previously described to encode the parasite H+:myo-inositol transporter (TbHMIT), was hypothesized to be potentially involved in the H+:Pi cotransport because of its similarity with the Pho84 transporter described in S. cerevisiae and other trypanosomatids. Indeed, the RNAi mediated knockdown remarkably reduced TbHMIT gene expression, compromised cell growth and decreased Pi transport by half. In addition, Pi transport was inhibited when parasites were incubated in the presence of concentrations of myo-inositol that are above 300 μM. However, when expressed in Xenopus laevis oocytes, two-electrode voltage clamp experiments provided direct electrophysiological evidence that the protein encoded by TbHMIT is definitely a myo-inositol transporter that may be only marginally affected by the presence of Pi. These results confirmed the presence of a Pi carrier in T. brucei, similar to the H+-dependent inorganic phosphate system described in S. cerevisiae and other trypanosomatids. This transport system contributes to the acquisition of Pi and may be involved in the growth and survival of procyclic forms. In summary, this work presents the first description of a Pi transport system in T. brucei.
Collapse
Affiliation(s)
- Thais Russo-Abrahão
- Instituto de Microbiologia Professor Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - Carolina Macedo Koeller
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Michael E Steinmann
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland
| | - Stephanie Silva-Rito
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - Thaissa Marins-Lucena
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - Michele Alves-Bezerra
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Naira Ligia Lima-Giarola
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - Iron Francisco de-Paula
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Amaia Gonzalez-Salgado
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland
| | - Erwin Sigel
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland
| | - Katia Calp Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Norton Heise
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.
| | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil. .,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
36
|
Identification of the Target of the Retrograde Response that Mediates Replicative Lifespan Extension in Saccharomyces cerevisiae. Genetics 2016; 204:659-673. [PMID: 27474729 DOI: 10.1534/genetics.116.188086] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/25/2016] [Indexed: 01/13/2023] Open
Abstract
The retrograde response signals mitochondrial status to the nucleus, compensating for accumulating mitochondrial dysfunction during Saccharomyces cerevisiae aging and extending replicative lifespan. The histone acetylase Gcn5 is required for activation of nuclear genes and lifespan extension in the retrograde response. It is part of the transcriptional coactivators SAGA and SLIK, but it is not known which of these complexes is involved. Genetic manipulation showed that these complexes perform interchangeably in the retrograde response. These results, along with the finding that the histone deacetylase Sir2 was required for a robust retrograde response informed a bioinformatics screen that reduced to four the candidate genes causal for longevity of the 410 retrograde response target genes. Of the four, only deletion of PHO84 suppressed lifespan extension. Retrograde-response activation of PHO84 displayed some preference for SAGA. Increased PHO84 messenger RNA levels from a second copy of the gene in cells in which the retrograde response is not activated achieved >80% of the lifespan extension observed in the retrograde response. Our studies resolve questions involving the roles of SLIK and SAGA in the retrograde response, pointing to the cooperation of these complexes in gene activation. They also finally pinpoint the gene that is both necessary and sufficient to extend replicative lifespan in the retrograde response. The finding that this gene is PHO84 opens up a new set of questions about the mechanisms involved, as this gene is known to have pleiotropic effects.
Collapse
|
37
|
Rani M, Raj S, Dayaman V, Kumar M, Dua M, Johri AK. Functional Characterization of a Hexose Transporter from Root Endophyte Piriformospora indica. Front Microbiol 2016; 7:1083. [PMID: 27499747 PMCID: PMC4957513 DOI: 10.3389/fmicb.2016.01083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/28/2016] [Indexed: 11/30/2022] Open
Abstract
Understanding the mechanism of photosynthate transfer at symbiotic interface by fungal monosaccharide transporter is of substantial importance. The carbohydrate uptake at the apoplast by the fungus is facilitated by PiHXT5 hexose transporter in root endophytic fungus Piriformospora indica. The putative PiHXT5 belongs to MFS superfamily with 12 predicted transmembrane helices. It possess sugar transporter PFAM motif (PF0083) and MFS superfamily domain (PS50850). It contains the signature tags related to glucose transporter GLUT1 of human erythrocyte. PiHXT5 is regulated in response to mutualism as well as glucose concentration. We have functionally characterized PiHXT5 by complementation of hxt-null mutant of Saccharomyces cerevisiae EBY.VW4000. It is involved in transport of multiple sugars ranging from D-glucose, D-fructose, D-xylose, D-mannose, D-galactose with decreasing affinity. The uncoupling experiments indicate that it functions as H(+)/glucose co-transporter. Further, pH dependence analysis suggests that it functions maximum between pH 5 and 6. The expression of PiHXT5 is dependent on glucose concentration and was found to be expressed at low glucose levels (1 mM) which indicate its role as a high affinity glucose transporter. Our study on this sugar transporter will help in better understanding of carbon metabolism and flow in this agro-friendly fungus.
Collapse
Affiliation(s)
- Mamta Rani
- School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Sumit Raj
- School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Vikram Dayaman
- School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Manoj Kumar
- School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Meenakshi Dua
- School of Environmental Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Atul K. Johri
- School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| |
Collapse
|
38
|
Responses to phosphate deprivation in yeast cells. Curr Genet 2015; 62:301-7. [PMID: 26615590 DOI: 10.1007/s00294-015-0544-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 01/10/2023]
Abstract
Inorganic phosphate is an essential nutrient because it is required for the biosynthesis of nucleotides, phospholipids and metabolites in energy metabolism. During phosphate starvation, phosphatases play a major role in phosphate acquisition by hydrolyzing phosphorylated macromolecules. In Saccharomyces cerevisiae, PHM8 (YER037W), a lysophosphatidic acid phosphatase, plays an important role in phosphate acquisition by hydrolyzing lysophosphatidic acid and nucleotide monophosphate that results in accumulation of triacylglycerol and nucleotides under phosphate limiting conditions. Under phosphate limiting conditions, it is transcriptionally regulated by Pho4p, a phosphate-responsive transcription factor. In this review, we focus on triacylglycerol metabolism in transcription factors deletion mutants involved in phosphate metabolism and propose a link between phosphate and triacylglycerol metabolism. Deletion of these transcription factors results in an increase in triacylglycerol level. Based on these observations, we suggest that PHM8 is responsible for the increase in triacylglycerol in phosphate metabolising gene deletion mutants.
Collapse
|
39
|
Johri AK, Oelmüller R, Dua M, Yadav V, Kumar M, Tuteja N, Varma A, Bonfante P, Persson BL, Stroud RM. Fungal association and utilization of phosphate by plants: success, limitations, and future prospects. Front Microbiol 2015; 6:984. [PMID: 26528243 PMCID: PMC4608361 DOI: 10.3389/fmicb.2015.00984] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 09/03/2015] [Indexed: 11/29/2022] Open
Abstract
Phosphorus (P) is a major macronutrient for plant health and development. The available form of P is generally low in the rhizosphere even in fertile soils. A major proportion of applied phosphate (Pi) fertilizers in the soil become fixed into insoluble, unavailable forms, which restricts crop production throughout the world. Roots possess two distinct modes of P uptake from the soil, direct and indirect uptake. The direct uptake of P is facilitated by the plant's own Pi transporters while indirect uptake occurs via mycorrhizal symbiosis, where the host plant obtains P primarily from the fungal partner, while the fungus benefits from plant-derived reduced carbon. So far, only one Pi transporter has been characterized from the mycorrhizal fungus Glomus versiforme. As arbuscular mycorrhizal fungi cannot be cultured axenically, their Pi transporter network is difficult to exploite for large scale sustainable agriculture. Alternatively, the root-colonizing endophytic fungus Piriformospora indica can grow axenically and provides strong growth-promoting activity during its symbiosis with a broad spectrum of plants. P. indica contains a high affinity Pi transporter (PiPT) involved in improving Pi nutrition levels in the host plant under P limiting conditions. As P. indica can be manipulated genetically, it opens new vistas to be used in P deficient fields.
Collapse
Affiliation(s)
- Atul K. Johri
- School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Ralf Oelmüller
- Institute of Plant Physiology, Friedrich-Schiller-University JenaJena, Germany
| | - Meenakshi Dua
- School of Environmental Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Vikas Yadav
- School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Manoj Kumar
- School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Center for Genetic Engineering and BiotechnologyNew Delhi, India
- Institute of Microbial Technology, Amity UniversityNoida, India
| | - Ajit Varma
- Institute of Microbial Technology, Amity UniversityNoida, India
| | - Paola Bonfante
- Department of Biology, University of TorinoTorino, Italy
| | - Bengt L. Persson
- Centre for Biomaterials Chemistry, Department of Chemistry and Biomedical Sciences, Linnaeus UniversityKalmar, Sweden
| | - Robert M. Stroud
- Department of Biophysics and Biochemistry, University of California at San Francisco, San FranciscoCA, USA
| |
Collapse
|
40
|
Tsang F, Lin SJ. Less is more: Nutrient limitation induces cross-talk of nutrient sensing pathways with NAD + homeostasis and contributes to longevity. ACTA ACUST UNITED AC 2015; 10:333-357. [PMID: 27683589 DOI: 10.1007/s11515-015-1367-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nutrient sensing pathways and their regulation grant cells control over their metabolism and growth in response to changing nutrients. Factors that regulate nutrient sensing can also modulate longevity. Reduced activity of nutrient sensing pathways such as glucose-sensing PKA, nitrogen-sensing TOR and S6 kinase homolog Sch9 have been linked to increased life span in the yeast, Saccharomyces cerevisiae, and higher eukaryotes. Recently, reduced activity of amino acid sensing SPS pathway was also shown to increase yeast life span. Life span extension by reduced SPS activity requires enhanced NAD+ (nicotinamide adenine dinucleotide, oxidized form) and nicotinamide riboside (NR, a NAD+ precursor) homeostasis. Maintaining adequate NAD+ pools has been shown to play key roles in life span extension, but factors regulating NAD+ metabolism and homeostasis are not completely understood. Recently, NAD+ metabolism was also linked to the phosphate (Pi)-sensing PHO pathway in yeast. Canonical PHO activation requires Pi-starvation. Interestingly, NAD+ depletion without Pi-starvation was sufficient to induce PHO activation, increasing NR production and mobilization. Moreover, SPS signaling appears to function in parallel with PHO signaling components to regulate NR/NAD+ homeostasis. These studies suggest that NAD+ metabolism is likely controlled by and/or coordinated with multiple nutrient sensing pathways. Indeed, cross-regulation of PHO, PKA, TOR and Sch9 pathways was reported to potentially affect NAD+ metabolism; though detailed mechanisms remain unclear. This review discusses yeast longevity-related nutrient sensing pathways and possible mechanisms of life span extension, regulation of NAD+ homeostasis, and cross-talk among nutrient sensing pathways and NAD+ homeostasis.
Collapse
Affiliation(s)
- Felicia Tsang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
41
|
Serra-Cardona A, Petrezsélyová S, Canadell D, Ramos J, Ariño J. Coregulated expression of the Na+/phosphate Pho89 transporter and Ena1 Na+-ATPase allows their functional coupling under high-pH stress. Mol Cell Biol 2014; 34:4420-4435. [PMID: 25266663 PMCID: PMC4248728 DOI: 10.1128/mcb.01089-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 09/22/2014] [Indexed: 12/22/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has two main high-affinity inorganic phosphate (Pi) transporters, Pho84 and Pho89, that are functionally relevant at acidic/neutral pH and alkaline pH, respectively. Upon Pi starvation, PHO84 and PHO89 are induced by the activation of the PHO regulon by the binding of the Pho4 transcription factor to specific promoter sequences. We show that PHO89 and PHO84 are induced by alkalinization of the medium with different kinetics and that the network controlling Pho89 expression in response to alkaline pH differs from that of other members of the PHO regulon. In addition to Pho4, the PHO89 promoter is regulated by the transcriptional activator Crz1 through the calcium-activated phosphatase calcineurin, and it is under the control of several repressors (Mig2, Nrg1, and Nrg2) coordinately regulated by the Snf1 protein kinase and the Rim101 transcription factor. This network mimics the one regulating expression of the Na(+)-ATPase gene ENA1, encoding a major determinant for Na(+) detoxification. Our data highlight a scenario in which the activities of Pho89 and Ena1 are functionally coordinated to sustain growth in an alkaline environment.
Collapse
Affiliation(s)
- Albert Serra-Cardona
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Silvia Petrezsélyová
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - David Canadell
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - José Ramos
- Departamento de Microbiología, Edificio Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
42
|
Defects in phosphate acquisition and storage influence virulence of Cryptococcus neoformans. Infect Immun 2014; 82:2697-712. [PMID: 24711572 DOI: 10.1128/iai.01607-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nutrient acquisition and sensing are critical aspects of microbial pathogenesis. Previous transcriptional profiling indicated that the fungal pathogen Cryptococcus neoformans, which causes meningoencephalitis in immunocompromised individuals, encounters phosphate limitation during proliferation in phagocytic cells. We therefore tested the hypothesis that phosphate acquisition and polyphosphate metabolism are important for cryptococcal virulence. Deletion of the high-affinity uptake system interfered with growth on low-phosphate medium, perturbed the formation of virulence factors (capsule and melanin), reduced survival in macrophages, and attenuated virulence in a mouse model of cryptococcosis. Additionally, analysis of nutrient sensing functions for C. neoformans revealed regulatory connections between phosphate acquisition and storage and the iron regulator Cir1, cyclic AMP (cAMP)-dependent protein kinase A (PKA), and the calcium-calmodulin-activated protein phosphatase calcineurin. Deletion of the VTC4 gene encoding a polyphosphate polymerase blocked the ability of C. neoformans to produce polyphosphate. The vtc4 mutant behaved like the wild-type strain in interactions with macrophages and in the mouse infection model. However, the fungal load in the lungs was significantly increased in mice infected with vtc4 deletion mutants. In addition, the mutant was impaired in the ability to trigger blood coagulation in vitro, a trait associated with polyphosphate. Overall, this study reveals that phosphate uptake in C. neoformans is critical for virulence and that its regulation is integrated with key signaling pathways for nutrient sensing.
Collapse
|
43
|
Fehrmann S, Bottin-Duplus H, Leonidou A, Mollereau E, Barthelaix A, Wei W, Steinmetz LM, Yvert G. Natural sequence variants of yeast environmental sensors confer cell-to-cell expression variability. Mol Syst Biol 2013; 9:695. [PMID: 24104478 PMCID: PMC3817403 DOI: 10.1038/msb.2013.53] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 09/06/2013] [Indexed: 01/29/2023] Open
Abstract
DNA polymorphisms that change cell-to-cell variability in gene expression are identified in a screen for ‘Probabilistic Trait Loci' in yeast. By modifying transmembrane transporter genes, these natural variants modulate intraclonal phenotypic diversification. ![]()
We mapped genetic loci affecting cell–cell variability in gene expression. One variant enhanced both expression of a transporter and variability in a metabolic pathway. A sequence change in another transporter also increased pathway variability. The study invites to apprehend complex traits from a nondeterministic angle.
Living systems may have evolved probabilistic bet hedging strategies that generate cell-to-cell phenotypic diversity in anticipation of environmental catastrophes, as opposed to adaptation via a deterministic response to environmental changes. Evolution of bet hedging assumes that genotypes segregating in natural populations modulate the level of intraclonal diversity, which so far has largely remained hypothetical. Using a fluorescent Pmet17-GFP reporter, we mapped four genetic loci conferring to a wild yeast strain an elevated cell-to-cell variability in the expression of MET17, a gene regulated by the methionine pathway. A frameshift mutation in the Erc1p transmembrane transporter, probably resulting from a release of laboratory strains from negative selection, reduced Pmet17-GFP expression variability. At a second locus, cis-regulatory polymorphisms increased mean expression of the Mup1p methionine permease, causing increased expression variability in trans. These results demonstrate that an expression quantitative trait locus (eQTL) can simultaneously have a deterministic effect in cis and a probabilistic effect in trans. Our observations indicate that the evolution of transmembrane transporter genes can tune intraclonal variation and may therefore be implicated in both reactive and anticipatory strategies of adaptation.
Collapse
Affiliation(s)
- Steffen Fehrmann
- Laboratoire de Biologie Moléculaire de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, Université Lyon 1, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Garnica DP, Upadhyaya NM, Dodds PN, Rathjen JP. Strategies for Wheat Stripe Rust Pathogenicity Identified by Transcriptome Sequencing. PLoS One 2013; 8:e67150. [PMID: 23840606 PMCID: PMC3694141 DOI: 10.1371/journal.pone.0067150] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 05/14/2013] [Indexed: 12/31/2022] Open
Abstract
Stripe rust caused by the fungus Puccinia striiformis f.sp. tritici (Pst) is a major constraint to wheat production worldwide. The molecular events that underlie Pst pathogenicity are largely unknown. Like all rusts, Pst creates a specialized cellular structure within host cells called the haustorium to obtain nutrients from wheat, and to secrete pathogenicity factors called effector proteins. We purified Pst haustoria and used next-generation sequencing platforms to assemble the haustorial transcriptome as well as the transcriptome of germinated spores. 12,282 transcripts were assembled from 454-pyrosequencing data and used as reference for digital gene expression analysis to compare the germinated uredinospores and haustoria transcriptomes based on Illumina RNAseq data. More than 400 genes encoding secreted proteins which constitute candidate effectors were identified from the haustorial transcriptome, with two thirds of these up-regulated in this tissue compared to germinated spores. RT-PCR analysis confirmed the expression patterns of 94 effector candidates. The analysis also revealed that spores rely mainly on stored energy reserves for growth and development, while haustoria take up host nutrients for massive energy production for biosynthetic pathways and the ultimate production of spores. Together, these studies substantially increase our knowledge of potential Pst effectors and provide new insights into the pathogenic strategies of this important organism.
Collapse
Affiliation(s)
- Diana P. Garnica
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Narayana M. Upadhyaya
- Division of Plant Industry, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australian Capital Territory, Australia
| | - Peter N. Dodds
- Division of Plant Industry, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australian Capital Territory, Australia
| | - John P. Rathjen
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
45
|
Chang SL, Lai HY, Tung SY, Leu JY. Dynamic large-scale chromosomal rearrangements fuel rapid adaptation in yeast populations. PLoS Genet 2013; 9:e1003232. [PMID: 23358723 PMCID: PMC3554576 DOI: 10.1371/journal.pgen.1003232] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 11/26/2012] [Indexed: 11/18/2022] Open
Abstract
Large-scale genome rearrangements have been observed in cells adapting to various selective conditions during laboratory evolution experiments. However, it remains unclear whether these types of mutations can be stably maintained in populations and how they impact the evolutionary trajectories. Here we show that chromosomal rearrangements contribute to extremely high copper tolerance in a set of natural yeast strains isolated from Evolution Canyon (EC), Israel. The chromosomal rearrangements in EC strains result in segmental duplications in chromosomes 7 and 8, which increase the copy number of genes involved in copper regulation, including the crucial transcriptional activator CUP2 and the metallothionein CUP1. The copy number of CUP2 is correlated with the level of copper tolerance, indicating that increasing dosages of a single transcriptional activator by chromosomal rearrangements has a profound effect on a regulatory pathway. By gene expression analysis and functional assays, we identified three previously unknown downstream targets of CUP2: PHO84, SCM4, and CIN2, all of which contributed to copper tolerance in EC strains. Finally, we conducted an evolution experiment to examine how cells maintained these changes in a fluctuating environment. Interestingly, the rearranged chromosomes were reverted back to the wild-type configuration at a high frequency and the recovered chromosome became fixed in less selective conditions. Our results suggest that transposon-mediated chromosomal rearrangements can be highly dynamic and can serve as a reversible mechanism during early stages of adaptive evolution.
Collapse
Affiliation(s)
- Shang-Lin Chang
- Molecular Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Huei-Yi Lai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Yun Tung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Jun-Yi Leu
- Molecular Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
46
|
Qin L, Guo Y, Chen L, Liang R, Gu M, Xu G, Zhao J, Walk T, Liao H. Functional characterization of 14 Pht1 family genes in yeast and their expressions in response to nutrient starvation in soybean. PLoS One 2012; 7:e47726. [PMID: 23133521 PMCID: PMC3485015 DOI: 10.1371/journal.pone.0047726] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 09/20/2012] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Phosphorus (P) is essential for plant growth and development. Phosphate (Pi) transporter genes in the Pht1 family play important roles in Pi uptake and translocation in plants. Although Pht1 family genes have been well studied in model plants, little is known about their functions in soybean, an important legume crop worldwide. PRINCIPAL FINDINGS We identified and isolated a complete set of 14 Pi transporter genes (GmPT1-14) in the soybean genome and categorized them into two subfamilies based on phylogenetic analysis. Then, an experiment to elucidate Pi transport activity of the GmPTs was carried out using a yeast mutant defective in high-affinity Pi transport. Results showed that 12 of the 14 GmPTs were able to complement Pi uptake of the yeast mutant with Km values ranging from 25.7 to 116.3 µM, demonstrating that most of the GmPTs are high-affinity Pi transporters. Further results from qRT-PCR showed that the expressions of the 14 GmPTs differed not only in response to P availability in different tissues, but also to other nutrient stresses, including N, K and Fe deficiency, suggesting that besides functioning in Pi uptake and translocation, GmPTs might be involved in synergistic regulation of mineral nutrient homeostasis in soybean. CONCLUSIONS The comprehensive analysis of Pi transporter function in yeast and expression responses to nutrition starvation of Pht1 family genes in soybean revealed their involvement in other nutrient homeostasis besides P, which could help to better understand the regulation network among ion homeostasis in plants.
Collapse
Affiliation(s)
- Lu Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, South China Agricultural University, Guangzhou, China
| | - Yongxiang Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, South China Agricultural University, Guangzhou, China
| | - Liyu Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, South China Agricultural University, Guangzhou, China
| | - Ruikang Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, South China Agricultural University, Guangzhou, China
| | - Mian Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, South China Agricultural University, Guangzhou, China
| | - Thomas Walk
- USDA-ARS, U.S. Pacific Basin Agricultural Research Center, Hilo, Hawaii, United States of America
| | - Hong Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, South China Agricultural University, Guangzhou, China
| |
Collapse
|
47
|
Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics 2012; 190:885-929. [PMID: 22419079 DOI: 10.1534/genetics.111.133306] [Citation(s) in RCA: 365] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ever since the beginning of biochemical analysis, yeast has been a pioneering model for studying the regulation of eukaryotic metabolism. During the last three decades, the combination of powerful yeast genetics and genome-wide approaches has led to a more integrated view of metabolic regulation. Multiple layers of regulation, from suprapathway control to individual gene responses, have been discovered. Constitutive and dedicated systems that are critical in sensing of the intra- and extracellular environment have been identified, and there is a growing awareness of their involvement in the highly regulated intracellular compartmentalization of proteins and metabolites. This review focuses on recent developments in the field of amino acid, nucleotide, and phosphate metabolism and provides illustrative examples of how yeast cells combine a variety of mechanisms to achieve coordinated regulation of multiple metabolic pathways. Importantly, common schemes have emerged, which reveal mechanisms conserved among various pathways, such as those involved in metabolite sensing and transcriptional regulation by noncoding RNAs or by metabolic intermediates. Thanks to the remarkable sophistication offered by the yeast experimental system, a picture of the intimate connections between the metabolomic and the transcriptome is becoming clear.
Collapse
|
48
|
Roles of major facilitator superfamily transporters in phosphate response in Drosophila. PLoS One 2012; 7:e31730. [PMID: 22359624 PMCID: PMC3280997 DOI: 10.1371/journal.pone.0031730] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/11/2012] [Indexed: 12/23/2022] Open
Abstract
The major facilitator superfamily (MFS) transporter Pho84 and the type III transporter Pho89 are responsible for metabolic effects of inorganic phosphate in yeast. While the Pho89 ortholog Pit1 was also shown to be involved in phosphate-activated MAPK in mammalian cells, it is currently unknown, whether orthologs of Pho84 have a role in phosphate-sensing in metazoan species. We show here that the activation of MAPK by phosphate observed in mammals is conserved in Drosophila cells, and used this assay to characterize the roles of putative phosphate transporters. Surprisingly, while we found that RNAi-mediated knockdown of the fly Pho89 ortholog dPit had little effect on the activation of MAPK in Drosophila S2R+ cells by phosphate, two Pho84/SLC17A1–9 MFS orthologs (MFS10 and MFS13) specifically inhibited this response. Further, using a Xenopus oocyte assay, we show that MSF13 mediates uptake of [33P]-orthophosphate in a sodium-dependent fashion. Consistent with a role in phosphate physiology, MSF13 is expressed highest in the Drosophila crop, midgut, Malpighian tubule, and hindgut. Altogether, our findings provide the first evidence that Pho84 orthologs mediate cellular effects of phosphate in metazoan cells. Finally, while phosphate is essential for Drosophila larval development, loss of MFS13 activity is compatible with viability indicating redundancy at the levels of the transporters.
Collapse
|
49
|
Chen HM, Rosebrock AP, Khan SR, Futcher B, Leatherwood JK. Repression of meiotic genes by antisense transcription and by Fkh2 transcription factor in Schizosaccharomyces pombe. PLoS One 2012; 7:e29917. [PMID: 22238674 PMCID: PMC3253116 DOI: 10.1371/journal.pone.0029917] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 12/06/2011] [Indexed: 12/22/2022] Open
Abstract
In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s) of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the "unspliced" signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression.
Collapse
Affiliation(s)
- Huei-Mei Chen
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Adam P. Rosebrock
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Sohail R. Khan
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Bruce Futcher
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Janet K. Leatherwood
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
50
|
Sambuk EV, Fizikova AY, Savinov VA, Padkina MV. Acid phosphatases of budding yeast as a model of choice for transcription regulation research. Enzyme Res 2011; 2011:356093. [PMID: 21785706 PMCID: PMC3137970 DOI: 10.4061/2011/356093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/26/2011] [Indexed: 11/20/2022] Open
Abstract
Acid phosphatases of budding yeast have been studied for more than forty years. This paper covers biochemical characteristics of acid phosphatases and different aspects in expression regulation of eukaryotic genes, which were researched using acid phosphatases model. A special focus is devoted to cyclin-dependent kinase Pho85p, a negative transcriptional regulator, and its role in maintaining mitochondrial genome stability and to pleiotropic effects of pho85 mutations.
Collapse
Affiliation(s)
- Elena V Sambuk
- Genetics and Breeding Department, Biology and Soil Sciences Faculty, Saint Petersburg State University, Universitetskaya emb. 7-9, Saint Petersburg 199034, Russia
| | | | | | | |
Collapse
|