1
|
Combined Id1 and Id3 Deletion Leads to Severe Erythropoietic Disturbances. PLoS One 2016; 11:e0154480. [PMID: 27128622 PMCID: PMC4851361 DOI: 10.1371/journal.pone.0154480] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 04/13/2016] [Indexed: 12/31/2022] Open
Abstract
The Inhibitor of DNA Binding (Id) proteins play a crucial role in regulating hematopoiesis and are known to interact with E proteins and the bHLH family of transcription factors. Current efforts seek to elucidate the individual roles of Id members in regulating hematopoietic development and specification. However, the nature of their functional redundancies remains elusive since ablation of multiple Id genes is embryonically lethal. We developed a model to test this compensation in the adult. We report that global Id3 ablation with Tie2Cre-mediated conditional ablation of Id1 in both hematopoietic and endothelial cells (Id cDKO) extends viability to 1 year but leads to multi-lineage hematopoietic defects including the emergence of anemia associated with defective erythroid development, a novel phenotype unreported in prior single Id knockout studies. We observe decreased cell counts in the bone marrow and splenomegaly to dimensions beyond what is seen in single Id knockout models. Transcriptional dysregulation of hematopoietic regulators observed in bone marrow cells is also magnified in the spleen. E47 protein levels were elevated in Id cDKO bone marrow cell isolates, but decreased in the erythroid lineage. Chromatin immunoprecipitation (ChIP) studies reveal increased occupancy of E47 and GATA1 at the promoter regions of β-globin and E2A. Bone marrow transplantation studies highlight the importance of intrinsic Id signals in maintaining hematopoietic homeostasis while revealing a strong extrinsic influence in the development of anemia. Together, these findings demonstrate that loss of Id compensation leads to dysregulation of the hematopoietic transcriptional network and multiple defects in erythropoietic development in adult mice.
Collapse
|
2
|
Vizirianakis IS, Tsiftsoglou AS. Blockade of murine erythroleukemia cell differentiation by hypomethylating agents causes accumulation of discrete small poly(A)- RNAs hybridized to 3'-end flanking sequences of beta(major) globin gene. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1743:101-14. [PMID: 15777845 DOI: 10.1016/j.bbamcr.2004.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 09/02/2004] [Accepted: 09/03/2004] [Indexed: 11/26/2022]
Abstract
Induction of murine erythroleukemia (MEL) cell differentiation is accompanied by transcriptional activation of globin genes and biosynthesis of hemoglobin. In this study, we observed cytoplasmic accumulation of relatively small RNAs of different size (150-600 nt) hybridized to alpha1 and beta(major) globin DNA probes in MEL cells blocked to differentiate by hypomethylating agents (neplanocin A, 3-deazaneplanocin A and cycloleucine). These RNAs lack poly(A) tail and appear to be quite stable. Search within the 3'-end flanking sequences of beta(major) globin gene revealed the presence of a B1 repeat element, several ATG initiation codons, a GATA-1 consensus sequence and sequences recognized by AP-1/NF-E2 and erythroid Krüppel-like factor (EKLF) transcription factors. These data taken together indicate that exposure of MEL cells to hypomethylating agents promotes accumulation of relatively small discrete RNA transcripts lacking poly(A) tail regardless of the presence or absence of inducer dimethylsulfoxide (DMSO). However, the relative steady-state level of small RNAs was comparatively higher in cells co-exposed to inducer and each one of the hypomethylating agents. Although the orientation of these RNAs has not been established as yet, the possibility these small poly(A)- RNAs which are induced by hypomethylating agents may be involved in the blockade of MEL cell differentiation program is discussed.
Collapse
Affiliation(s)
- Ioannis S Vizirianakis
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece.
| | | |
Collapse
|
3
|
Steffensen KR, Holter E, Tobin KA, Leclerc S, Gustafsson JA, Guérin SL, Eskild W. Members of the nuclear factor 1 family reduce the transcriptional potential of the nuclear receptor LXRalpha promoter. Biochem Biophys Res Commun 2001; 289:1262-7. [PMID: 11741331 DOI: 10.1006/bbrc.2001.6078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expression of the LXRalpha nuclear receptor in liver is predicted to affect cholesterol and lipid metabolism. Here we show that a short fragment from the LXRalpha gene promoter spanning the region from -144 to +43 relative to the mRNA initiation site can drive transcription of a reporter gene. Under basal conditions, in vitro DNase I footprinting demonstrated interaction between nuclear proteins and an NF1 recognition site in close vicinity to the transcriptional initiation. Both supershift, mutational analyses in EMSA and transfections provided evidence that the NF1 (nuclear factor I) transcription factor interacts with the LXRalpha promoter. All four members of the NF1 family were found to suppress the transcriptional activity indicating a general inhibitory effect on LXRalpha expression. A similar regulation by NF1 was also observed when using a fragment from the LXRalpha promoter extending up to position -3033 therefore giving the inhibitory effect of NF1 a significant impact on LXRalpha gene expression.
Collapse
Affiliation(s)
- K R Steffensen
- Department of Biosciences, Novum Research Park, Karolinska Institute, Huddinge, Sweden.
| | | | | | | | | | | | | |
Collapse
|
4
|
Elnitski L, Li J, Noguchi CT, Miller W, Hardison R. A negative cis-element regulates the level of enhancement by hypersensitive site 2 of the beta-globin locus control region. J Biol Chem 2001; 276:6289-98. [PMID: 11092897 DOI: 10.1074/jbc.m009624200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The core of DNase hypersensitive site (HS) 2 from the beta-globin locus control region is a potent enhancer of globin gene expression. Although it has been considered to contain only positive cis-regulatory sequences, our study of the enhancement conferred by segments of HS2 in erythroid cells reveals a novel negative element. Individual cis-regulatory elements from HS2 such as E boxes or Maf-response elements produced as great or greater enhancement than the intact core in mouse erythroleukemia (MEL) cells, indicating the presence of negative elements within HS2. A deletion series through HS2 revealed negative elements at the 5' and 3' ends of the core. Analysis of constructs with and without the 5' negative element showed that the effect is exerted on the promoters of globin genes expressed at embryonic, fetal, or adult stages. The negative effect was observed in bipotential human cells (K562 and human erythroleukemia (HEL) cells), proerythroblastic mouse (MEL) cells, and normal adult human erythroid cells. The novel negative element also functions after stable integration into MEL chromosomes. Smaller deletions at the 5' end of the HS2 core map the negative element within a 20-base pair region containing two conserved sequences.
Collapse
Affiliation(s)
- L Elnitski
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
5
|
Abstract
The Nuclear Factor I (NFI) family of site-specific DNA-binding proteins (also known as CTF or CAAT box transcription factor) functions both in viral DNA replication and in the regulation of gene expression. The classes of genes whose expression is modulated by NFI include those that are ubiquitously expressed, as well as those that are hormonally, nutritionally, and developmentally regulated. The NFI family is composed of four members in vertebrates (NFI-A, NFI-B, NFI-C and NFI-X), and the four NFI genes are expressed in unique, but overlapping, patterns during mouse embryogenesis and in the adult. Transcripts of each NFI gene are differentially spliced, yielding as many as nine distinct proteins from a single gene. Products of the four NFI genes differ in their abilities to either activate or repress transcription, likely through fundamentally different mechanisms. Here, we will review the properties of the NFI genes and proteins and their known functions in gene expression and development.
Collapse
Affiliation(s)
- R M Gronostajski
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Case Western Reserve University, OH 44195, USA.
| |
Collapse
|
6
|
Elnitski L, Hardison R. Efficient and reliable transfection of mouse erythroleukemia cells using cationic lipids. Blood Cells Mol Dis 1999; 25:299-304. [PMID: 10744425 DOI: 10.1006/bcmd.1999.0257] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Preliminary studies of cis-regulatory elements are frequently performed in transiently transfected cells before further analysis in stably transfected cell lines and transgenic mice. However, not all cells are readily transfectable by routine means. For instance, mouse erythroleukemia (MEL) cells have been a valuable model system for studies of their endogenous globin genes, but introduction of DNA using common transfection methods such as electroporation has been very inefficient. This has allowed studies of stably transfected cells, after selection for the rare transfection events, but transient transfection analysis has been problematic. This report describes an efficient and reliable method for transient transfection of MEL cells using commercially available cationic lipids.
Collapse
Affiliation(s)
- L Elnitski
- Department of Biochemistry and Molecular Biology, The Center for Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
7
|
Pountney D, Trugnan G, Bourgeois M, Beaumont C. The identification of ferritin in the nucleus of K562 cells, and investigation of a possible role in the transcriptional regulation of adult beta-globin gene expression. J Cell Sci 1999; 112 ( Pt 6):825-31. [PMID: 10036232 DOI: 10.1242/jcs.112.6.825] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We studied the subcellular distribution of ferritin in K562 cells by immunofluorescence techniques and have made a reappraisal of a direct binding interaction between ferritin and the proximal promoter region of the human beta-globin gene, as previously mentioned in the literature. Confocal microscopy indicates that ferritin, the iron-storage protein, is present in the nucleus of K562 cells, in addition to its expected cytoplasmic localisation. The stain distribution suggests that it is not directly associated with the nuclear matrix. Using a gel mobility shift assay, a protein that cross-reacts with monoclonal ferritin antibodies competitively binds to a double-stranded oligonucleotide spanning the region situated 150 base pairs upstream from the beta-globin transcription start site. Despite this antibody cross-reactivity, the protein is unlike cytosolic ferritin as it appears to be highly sensitive to both temperature and freeze-thaw cycles, and UV-crosslinking experiments indicate that the molecular mass of the protein factor lies between 90 and 100 kDa. In conclusion, while the intranuclear location of ferritin is described in the present study, ferritin is not in direct contact with the beta-globin promoter region.
Collapse
Affiliation(s)
- D Pountney
- INSERM Unité 409, Faculté de Medecine Xavier Bichat, 75018 Paris, France
| | | | | | | |
Collapse
|
8
|
Chaudhry AZ, Vitullo AD, Gronostajski RM. Nuclear factor I-mediated repression of the mouse mammary tumor virus promoter is abrogated by the coactivators p300/CBP and SRC-1. J Biol Chem 1999; 274:7072-81. [PMID: 10066764 DOI: 10.1074/jbc.274.11.7072] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To better understand the function of nuclear factor I (NFI) proteins in transcription, we have used transient transfection assays to assess transcriptional modulation by NFI proteins on the NFI-dependent mouse mammary tumor virus (MMTV) promoter. Expression of NFI-C or NFI-X, but not NFI-A or NFI-B proteins, represses glucocorticoid induction of the MMTV promoter in HeLa cells. Repression is DNA binding-independent as a deletion construct expressing the NH2-terminal 160 residues of NFI-C represses but does not bind DNA. Repression by NFI-C is cell type-dependent and occurs in HeLa and COS-1 cells but not 293 or JEG-3 cells. NFI-C does not repress progesterone induction of the MMTV promoter in HeLa cells, suggesting that progesterone induction of the promoter differs mechanistically from glucocorticoid induction. NFI-C-mediated repression is alleviated by overexpression of glucocorticoid receptor (GR), suggesting that NFI-C represses the MMTV promoter by preventing GR function. However, repression by NFI-C occurs with only a subset of glucocorticoid-responsive promoters, as the chimeric NFIGREbeta-gal promoter that is activated by GR is not repressed by NFI-C. Since the coactivator proteins p300/CBP, SRC-1A, and RAC3 had previously been shown to function at steroid hormone-responsive promoters, we asked whether they could influence NFI-C-mediated repression of MMTV expression. Expression of p300/CBP or SRC-1A alleviates repression by NFI-C, whereas RAC3 has no effect. This abrogation of NFI-C-mediated repression by p300/CBP and SRC-1A suggests that repression by NFI-C may occur by interference with coactivator function at the MMTV promoter.
Collapse
Affiliation(s)
- A Z Chaudhry
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
9
|
Abstract
AbstractThe G1-phase cell-cycle inhibitor p21 has been proposed to mediate growth arrest during differentiation. Upregulation of p21 has been shown in multiple cell lines induced to differentiate; however, the mechanism of p21 induction during normal differentiation is largely unknown. In this report, we use normal hematopoietic precursor cells obtained from umbilical cord to model p21 regulation during differentiation. Myeloid maturation of CD34+ precursor cells is associated with a marked increase in p21 expression at the RNA and protein level. The upregulation of p21 transcripts during differentiation is associated with decreased binding to a highly conserved 44-bp fragment within the p21 promoter. This 44-bp regulatory element binds a novel modulator of p21 expression. It is of considerable interest that, although the binding activity is expressed in p53-negative as well as in p53-positive cells, the DNA sequence recognized by this protein overlaps a PuPuPuC(A/T)(T/A)GPyPyPy consensus sequence for p53.
Collapse
|
10
|
Abstract
The G1-phase cell-cycle inhibitor p21 has been proposed to mediate growth arrest during differentiation. Upregulation of p21 has been shown in multiple cell lines induced to differentiate; however, the mechanism of p21 induction during normal differentiation is largely unknown. In this report, we use normal hematopoietic precursor cells obtained from umbilical cord to model p21 regulation during differentiation. Myeloid maturation of CD34+ precursor cells is associated with a marked increase in p21 expression at the RNA and protein level. The upregulation of p21 transcripts during differentiation is associated with decreased binding to a highly conserved 44-bp fragment within the p21 promoter. This 44-bp regulatory element binds a novel modulator of p21 expression. It is of considerable interest that, although the binding activity is expressed in p53-negative as well as in p53-positive cells, the DNA sequence recognized by this protein overlaps a PuPuPuC(A/T)(T/A)GPyPyPy consensus sequence for p53.
Collapse
|
11
|
Luo W, Skalnik DG. CCAAT displacement protein competes with multiple transcriptional activators for binding to four sites in the proximal gp91phox promoter. J Biol Chem 1996; 271:18203-10. [PMID: 8663528 DOI: 10.1074/jbc.271.30.18203] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
CCAAT displacement protein (CDP) competes with transcriptional activating proteins for binding to each of four elements within the myeloid-specific gp91(phox) promoter. CDP exhibits the strongest affinity for a site centered at -110 base pairs (bp) of the promoter and progressively weaker affinities for three more distal binding sites. CDP binding to each site is down-regulated during terminal phagocytic differentiation, coincident with induction of gp91(phox) expression. Deletion of the high affinity CDP-binding site at -110 bp leads to inappropriate gp91(phox) promoter activity in HeLa, K562, and HEL cells. An overlapping binding site for the CCAAT box-binding factor CP1 is required for derepressed promoter activity in HeLa and K562 cells, but is dispensable in HEL cells, indicating that different cell types require distinct cis-elements for gp91(phox) promoter activity. Derepressed gp91(phox) promoter activity is further increased upon removal of a second CDP-binding site centered at -150 bp, revealing that CDP represses gp91(phox) expression via multiple cis-elements. We present a model in which restriction of gp91(phox) expression to mature myeloid cells involves competition between transcriptional activators and repressors for binding to multiple sites within the promoter.
Collapse
Affiliation(s)
- W Luo
- Herman B Wells Center for Pediatric Research, Section of Pediatric Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5225, USA
| | | |
Collapse
|
12
|
Abstract
A progressive alignment algorithm produces a multialignment of a set of sequences by repeatedly aligning pairs of sequences and/or previously generated alignments. We describe a method for guaranteeing that the alignment generated by a progressive alignment strategy satisfies a user-specified collection of constraints about where certain sequence positions should appear relative to others. Our main result is an algorithm to compute just the "prime" constraints that are implied by the user-given constraints; these are shown to be precisely the constraints that the alignment algorithm must obey. In practice, the time required to handle constraints is negligible and frequently much less than the time saved because the constraints permit searching a restricted region of the dynamic-programming grid. An alignment of the beta-like globin gene cluster of several mammals illustrates the practicality of the method.
Collapse
Affiliation(s)
- G Myers
- Department of Computer Science, University of Arizona, Tucson 85721, USA
| | | | | | | |
Collapse
|
13
|
Rein T, Förster R, Krause A, Winnacker EL, Zorbas H. Organization of the alpha-globin promoter and possible role of nuclear factor I in an alpha-globin-inducible and a noninducible cell line. J Biol Chem 1995; 270:19643-50. [PMID: 7642653 DOI: 10.1074/jbc.270.33.19643] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Nuclear factor I (NFI) was suggested to be involved in the expression of the human alpha-globin gene. Two established cell lines, which express alpha-globin differentially, were therefore compared for differences in binding of NFI at the alpha-globin promoter in vivo. HeLa cells, in which alpha-globin is repressed, show a high density promoter occupation with several proteins associated with structurally distorted DNA. Cell line K562, which is inducible for alpha-globin, surprisingly was found to be heterogeneous consisting mainly of cells (approximately 95%) unable to express alpha-globin. However, the promoter of the nonexpressing K562 cells was clearly different from that of HeLa cells, being occupied only at basal transcriptional elements. Therefore, the alpha-globin gene in these K562 cells may not be truly repressed, but in an intermediate state between repression and active transcription. The NFI site of the alpha-globin promoter appeared occupied in HeLa but free of proteins in K562 cells. All cells of both cell lines produce NFI, but the composition and DNA binding affinity of NFI species differ significantly between the two cell lines. Therefore, distinct forms of NFI may repress alpha-globin transcription in HeLa cells. However, NFI is apparently not involved in establishing the latent transcriptional state of the majority of K562 cells.
Collapse
Affiliation(s)
- T Rein
- Institut für Biochemie, Ludwig-Maximilans-Universität München, Germany
| | | | | | | | | |
Collapse
|
14
|
Sun-Hoffman L, Winicov I. Nuclear proteins that interact with the beta maj globin promoter start to accumulate in MEL cells within 12 hours of induction and RNA copies of the promoter successfully compete their binding in vitro. Mol Cell Biochem 1995; 145:159-68. [PMID: 7675035 DOI: 10.1007/bf00935488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The induction of differentiation in mouse erythroleukemia (MEL) cells by dimethylsulfoxide (DMSO) is characterized by increased transcription of globin genes. We have determined that DMSO treated cells increase the levels of nuclear factors capable of overall interactions with the beta maj globin promoter during the initial 24 h post induction, as measured by gel mobility analysis. Two unprocessed beta maj globin mRNA precursors, which are present in MEL cell nuclei early in differentiation, were previously shown to contain the 5' promoter flanking region, and thereby provided the nucleus with a pool of regulatory sequences in multiple RNA copies. We have studied the effect of RNA copies of the promoter region on binding interactions between DNA sequences of the beta maj globin promoter and nuclear factors that interact with these sequences. The promoter region RNA transcripts competed effectively for DNA binding proteins in vitro, while the antisense RNA from the same region did not. The most pronounced competition was observed with proteins from 12 h after DMSO induction, when the concentration of the DNA binding proteins was still increasing. Since the 'upstream' transcripts predominate at 12 h after DMSO induction, these results indicate that the promoter region transcripts may influence the equilibrium of binding between the beta maj globin promoter and the nuclear factors that bind to this region during DMSO induction.
Collapse
Affiliation(s)
- L Sun-Hoffman
- Department of Microbiology, University of Nevada, Reno, USA
| | | |
Collapse
|
15
|
Taxman DJ, Wojchowski DM. Erythropoietin-induced transcription at the murine beta maj-globin promoter. A central role for GATA-1. J Biol Chem 1995; 270:6619-27. [PMID: 7896801 DOI: 10.1074/jbc.270.12.6619] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Using J2E cells and the murine beta maj-globin promoter as a model, we have performed the first direct analyses of erythropoietin (EPO)-activated transcription from defined templates. The -346 to +26 beta maj promoter was shown to comprise a target for maximal activation. This included a positive role for a -346 to -107-base pair (bp) domain in J2E cells, but not in F-MEL cells. Mutagenesis of a -215-bp AGATAA element within this domain showed that this effect did not require GATA-1 binding. In contrast, a critical role for GATA-1 at a -60-bp (G)GATAG element was defined by mutagenesis (GGg-TAG and TGATAG), complementation with a synthetic TGATAA element, and the demonstrated specific binding of GATA-1. Proximal CCAAT (-75) and CACCC (-90) elements also were shown to contribute to transcriptional activation in J2E cells, yet exerted quantitatively distinct effects in the F-MEL system. Based on these results, minimal [TGATAA]4-TATA and TGATAA-CACCC-TATA promoters were constructed and assayed in each system. Remarkably, the [TGATAA]4-TATA promoter, but not the TGATAA-CACCC-TATA promoter, was induced efficiently by EPO in J2E cells, whereas the TGATAA-CACCC-TATA promoter was highly induced by Me2SO in F-MEL cells. These findings suggest that mechanisms of EPO-induced transcription in J2E cells involve GATA-1 and differ from chemically activated mechanisms studied previously in F-MEL cells. Globin induction in J2E cells was not associated with effects of EPO on levels or nuclear translocation of GATA-1. However, hemoglobinization was induced by okadaic acid, 8-Br-cAMP, and forskolin, a finding consistent with induction mechanisms that may involve modulated serine/threonine phosphorylation.
Collapse
Affiliation(s)
- D J Taxman
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park 16802
| | | |
Collapse
|
16
|
Crossley M, Tsang A, Bieker J, Orkin S. Regulation of the erythroid Kruppel-like factor (EKLF) gene promoter by the erythroid transcription factor GATA-1. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)40698-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
17
|
Miller W, Boguski M, Raghavachari B, Zhang Z, Hardison RC. Constructing aligned sequence blocks. J Comput Biol 1994; 1:51-64. [PMID: 8790453 DOI: 10.1089/cmb.1994.1.51] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
This paper presents an efficient method for constructing aligned blocks (i.e., gap-free multiple alignments) from a set of pairwise alignments. The method is more sensitive than some earlier block-constructing methods for detecting conserved sequence regions. The technique is applied to analyze conserved regions in protein prenyltransferases and to detect regulatory elements in the 5' flank of the beta-globin gene.
Collapse
Affiliation(s)
- W Miller
- Department of Computer Science and Engineering, Pennsylvania State University, University Park 16802, USA
| | | | | | | | | |
Collapse
|
18
|
Harrington RE, Winicov I. New concepts in protein-DNA recognition: sequence-directed DNA bending and flexibility. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1994; 47:195-270. [PMID: 8016321 DOI: 10.1016/s0079-6603(08)60253-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- R E Harrington
- Department of Biochemistry, University of Nevada, Reno 89557
| | | |
Collapse
|
19
|
Affiliation(s)
- A R Clark
- Department of Medicine, University of Birmingham, Queen Elizabeth Hospital, U.K
| | | |
Collapse
|
20
|
Fischer K, Haese A, Nowock J. Cooperation of GATA-1 and Sp1 can result in synergistic transcriptional activation or interference. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80472-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
21
|
Pilz R. Impaired erythroid-specific gene expression in cAMP-dependent protein kinase-deficient murine erythroleukemia cells. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80722-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Abstract
Developing erythroid cells require the glycoprotein hormone, erythropoietin (EPO) as an activator of the rapid proliferation of early proerythroblasts (colony forming units-erythroid [CFU-e]), and subsequently as an activator of late erythroid gene expression. Activation of these growth and differentiation events proceeds from the binding of EPO at its transmembrane receptor (Class I cytokine receptor), to the engagement of a complex set of signaling pathways. Studies of reconstituted activities of the cloned EPO receptor in transfected hematopoietic cell lines have served well in identifying receptor domains and downstream mediators involved in proliferative signaling. Extracellular domains have been defined which contribute to ligand binding, receptor processing and transport, and possible dimerization. Cytosolic regions have been delineated which mediate induced mitogenesis, early gene transcription, activated protein tyrosine phosphorylation, down modulation of EPO- and granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced proliferation, and direct association with PI3- and JAK-2 kinases. These newly defined properties begin to align the EPO receptor mechanistically with growth factor receptors (GFR) which encode, or likewise associate with, regulated protein tyrosine kinases including the Class II cytokine receptors for interferons alpha/beta and gamma. An improved understanding of factors which mediate EPO-induced late erythroid gene activation also is emerging. These factors and pathways may be distinct from those associated with EPO-induced proliferation and may involve induced increases in cellular Ca++, cAMP and arachidonic acid, as well as the modulation of GATA-1, and/or SCL. Attributes of model systems used in studies of the role of EPO in late erythroid differentiation also are considered.
Collapse
Affiliation(s)
- D M Wojchowski
- Center for Gene Regulation, Pennsylvania State University, University Park 16802
| | | |
Collapse
|