1
|
Galligan JT, Marchetti SE, Kennell JC. Reverse transcription of the pFOXC mitochondrial retroplasmids of Fusarium oxysporum is protein primed. Mob DNA 2011; 2:1. [PMID: 21255388 PMCID: PMC3035579 DOI: 10.1186/1759-8753-2-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 01/21/2011] [Indexed: 11/11/2022] Open
Abstract
Background The pFOXC retroplasmids are small, autonomously replicating DNA molecules found in mitochondria of certain strains of the filamentous fungus Fusarium oxysporum and are among the first linear genetic elements shown to replicate via reverse transcription. The plasmids have a unique clothespin structure that includes a 5'-linked protein and telomere-like terminal repeats, with pFOXC2 and pFOXC3 having iterative copies of a 5 bp sequence. The plasmids contain a single large open reading frame (ORF) encoding an active reverse transcriptase (RT). The pFOXC-RT is associated with the plasmid transcript in a ribonucleoprotein (RNP) complex and can synthesize full-length (-) strand cDNA products. In reactions containing partially purified RT preparations with exogenous RNAs, the pFOXC3-RT has been shown to initiate cDNA synthesis by use of snapped-back RNAs, as well as loosely associated DNA primers. Results The complete sequence of the distantly related pFOXC1 plasmid was determined and found to terminate in 3-5 copies of a 3 bp sequence. Unexpectedly, the majority of (-) strand cDNA molecules produced from endogenous pFOXC1 transcripts were attached to protein. In vitro experiments using partially purified pFOXC3-RT preparations having a single radiolabeled deoxyribonucleotide triphosphate (dNTP) generated a nucleotide-labeled protein that migrated at the size of the pFOXC-RT. The nucleotide preference of deoxynucleotidylation differed between pFOXC3 and pFOXC1 and showed complementarity to the respective 3' terminal repeats. In reactions that include exogenous RNA templates corresponding to the 3' end of pFOXC1, a protein-linked cDNA product was generated following deoxynucleotidylation, suggesting that reverse transcription initiates with a protein primer. Conclusions The finding that reverse transcription is protein primed suggests the pFOXC retroplasmids may have an evolutionary relationship with hepadnaviruses, the only other retroelement family known to initiate reverse transcription via a protein primer. Moreover, the similarity to protein-primed linear DNA elements supports models in which the terminal repeats are generated and maintained by a DNA slideback mechanism. The ability of the pFOXC-RT to utilize RNA, DNA and protein primers is unique among polymerases and suggests that the pFOXC plasmids may be evolutionary precursors of a broad range of retroelements, including hepadnaviruses, non-long terminal repeat (non-LTR) retrotransposons and telomerase.
Collapse
|
2
|
Reiter B, Faschinger A, Glieder A, Schwab H. Random strand transfer recombination (RSTR) for homology-independent nucleic acid recombination. J Biotechnol 2006; 129:39-49. [PMID: 17175057 DOI: 10.1016/j.jbiotec.2006.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 08/16/2006] [Accepted: 10/09/2006] [Indexed: 11/27/2022]
Abstract
Random strand transfer recombination (RSTR) relies on the ability of viral reverse transcriptases to undergo homology-independent template switches during DNA synthesis. To facilitate strand transfer events single stranded template DNA was hybridized via noncoding complementary sequence stretches which flank the genes. The resulting bulb shaped heteroduplex was used as template for the reverse transcriptase driven DNA polymerization in which template switch events occur spontaneously. Switches were promoted by induced pausing of the viral polymerase at digoxygenin labeled nucleotides. RSTR of homologous genes was demonstrated by the recombination of two genes encoding (R)-hydroxynitrilase isoenzymes from Prunus amygdolus. For non-homologous RSTR we recombined the genes of the Havea brasiliensis (S)-hydroxynitrilase and the estC gene from Burkholderia gladioli. Base-pairing dependent recombination took place spontaneously and at high frequency between genes with low and high sequence homology.
Collapse
Affiliation(s)
- Birgit Reiter
- Research Centre Applied Biocatalysis, Petersgasse 14, 8010 Graz, Austria
| | | | | | | |
Collapse
|
3
|
Malik HS. Ribonuclease H evolution in retrotransposable elements. Cytogenet Genome Res 2005; 110:392-401. [PMID: 16093691 DOI: 10.1159/000084971] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Accepted: 02/11/2004] [Indexed: 11/19/2022] Open
Abstract
Eukaryotic and prokaryotic genomes encode either Type I or Type II Ribonuclease H (RNH) which is important for processing RNA primers that prime DNA replication in almost all organisms. This review highlights the important role that Type I RNH plays in the life cycle of many retroelements, and its utility in tracing early events in retroelement evolution. Many retroelements utilize host genome-encoded RNH, but several lineages of retroelements, including some non-LTR retroposons and all LTR retrotransposons, encode their own RNH domains. Examination of these RNH domains suggests that all LTR retrotransposons acquired an enzymatically weak RNH domain that is missing an important catalytic residue found in all other RNH enzymes. We propose that this reduced activity is essential to ensure correct processing of the polypurine tract (PPT), which is an important step in the life cycle of these retrotransposons. Vertebrate retroviruses appear to have reacquired their RNH domains, which are catalytically more active, but their ancestral RNH domains (found in other LTR retrotransposons) have degenerated to give rise to the tether domains unique to vertebrate retroviruses. The tether domain may serve to control the more active RNH domain of vertebrate retroviruses. Phylogenetic analysis of the RNH domains is also useful to "date" the relative ages of LTR and non-LTR retroelements. It appears that all LTR retrotransposons are as old as, or younger than, the "youngest" lineages of non-LTR retroelements, suggesting that LTR retrotransposons arose late in eukaryotes.
Collapse
Affiliation(s)
- H S Malik
- Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.
| |
Collapse
|
4
|
Abstract
The origin of translation has stimulated much discussion since the basic processes involved were deciphered during the 1960s and 1970s. One strand of thought suggested that the process originated from RNA replication in the RNA world (Weiner & Maizels, 1987, 1994). In this paper I seek to extend this model. The mRNA originates as a replication intermediate of minus-strand ribozyme replication and thus contains all the genetic information contained in both the ribozyme portion and the putative tRNA-like portion of the RNA molecule. Qualitatively, this is similar to the model for the origin of chromosomes (Szathmary & Maynard-Smith, 1993, Maynard-Smith & Szathmary, 1993). This model explicitly describes the evolution of early chromosomes and the role replication played in generating the modern mRNA. Moreover, by pursuing this model, the START and STOP codons were derived and their original function with regard to the primitive 23S ribosomal RNA is suggested. Co-evolution of the genetic code (Wong, 1975) is also contained within the model. Lastly, I address some of the benefits and costs that the process may have for the organism in the context of autotrophy in the RNA world.
Collapse
Affiliation(s)
- David S Stevenson
- Department of Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
5
|
Bibiłło A, Eickbush TH. The reverse transcriptase of the R2 non-LTR retrotransposon: continuous synthesis of cDNA on non-continuous RNA templates. J Mol Biol 2002; 316:459-73. [PMID: 11866511 DOI: 10.1006/jmbi.2001.5369] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
R2 is a non-long terminal repeat (non-LTR) retrotransposon that inserts into the 28 S rRNA genes of arthropods. The element encodes two enzymatic activities: an endonuclease that specifically cleaves the 28 S gene target site, and a reverse transcriptase (RT) that can use the 3' end of the cleaved DNA to prime reverse transcription. R2 RT only utilizes RNA templates that contain the 3' untranslated region of the R2 element as templates in this target primed reverse transcription (TPRT) reaction. Here, detailed biochemical characterization of the R2 RT indicates that the enzyme is capable of making multiple, consecutive jumps between RNA templates. The terminal 3' nucleotide of the "acceptor" RNA and the 5' nucleotide of the "donor" RNA are frequently reverse transcribed in these jumps, indicating that the acceptor RNA does not anneal to the cDNA derived from the donor RNA template. These template jumps occur during TPRT as well as in non-specific extension reactions in which reverse transcription is primed by an oligonucleotide annealed to the RNA template. Analysis of these RT assays done in the absence of the target DNA also revealed that the R2 RT can initiate reverse transcription near the 3' end of any RNA molecule using the 3' end of a second RNA molecule as primer. Again there is no requirement for sequence complementarity between the RNA used as template and the RNA used as primer. These properties of the R2 RT differ substantially from those of retroviral RTs but have similarities to the RT of the Mauriceville retroplasmid of Neurospora crassa. We present a model which relates these unusual properties of the R2 RT to structural differences from retroviral RTs as well as correlates these properties to the likely retrotransposition mechanism of R2 and other non-LTR retrotransposons.
Collapse
Affiliation(s)
- Arkadiusz Bibiłło
- Department of Biology, University of Rochester, Rochester, NY 4627-0211, USA
| | | |
Collapse
|
6
|
Morozova T, Seo W, Zimmerly S. Non-cognate template usage and alternative priming by a group II intron-encoded reverse transcriptase. J Mol Biol 2002; 315:951-63. [PMID: 11827468 DOI: 10.1006/jmbi.2001.5320] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Group II introns are retroelements that site-specifically insert into DNA through homing. They are also implicated in related phenomena such as ectopic site insertions and precise intron deletions, but little is known about how group II intron reverse transcriptases (RTs) interact with non-cognate substrates. Here we show that wild-type aI2 RT readily reverse transcribes non-cognate RNAs in mitochondrial RNP particles when the aI2 intron structure is misfolded. In two closely related priming mutants, 1degree2(DeltaD5) and 1(+)2(DeltaD5), which contain wild-type RT but a disrupted intron structure, the RT has substantially lost specificity for aI2 RNA and copies multiple RNAs present in the RNP particles, using an alternative priming mechanism. The RT in 1degree2(DeltaD5) RNP particles can also copy exogenous RNAs but unlike the endogenous templates, a complementary primer is required, suggesting that the alternative priming event is specific to RT-RNA interactions formed in vivo. Alternatively primed cDNAs from strains 1degree2(DeltaD5), 1(+)2(DeltaD5) and 1degree2(P714T) (containing the mutation P714T in the RT) do not use homing site DNA as a primer, but appear to utilize a non-complementary DNA primer of approximately ten nucleotides. The alternative priming mechanism and reverse transcription of non-cognate templates has implications for in vivo reverse transcription of non-intronic RNAs, which is expected to occur during intron deletions and other retroprocessing events.
Collapse
Affiliation(s)
- Tatiana Morozova
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | | | | |
Collapse
|
7
|
Chen B, Lambowitz AM. De novo and DNA primer-mediated initiation of cDNA synthesis by the mauriceville retroplasmid reverse transcriptase involve recognition of a 3' CCA sequence. J Mol Biol 1997; 271:311-32. [PMID: 9268661 DOI: 10.1006/jmbi.1997.1185] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Mauriceville mitochondrial retroplasmid of Neurospora encodes a novel reverse transcriptase that initiates cDNA synthesis at a 3' tRNA-like structure of the plasmid transcript, either de novo (i.e. without a primer) or by using the 3' OH group of a DNA primer. Both the de novo and primer-mediated initiations involve recognition of structural features at the 3' end of the retroplasmid transcript, which ends with a 3' CCACCA. Here, detailed biochemical characterization of the retroplasmid reverse transcriptase shows that the 3' CCA of the plasmid transcript is the major structural feature recognized by the reverse transcriptase for both the de novo and primer-mediated initiations. Complementarity between the DNA primer and RNA template is not required for the primer-mediated initiation, although short (1 to 3 nt) base-pairing interactions can influence both the efficiency and site of initiation near the 3' end of the transcript. Single nucleotide changes in the 3' CCA lead to less efficient initiation in the upstream CCA with an increased propensity to add extra "non-coded" nucleotides to the 5' end of the cDNA during de novo initiation or to the 3' end of the primer during primer-mediated initiation. Secondary structure features upstream of the 3' CCA also influence the efficiency of initiation, but are not stringently required in vitro. Finally, we find that the retroplasmid reverse transcriptase does not efficiently use DNA primers that are base-paired to internal positions in the RNA template, nor does it use analogs of natural substrates used by non-long terminal repeat retrotransposon or retroviral reverse transcriptases. Our results indicate that the retroplasmid reverse transcriptase is uniquely adapted to initiate cDNA synthesis by recognizing a 3' CCA sequence. The ability to recognize a specific template sequence is common for RNA polymerases, but unprecedented for a reverse transcriptase.
Collapse
Affiliation(s)
- B Chen
- Department of Molecular Genetics, Ohio State University, 484 West Twelfth Avenue, Columbus, OH, 43210-1292, USA
| | | |
Collapse
|
8
|
Moenne A, Bégu D, Jordana X. A reverse transcriptase activity in potato mitochondria. PLANT MOLECULAR BIOLOGY 1996; 31:365-372. [PMID: 8756599 DOI: 10.1007/bf00021796] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A reverse transcriptase activity has been detected in potato mitochondria using special RNAs as templates: a bacterial RNA coding for neomycin phosphotransferase (neo pa RNA) and a Neurospora crassa mitochondrial RNA (184 nt RNA). Surprisingly, no exogenous primer addition was required. These RNA templates share a primary and secondary structure similar to the T psi CG loop of tRNAs that could constitute the recognition site for the enzyme. Reverse transcriptase activity was inhibited by ddTTP, ethidium bromide and aphidicolin, while potato mitochondrial DNA polymerase was not inhibited by aphidicolin indicating that these activities correspond to distinct enzymes. A conserved sequence of reverse transcriptases was detected in potato mitochondrial DNA suggesting that this enzyme could be mitochondrially encoded.
Collapse
Affiliation(s)
- A Moenne
- Departamento de Ciencias Biológicas, Facultad de Química y Biología, Universidad de Santiago, Chile
| | | | | |
Collapse
|
9
|
Lambowitz AM, Chiang CC. The Mauriceville and Varkud plasmids: primitive retroelements found inNeurosporamitochondria. ACTA ACUST UNITED AC 1995. [DOI: 10.1139/b95-242] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Mauriceville and closely related Varkud plasmids are small circular DNAs (3.6 and 3.7 kb, respectively) found in the mitochondria of certain Neurospora spp. strains isolated from nature. The plasmids replicate via reverse transcription and appear to be primitive retroelements that may be related to the early ancestors of retroviruses. Recent studies have shown that the plasmid reverse transcriptase closely resembles certain viral RNA-dependent RNA polymerases in initiating (−) strand cDNA synthesis de novo (i.e., without a primer) at a tRNA-like structure at the 3′ end of the plasmid transcript. The plasmid reverse transcriptase can also use DNA or RNA primers and can carry out template-switching reactions that lead to the generation of suppressive mutant plasmids or the integration of the plasmids into mitochondrial DNA. The characteristics of the plasmids and their reverse transcription mechanism suggest an evolutionary connection between RNA and DNA replication and raise the possibility that the plasmids are related to the earliest DNA-based life forms that emerged at the time of transition from an RNA to a DNA world. Key words: DNA synthesis, evolution, retrovirus, reverse transcriptase, RNA virus.
Collapse
|
10
|
Arganoza MT, Akins RA. Recombinant mitochondrial plasmids in Neurospora composed of Varkud and a new multimeric mitochondrial plasmid. Curr Genet 1995; 29:34-43. [PMID: 8595656 DOI: 10.1007/bf00313191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A mitochondrial plasmid, V5124, in Neurospora intermedia isolate 5124 has a deletion in its sequence relative to the highly similar Mauriceville and Varkud plasmids. These insertions in the latter plasmids are 28 bp in length and are positioned at sites that correspond to their major transcript 5' termini. The 28-bp sequence is nearly identical to a putative processing site upstream of the ND4L gene on the mitochondrial genome. The absence of this 28-bp sequence in V5124 apparently results in transcripts whose 5' termini correspond to an upstream consensus promoter sequence. Two variant forms of V5124 coexist with V5124 and have either of two similar 0.3-kb inserts positioned exactly as is the 28-bp insert in Varkud. These long inserts are chimeric, partly deriving from a newly discovered multimeric plasmid, MP. MP has significant similarity to a short region of the mitochondrial satellite plasmid VS. Another part of the 0.3-kb inserts in V5124 variants derives from the mitochondrial genome, within restriction fragment EcoRI-8. Neurospora mitochondria in many isolates can have several types of mitochondrial plasmids belonging to different homology groups. We propose that a common ancestral plasmid acquired insertions from either the mitochondrial genome or from other plasmids. The V5124 variants are the first instance of a chimeric mitochondrial plasmid in which distinct plasmids have recombined. This recombination proves that different plasmids coexist currently, or else did so at some point in their evolution, within a single mitochondrion.
Collapse
Affiliation(s)
- M T Arganoza
- Wayne State University School of Medicine, Department of Biochemistry, 540 East Canfield, Detroit MI 48201, USA
| | | |
Collapse
|
11
|
Furano AV, Usdin K. DNA "fossils" and phylogenetic analysis. Using L1 (LINE-1, long interspersed repeated) DNA to determine the evolutionary history of mammals. J Biol Chem 1995; 270:25301-4. [PMID: 7592685 DOI: 10.1074/jbc.270.43.25301] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- A V Furano
- Section on Genomic Structure and Function, NIDDK, National Institutes of Health, Bethesda, Maryland 20893-0830, USA
| | | |
Collapse
|
12
|
Affiliation(s)
- M F Singer
- Carnegie Institution of Washington, Washington, D.C. 20005, USA
| |
Collapse
|
13
|
Abstract
Retrons are a new class of genetic elements found in the chromosome of a large number of different bacteria. These elements code for a reverse transcriptase (RT) that is structurally similar to the polymerases of retroviruses. The retron associated RT is responsible for the production of an unusual extrachromosomal satellite DNA, known as multicopy, single-stranded DNA (msDNA). Synthesis of msDNA is dependent on a novel self-priming mechanism, resulting in the formation of a 2',5'-phosphodiester bond. A comparison of bacterial RTs is presented, noting conserved and unique features of these polymerases. In addition, the origin, means of dissemination, and possible activities of these functionally obscure retroelements are discussed.
Collapse
Affiliation(s)
- S A Rice
- Department of Microbiology, University of Tennessee, Knoxville 37996-0845, USA
| | | |
Collapse
|
14
|
Abstract
Genetic elements coding for proteins that present amino acid identity with the conserved motifs of retroviral reverse transcriptases constitute the retroid family. With the exception of reverse transcriptases encoded by mitochondrial plasmids of Neurospora, all reverse transcriptases have an absolute requirement for a primer to initiate DNA synthesis. In retroviruses, plant pararetroviruses, and retrotransposons (transposons containing long terminal repeats), DNA synthesis is primed by specific tRNAs. All these retroelements contain a primer binding site presenting a Watson-Crick complementarity with the primer tRNA. The tRNAs most widely used as primers are tRNA(Trp), tRNA(Pro), tRNA(1,2Lys), tRNA(3Lys), tRNA(iMet). Other tRNAs such as tRNA(Gln), tRNA(Leu), tRNA(Ser), tRNA(Asn) and tRNA(Arg) are also occasionally used as primers. In the retroviruses and plant pararetroviruses, the primer binding site is complementary to the 3' end of the primer tRNA. In the case of retrotransposons, the primer binding site is either complementary to the 3' end or to an internal region of the primer tRNA. Additional interactions taking place between the primer tRNA and the retro-RNA outside of the primer binding site have been evidenced in the case of Rous sarcoma virus, human immunodeficiency virus type I, and yeast retrotransposon Ty1. A selective encapsidation of the primer tRNA, probably promoted by interactions with reverse transcriptase, occurs during the formation of virus or virus-like particles. Annealing of the primer tRNA to the primer binding site appears to be mediated by reverse transcriptase and/or the nucleocapsid protein. Modified nucleosides of the primer tRNA have been shown to be important for replication of the primer binding site, encapsidation of the primer (in the case of Rous sarcoma virus), and interaction with the genomic RNA (in the case of human immunodeficiency virus type I).
Collapse
Affiliation(s)
- R Marquet
- UPR no 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | |
Collapse
|
15
|
Jabaji-Hare SH, Burger G, Forget L, Lang BF. Extrachromosomal plasmids in the plant pathogenic fungus Rhizoctonia solani. Curr Genet 1994; 25:423-31. [PMID: 8082188 DOI: 10.1007/bf00351781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Extrachromosomal DNA elements were found in field isolates of Rhizoctonia solani belonging to anastomosis groups (AG) 1-5. An isolate of AG-5 (Rh41) contains a 3.6-kbp plasmid (pRS188) which has a similar A+T content to mitochondrial DNA. pRS188 is linear and has knob structures at its ends, as revealed by electron microscopy. Exonuclease digestions show that the linear ends of pRS188 are protected, and remain protected even after proteinase K digestion. pRS188 does not hybridise to nuclear or mitochondrial DNAs of its host isolate (Rh41), to total DNAs of other plasmid-less AG-5 isolates, or to total DNA of plasmid-harbouring isolates belonging to different AGs. Cellular-fractionation experiments suggest that pRS188 is associated with mitochondria, but it remains undecided whether this occurs inside or outside of the organelles. The nucleotide sequence of about 60% of the plasmid has been determined, revealing no open reading frame longer than 91 amino acids, and no known gene or genetic element is detected in the sequence contigs of 300-1572 bp length. Similar studies were performed with the plasmid pRS104 present in an isolate of AG-4 (Rh36), the sequence of which exhibits essentially the same features as pRS188 except that its A+T content resembles that of nuclear DNA. Pathogenicity tests reveal that the isolates Rh41 and R36 are as virulent as the plasmid-less isolates of AG-4 and -5, indicating that the plasmids do not play any role in pathogenicity.
Collapse
Affiliation(s)
- S H Jabaji-Hare
- Department of Plant Science, McGill University, Ste-Anne-de Bellevue, Québec, Canada
| | | | | | | |
Collapse
|
16
|
Busseau I, Chaboissier MC, Pélisson A, Bucheton A. I factors in Drosophila melanogaster: transposition under control. Genetica 1994; 93:101-16. [PMID: 7813907 DOI: 10.1007/bf01435243] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
I factors are responsible for the I-R system of hybrid dysgenesis in Drosophila melanogaster. They belong to the LINE class of mobile elements, which transpose via reverse transcription of a full-length RNA intermediate. I factors are active members of the I element family, which also contains defective I elements that are immobilized within peri-centromeric heterochromatin and represent very old components of the genome. Active I factors have recently invaded natural populations of Drosophila melanogaster, giving rise to inducer strains. Reactive strains, devoid of active I factors, derive from old laboratory stocks established before the invasion. Transposition of I factors is activated at very high frequencies in the germline of hybrid females issued from crosses between females from reactive strains and males from inducer strains. It results in the production of high rates of mutations and chromosomal rearrangements as well as in a particular syndrome of sterility. The frequency of transposition of I factors is dependent on the amount of full-length RNA that is synthesized from an internal promoter. This full-length RNA serves both as an intermediate of transposition and presumably as a messenger for protein synthesis. Regulators of transposition apparently affect transcription initiation from the internal promoter. The data presented here lead to the proposal of a tentative model for transposition.
Collapse
Affiliation(s)
- I Busseau
- Centre de Génétique Moléculaire, CNRS, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
17
|
Wang H, Lambowitz AM. The Mauriceville plasmid reverse transcriptase can initiate cDNA synthesis de novo and may be related to reverse transcriptase and DNA polymerase progenitor. Cell 1993; 75:1071-81. [PMID: 7505202 DOI: 10.1016/0092-8674(93)90317-j] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We show that the reverse transcriptase (RT) encoded by the Mauriceville mitochondrial plasmid of Neurospora closely resembles viral RNA-dependent RNA polymerases in initiating cDNA synthesis opposite the penultimate C residue of a 3' tRNA-like structure and has the unprecedented ability for a DNA polymerase to initiate DNA synthesis at a specific site in a natural template without a primer. The Mauriceville plasmid enzyme can also use DNA or RNA primers in a manner suggesting how a primitive RT could have evolved from an RNA-dependent RNA polymerase into retroviral and other types of RTs. The characteristics of the Mauriceville plasmid RT suggest that it may be related to the progenitor of present-day RTs and DNA polymerases.
Collapse
Affiliation(s)
- H Wang
- Department of Molecular Genetics, Medical Biochemistry, Ohio State University, Columbus 43210
| | | |
Collapse
|
18
|
Abstract
We have discovered that, in certain crosses of natural isolates of Neurospora intermedia, linear and circular mitochondrial plasmids of the maternal parent are not transmitted to the progeny. This contrasts with the maternal transmission of organellar genetic elements generally observed in crosses between laboratory strains and between other natural isolates. Formally, failure of plasmid transmission is a type of plasmid suppression. The present cases represent the first report of plasmid suppressors in natural populations of fungi. Strains used as female parents can transmit or not transmit plasmids depending on the strain used as male parent. Males that act to suppress in one cross fail to suppress in others. Therefore, the suppression of plasmids depends on a strain-specific interaction and is not determined exclusively by the males. Since suppression is a specific interaction we inferred that it must be genetically based and tested this hypothesis by seeking segregation of suppressed and nonsuppressed phenotypes in octads. Segregation of the original full suppression of all plasmids was indeed observed in each of the three sets of testcrosses examined. The interaction type of suppression must be initiated in ascogenous tissue during the sexual cycle. It is a nonautonomous type of suppression, affecting all descendent cells. In any one case of suppression, either one, several, or all plasmids can be lost. Both linear and circular plasmids can be eliminated by the same suppressor genotype. In addition, several strains were found to contain suppressors that act after ascospore delineation. This autonomous type of suppression has been observed previously in laboratory strains, but not in natural isolates. All the cases of plasmid suppression identified in this study involved a range of apparently neutral circular and linear plasmids. Using one senescent Kalilo strain of N. intermedia, we did not detect any case of suppression of the senescence-determining linear plasmid kalDNA.
Collapse
Affiliation(s)
- X Yang
- Department of Botany, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
19
|
Reverse transcription of the Mauriceville plasmid of Neurospora. Lack of ribonuclease H activity associated with the reverse transcriptase and possible use of mitochondrial ribonuclease H. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(17)46719-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
20
|
Affiliation(s)
- D J Finnegan
- Institute of Cell and Molecular Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3JR, UK
| |
Collapse
|