1
|
Kanai M, Mok S, Yeo T, Shears MJ, Ross LS, Jeon JH, Narwal S, Haile MT, Tripathi AK, Mlambo G, Kim J, Gil-Iturbe E, Okombo J, Fairhurst KJ, Bloxham T, Bridgford JL, Sheth T, Ward KE, Park H, Rozenberg FD, Quick M, Mancia F, Lee MC, Small-Saunders JL, Uhlemann AC, Sinnis P, Fidock DA. Identification of the drug/metabolite transporter 1 as a marker of quinine resistance in a NF54×Cam3.II P. falciparum genetic cross. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615529. [PMID: 39386571 PMCID: PMC11463348 DOI: 10.1101/2024.09.27.615529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The genetic basis of Plasmodium falciparum resistance to quinine (QN), a drug used to treat severe malaria, has long been enigmatic. To gain further insight, we used FRG-NOD human liver-chimeric mice to conduct a P. falciparum genetic cross between QN-sensitive and QN-resistant parasites, which also differ in their susceptibility to chloroquine (CQ). By applying different selective conditions to progeny pools prior to cloning, we recovered 120 unique recombinant progeny. These progeny were subjected to drug profiling and QTL analyses with QN, CQ, and monodesethyl-CQ (md-CQ, the active metabolite of CQ), which revealed predominant peaks on chromosomes 7 and 12, consistent with a multifactorial mechanism of resistance. A shared chromosome 12 region mapped to resistance to all three antimalarials and was preferentially co-inherited with pfcrt. We identified an ATP-dependent zinc metalloprotease (FtsH1) as one of the top candidates and observed using CRISPR/Cas9 SNP-edited lines that ftsh1 is a potential mediator of QN resistance and a modulator of md-CQ resistance. As expected, CQ and md-CQ resistance mapped to a chromosome 7 region harboring pfcrt. However, for QN, high-grade resistance mapped to a chromosome 7 peak centered 295kb downstream of pfcrt. We identified the drug/metabolite transporter 1 (DMT1) as the top candidate due to its structural similarity to PfCRT and proximity to the peak. Deleting DMT1 in QN-resistant Cam3.II parasites significantly sensitized the parasite to QN but not to the other drugs tested, suggesting that DMT1 mediates QN response specifically. We localized DMT1 to structures associated with vesicular trafficking, as well as the parasitophorous vacuolar membrane, lipid bodies, and the digestive vacuole. We also observed that mutant DMT1 transports more QN than the wild-type isoform in vitro. Our study demonstrates that DMT1 is a novel marker of QN resistance and a new chromosome 12 locus associates with CQ and QN response, with ftsh1 is a potential candidate, suggesting these genes should be genotyped in surveillance and clinical settings.
Collapse
Affiliation(s)
- Mariko Kanai
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Sachel Mok
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, NY, USA
| | - Tomas Yeo
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Melanie J. Shears
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, MD, USA
| | - Leila S. Ross
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
| | - Jin H. Jeon
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Sunil Narwal
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Meseret T. Haile
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
| | - Abhai K. Tripathi
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, MD, USA
| | - Godfree Mlambo
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, MD, USA
| | - Jonathan Kim
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, NY, USA
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University Irving Medical Center, NY, USA
| | - John Okombo
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Kate J. Fairhurst
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Talia Bloxham
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Jessica L. Bridgford
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Tanaya Sheth
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Kurt E. Ward
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Heekuk Park
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, NY, USA
| | - Felix D. Rozenberg
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, NY, USA
| | - Matthias Quick
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, NY, USA
- Department of Psychiatry, Columbia University Irving Medical Center, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, NY, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, NY, USA
| | - Marcus C.S. Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Jennifer L. Small-Saunders
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, NY, USA
| | - Anne-Catrin Uhlemann
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, NY, USA
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, MD, USA
| | - David A. Fidock
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, NY, USA
| |
Collapse
|
2
|
Plasmodium Genomics and Genetics: New Insights into Malaria Pathogenesis, Drug Resistance, Epidemiology, and Evolution. Clin Microbiol Rev 2019; 32:32/4/e00019-19. [PMID: 31366610 DOI: 10.1128/cmr.00019-19] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Protozoan Plasmodium parasites are the causative agents of malaria, a deadly disease that continues to afflict hundreds of millions of people every year. Infections with malaria parasites can be asymptomatic, with mild or severe symptoms, or fatal, depending on many factors such as parasite virulence and host immune status. Malaria can be treated with various drugs, with artemisinin-based combination therapies (ACTs) being the first-line choice. Recent advances in genetics and genomics of malaria parasites have contributed greatly to our understanding of parasite population dynamics, transmission, drug responses, and pathogenesis. However, knowledge gaps in parasite biology and host-parasite interactions still remain. Parasites resistant to multiple antimalarial drugs have emerged, while advanced clinical trials have shown partial efficacy for one available vaccine. Here we discuss genetic and genomic studies of Plasmodium biology, host-parasite interactions, population structures, mosquito infectivity, antigenic variation, and targets for treatment and immunization. Knowledge from these studies will advance our understanding of malaria pathogenesis, epidemiology, and evolution and will support work to discover and develop new medicines and vaccines.
Collapse
|
3
|
Is the Mitochondrion a Good Malaria Drug Target? Trends Parasitol 2017; 33:185-193. [DOI: 10.1016/j.pt.2016.10.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/25/2016] [Accepted: 10/06/2016] [Indexed: 01/21/2023]
|
4
|
Goodman CD, Siregar JE, Mollard V, Vega-Rodríguez J, Syafruddin D, Matsuoka H, Matsuzaki M, Toyama T, Sturm A, Cozijnsen A, Jacobs-Lorena M, Kita K, Marzuki S, McFadden GI. Parasites resistant to the antimalarial atovaquone fail to transmit by mosquitoes. Science 2016; 352:349-53. [PMID: 27081071 DOI: 10.1126/science.aad9279] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/10/2016] [Indexed: 12/16/2022]
Abstract
Drug resistance compromises control of malaria. Here, we show that resistance to a commonly used antimalarial medication, atovaquone, is apparently unable to spread. Atovaquone pressure selects parasites with mutations in cytochrome b, a respiratory protein with low but essential activity in the mammalian blood phase of the parasite life cycle. Resistance mutations rescue parasites from the drug but later prove lethal in the mosquito phase, where parasites require full respiration. Unable to respire efficiently, resistant parasites fail to complete mosquito development, arresting their life cycle. Because cytochrome b is encoded by the maternally inherited parasite mitochondrion, even outcrossing with wild-type strains cannot facilitate spread of resistance. Lack of transmission suggests that resistance will be unable to spread in the field, greatly enhancing the utility of atovaquone in malaria control.
Collapse
Affiliation(s)
| | - Josephine E Siregar
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia. Eijkman Institute for Molecular Biology, JI Diponegoro no. 69, Jakarta, 10430, Indonesia. Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Vanessa Mollard
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Joel Vega-Rodríguez
- Johns Hopkins University Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology, Malaria Research Institute, Baltimore, MD 21205, USA
| | - Din Syafruddin
- Eijkman Institute for Molecular Biology, JI Diponegoro no. 69, Jakarta, 10430, Indonesia. Department of Parasitology, Faculty of Medicine, Hasanuddin University, Jalan Perintis Kemerdekaan Km10, Makassar 90245, Indonesia
| | - Hiroyuki Matsuoka
- Division of Medical Zoology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Motomichi Matsuzaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoko Toyama
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Angelika Sturm
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Anton Cozijnsen
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Marcelo Jacobs-Lorena
- Johns Hopkins University Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology, Malaria Research Institute, Baltimore, MD 21205, USA
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
| | - Sangkot Marzuki
- Eijkman Institute for Molecular Biology, JI Diponegoro no. 69, Jakarta, 10430, Indonesia
| | - Geoffrey I McFadden
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
5
|
Zimmerman KCK, Levitis DA, Pringle A. Beyond animals and plants: dynamic maternal effects in the fungus Neurospora crassa. J Evol Biol 2016; 29:1379-93. [PMID: 27062053 DOI: 10.1111/jeb.12878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 04/05/2016] [Indexed: 11/28/2022]
Abstract
Maternal effects are widely documented in animals and plants, but not in fungi or other eukaryotes. A principal cause of maternal effects is asymmetrical parental investment in a zygote, creating greater maternal vs. paternal influence on offspring phenotypes. Asymmetrical investments are not limited to animals and plants, but are also prevalent in fungi and groups including apicomplexans, dinoflagellates and red algae. Evidence suggesting maternal effects among fungi is sparse and anecdotal. In an experiment designed to test for maternal effects across sexual reproduction in the model fungus Neurospora crassa, we measured offspring phenotypes from crosses of all possible pairs of 22 individuals. Crosses encompassed reciprocals of 11 mating-type 'A' and 11 mating-type 'a' wild strains. After controlling for the genetic and geographic distances between strains in any individual cross, we found strong evidence for maternal control of perithecia (sporocarp) production, as well as maternal effects on spore numbers and spore germination. However, both parents exert equal influence on the percentage of spores that are pigmented and size of pigmented spores. We propose a model linking the stage-specific presence or absence of maternal effects to cellular developmental processes: effects appear to be mediated primarily through the maternal cytoplasm, and, after spore cell walls form, maternal influence on spore development is limited. Maternal effects in fungi, thus far largely ignored, are likely to shape species' evolution and ecologies. Moreover, the association of anisogamy and maternal effects in a fungus suggests maternal effects may also influence the biology of other anisogamous eukaryotes.
Collapse
Affiliation(s)
- K C K Zimmerman
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - D A Levitis
- Department of Biology, Bates College, Lewiston, ME, USA
| | - A Pringle
- Departments of Botany and Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
6
|
Patterns and dynamics of genetic diversity in Plasmodium falciparum: what past human migrations tell us about malaria. Parasitol Int 2014; 64:238-43. [PMID: 25305418 DOI: 10.1016/j.parint.2014.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 08/14/2014] [Accepted: 09/12/2014] [Indexed: 01/23/2023]
Abstract
Plasmodium falciparum is the main agent of malaria, one of the major human infectious diseases affecting millions of people worldwide. The genetic diversity of P. falciparum populations is an essential factor in the parasite's ability to adapt to changes in its environment, enabling the development of drug resistance and the evasion from the host immune system through antigenic variation. Therefore, characterizing these patterns and understanding the main drivers of the pathogen's genetic diversity can provide useful inputs for informing control strategies. In this paper, we review the pioneering work led by Professor Kazuyuki Tanabe on the genetic diversity of P. falciparum populations. In a first part, we recall basic results from population genetics for quantifying within-population genetic diversity, and discuss the main mechanisms driving this diversity. Then, we show how these approaches have been used for reconstructing the historical spread of malaria worldwide, and how current patterns of genetic diversity suggest that the pathogen followed our ancestors in their journey out of Africa. Because these results are robust to different types of genetic markers, they provide a baseline for predicting the pathogen's diversity in unsampled populations, and some useful elements for predicting vaccine efficacy and informing malaria control strategies.
Collapse
|
7
|
Talman AM, Prieto JH, Marques S, Ubaida-Mohien C, Lawniczak M, Wass MN, Xu T, Frank R, Ecker A, Stanway RS, Krishna S, Sternberg MJE, Christophides GK, Graham DR, Dinglasan RR, Yates JR, Sinden RE. Proteomic analysis of the Plasmodium male gamete reveals the key role for glycolysis in flagellar motility. Malar J 2014; 13:315. [PMID: 25124718 PMCID: PMC4150949 DOI: 10.1186/1475-2875-13-315] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/28/2014] [Indexed: 12/22/2022] Open
Abstract
Background Gametogenesis and fertilization play crucial roles in malaria transmission. While male gametes are thought to be amongst the simplest eukaryotic cells and are proven targets of transmission blocking immunity, little is known about their molecular organization. For example, the pathway of energy metabolism that power motility, a feature that facilitates gamete encounter and fertilization, is unknown. Methods Plasmodium berghei microgametes were purified and analysed by whole-cell proteomic analysis for the first time. Data are available via ProteomeXchange with identifier PXD001163. Results 615 proteins were recovered, they included all male gamete proteins described thus far. Amongst them were the 11 enzymes of the glycolytic pathway. The hexose transporter was localized to the gamete plasma membrane and it was shown that microgamete motility can be suppressed effectively by inhibitors of this transporter and of the glycolytic pathway. Conclusions This study describes the first whole-cell proteomic analysis of the malaria male gamete. It identifies glycolysis as the likely exclusive source of energy for flagellar beat, and provides new insights in original features of Plasmodium flagellar organization. Electronic supplementary material The online version of this article (doi:10.1186/1475-2875-13-315) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Arthur M Talman
- Division of Cell and Molecular Biology, Imperial College, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Culleton RL, Abkallo HM. Malaria parasite genetics: doing something useful. Parasitol Int 2014; 64:244-53. [PMID: 25073068 DOI: 10.1016/j.parint.2014.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 07/11/2014] [Indexed: 01/15/2023]
Abstract
Genetics has informed almost every aspect of the study of malaria parasites, and remains a key component of much of the research that aims to reduce the burden of the disease they cause. We describe the history of genetic studies of malaria parasites and give an overview of the utility of the discipline to malariology.
Collapse
Affiliation(s)
- Richard L Culleton
- Malaria Unit, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.
| | - Hussein M Abkallo
- Malaria Unit, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
9
|
Tanabe K, Jombart T, Horibe S, Palacpac NMQ, Honma H, Tachibana SI, Nakamura M, Horii T, Kishino H, Mita T. Plasmodium falciparum mitochondrial genetic diversity exhibits isolation-by-distance patterns supporting a sub-Saharan African origin. Mitochondrion 2013; 13:630-6. [PMID: 24004956 DOI: 10.1016/j.mito.2013.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/13/2013] [Accepted: 08/26/2013] [Indexed: 01/31/2023]
Abstract
The geographical distribution of single nucleotide polymorphism (SNP) in the mitochondrial genome of the human malaria parasite Plasmodium falciparum was investigated. We identified 88 SNPs in 516 isolates from seven parasite populations in Africa, Southeast Asia and Oceania. Analysis of the SNPs postulated a sub-Saharan African origin and recovered a strong negative correlation between within-population SNP diversity and geographic distance from the putative African origin over Southeast Asia and Oceania. These results are consistent with those previously obtained for nuclear genome-encoded housekeeping genes, indicating that the pattern of inheritance does not substantially affect the geographical distribution of SNPs.
Collapse
Affiliation(s)
- Kazuyuki Tanabe
- Laboratory of Malariology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Iron-sulphur clusters, their biosynthesis, and biological functions in protozoan parasites. ADVANCES IN PARASITOLOGY 2013; 83:1-92. [PMID: 23876871 DOI: 10.1016/b978-0-12-407705-8.00001-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Fe-S clusters are ensembles of sulphide-linked di-, tri-, and tetra-iron centres of a variety of metalloproteins that play important roles in reduction and oxidation of mitochondrial electron transport, energy metabolism, regulation of gene expression, cell survival, nitrogen fixation, and numerous other metabolic pathways. The Fe-S clusters are assembled by one of four distinct systems: NIF, SUF, ISC, and CIA machineries. The ISC machinery is a house-keeping system conserved widely from prokaryotes to higher eukaryotes, while the other systems are present in a limited range of organisms and play supplementary roles under certain conditions such as stress. Fe-S cluster-containing proteins and the components required for Fe-S cluster biosynthesis are modulated under stress conditions, drug resistance, and developmental stages. It is also known that a defect in Fe-S proteins and Fe-S cluster biogenesis leads to many genetic disorders in humans, which indicates the importance of the systems. In this review, we describe the biological and physiological significance of Fe-S cluster-containing proteins and their biosynthesis in parasitic protozoa including Plasmodium, Trypanosoma, Leishmania, Giardia, Trichomonas, Entamoeba, Cryptosporidium, Blastocystis, and microsporidia. We also discuss the roles of Fe-S cluster biosynthesis in proliferation, differentiation, and stress response in protozoan parasites. The heterogeneity of the systems and the compartmentalization of Fe-S cluster biogenesis in the protozoan parasites likely reflect divergent evolution under highly diverse environmental niches, and influence their parasitic lifestyle and pathogenesis. Finally, both Fe-S cluster-containing proteins and their biosynthetic machinery in protozoan parasites are remarkably different from those in their mammalian hosts. Thus, they represent a rational target for the development of novel chemotherapeutic and prophylactic agents against protozoan infections.
Collapse
|
11
|
Samarakoon U, Gonzales JM, Patel JJ, Tan A, Checkley L, Ferdig MT. The landscape of inherited and de novo copy number variants in a Plasmodium falciparum genetic cross. BMC Genomics 2011; 12:457. [PMID: 21936954 PMCID: PMC3191341 DOI: 10.1186/1471-2164-12-457] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 09/22/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Copy number is a major source of genome variation with important evolutionary implications. Consequently, it is essential to determine copy number variant (CNV) behavior, distributions and frequencies across genomes to understand their origins in both evolutionary and generational time frames. We use comparative genomic hybridization (CGH) microarray and the resolution provided by a segregating population of cloned progeny lines of the malaria parasite, Plasmodium falciparum, to identify and analyze the inheritance of 170 genome-wide CNVs. RESULTS We describe CNVs in progeny clones derived from both Mendelian (i.e. inherited) and non-Mendelian mechanisms. Forty-five CNVs were present in the parent lines and segregated in the progeny population. Furthermore, extensive variation that did not conform to strict Mendelian inheritance patterns was observed. 124 CNVs were called in one or more progeny but in neither parent: we observed CNVs in more than one progeny clone that were not identified in either parent, located more frequently in the telomeric-subtelomeric regions of chromosomes and singleton de novo CNVs distributed evenly throughout the genome. Linkage analysis of CNVs revealed dynamic copy number fluctuations and suggested mechanisms that could have generated them. Five of 12 previously identified expression quantitative trait loci (eQTL) hotspots coincide with CNVs, demonstrating the potential for broad influence of CNV on the transcriptional program and phenotypic variation. CONCLUSIONS CNVs are a significant source of segregating and de novo genome variation involving hundreds of genes. Examination of progeny genome segments provides a framework to assess the extent and possible origins of CNVs. This segregating genetic system reveals the breadth, distribution and dynamics of CNVs in a surprisingly plastic parasite genome, providing a new perspective on the sources of diversity in parasite populations.
Collapse
Affiliation(s)
- Upeka Samarakoon
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
The protozoan parasites belonging to the genus Plasmodium have a complex life cycle in which the asexual multiplication of parasites in the vertebrate host alternates with an obligate sexual reproduction in the mosquito. Gametocytes (male and female) produced in the vertebrate host are responsible for transmitting parasites to mosquitoes. Although our understanding of the biology and genetics of sexual differentiation in Plasmodium is expanding, the most basic questions concerning molecular mechanisms of sexual differentiation and sex determination still remain unanswered. Recently, insight into the control of this complex process in P. falciparum and P. berghei has come from studying parasite mutants with aberrant capacities for gametocyte production. Here, Cheryl-Ann Lobo and Nirbhay Kumar review these analyses in P. falciparum.
Collapse
|
13
|
Rayner JC, Liu W, Peeters M, Sharp PM, Hahn BH. A plethora of Plasmodium species in wild apes: a source of human infection? Trends Parasitol 2011; 27:222-9. [PMID: 21354860 PMCID: PMC3087880 DOI: 10.1016/j.pt.2011.01.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 01/26/2011] [Accepted: 01/27/2011] [Indexed: 01/03/2023]
Abstract
Recent studies of captive and wild-living apes in Africa have uncovered evidence of numerous new Plasmodium species, one of which was identified as the immediate precursor of human Plasmodium falciparum. These findings raise the question whether wild apes could be a recurrent source of Plasmodium infections in humans. This question is not new, but was the subject of intense investigation by researchers in the first half of the last century. Re-examination of their work in the context of recent molecular findings provides a new framework to understand the diversity of Plasmodium species and to assess the risk of future cross-species transmissions to humans in the context of proposed malaria eradication programs.
Collapse
Affiliation(s)
- Julian C Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | | | | | | | | |
Collapse
|
14
|
Malaria gametocytogenesis. Mol Biochem Parasitol 2010; 172:57-65. [PMID: 20381542 PMCID: PMC2880792 DOI: 10.1016/j.molbiopara.2010.03.019] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 03/29/2010] [Accepted: 03/30/2010] [Indexed: 02/07/2023]
Abstract
Male and female gametocytes are the components of the malaria parasite life cycle which are taken up from an infected host bloodstream by mosquitoes and thus mediate disease transmission. These gamete precursors are morphologically and functionally quite distinct from their asexual blood stage counterparts and this is reflected in their distinct patterns of gene expression, cellular development and metabolism. Recent transcriptome, proteome and reverse genetic studies have added valuable information to that obtained from traditional studies. However, we still have no answer to the fundamental question regarding sexual development: 'what triggers gametocytogenesis'? In the current climate of eradication/elimination, tackling transmission by killing gametocytes has an important place on the agenda because most antimalarial drugs, whilst killing asexual blood stage parasites, have no effect on the transmissible stages.
Collapse
|
15
|
Abstract
SUMMARYIt is difficult to recapture the excitement of recent research into the malaria parasites.Plasmodiumhas shown itself to be a most elegant, resourceful and downright devious cell. To reveal any of its manifold secrets is a hard-won privilege. The thrill of this intellectual endeavour, however, has to be tempered by the realism that we have made unremarkable progress in attacking malaria in the field, where it remains almost as omnipresent as it ever was in the 19th and 20th centuries, and both the parasite and vector have become more difficult to control than ever before. This personal view looks back at the significant progress made, and forward to the challenges of the future, focusing on work on sexual development.
Collapse
|
16
|
Pradel G. Proteins of the malaria parasite sexual stages: expression, function and potential for transmission blocking strategies. Parasitology 2007; 134:1911-29. [PMID: 17714601 DOI: 10.1017/s0031182007003381] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYThe sexual phase of the malaria pathogen,Plasmodium falciparum, culminates in fertilization within the midgut of the mosquito and represents a crucial step in the completion of the parasite's life-cycle and transmission of the disease. Two decades ago, the first sexual stage-specific surface proteins were identified, among themPfs230,Pfs48/45, andPfs25, which were of scientific interest as candidates for the development of transmission blocking vaccines. A decade later, gene information gained from the sequencing of theP. falciparumgenome led to the identification of numerous additional sexual-stage proteins with antigenic properties and novel enzymes that putatively possess regulatory functions during sexual-stage development. This review aims to summarize the sexual-stage proteins identified to date, to compare their stage specificities and expression patterns and to highlight novel regulative mechanisms of sexual differentiation. The prospective candidacy of select sexual-stage proteins as targets for transmission blocking strategies will be discussed.
Collapse
Affiliation(s)
- G Pradel
- University of Würzburg, Research Center for Infectious Diseases, Röntgenring 11, 97070 Würzburg, Germany.
| |
Collapse
|
17
|
Ferguson DJP, Campbell SA, Henriquez FL, Phan L, Mui E, Richards TA, Muench SP, Allary M, Lu JZ, Prigge ST, Tomley F, Shirley MW, Rice DW, McLeod R, Roberts CW. Enzymes of type II fatty acid synthesis and apicoplast differentiation and division in Eimeria tenella. Int J Parasitol 2007; 37:33-51. [PMID: 17112527 PMCID: PMC2803676 DOI: 10.1016/j.ijpara.2006.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 09/26/2006] [Accepted: 10/03/2006] [Indexed: 11/16/2022]
Abstract
Apicomplexan parasites, Eimeria tenella, Plasmodium spp. and Toxoplasma gondii, possess a homologous plastid-like organelle termed the apicoplast, derived from the endosymbiotic enslavement of a photosynthetic alga. However, currently no eimerian nuclear encoded apicoplast targeted proteins have been identified, unlike in Plasmodium spp. and T. gondii. In this study, we demonstrate that nuclear encoded enoyl reductase of E. tenella (EtENR) has a predicted N-terminal bipartite transit sequence, typical of apicoplast-targeted proteins. Using a combination of immunocytochemistry and EM we demonstrate that this fatty acid biosynthesis protein is located in the apicoplast of E. tenella. Using the EtENR as a tool to mark apicoplast development during the Eimeria lifecycle, we demonstrate that nuclear and apicoplast division appear to be independent events, both organelles dividing prior to daughter cell formation, with each daughter cell possessing one to four apicoplasts. We believe this is the first report of multiple apicoplasts present in the infectious stage of an apicomplexan parasite. Furthermore, the microgametes lacked an identifiable apicoplast consistent with maternal inheritance via the macrogamete. It was found that the size of the organelle and the abundance of EtENR varied with developmental stage of the E. tenella lifecycle. The high levels of EtENR protein observed during asexual development and macrogametogony is potentially associated with the increased synthesis of fatty acids required for the rapid formation of numerous merozoites and for the extracellular development and survival of the oocyst. Taken together the data demonstrate that the E. tenella apicoplast participates in type II fatty acid biosynthesis with increased expression of ENR during parasite growth. Apicoplast division results in the simultaneous formation of multiple fragments. The division mechanism is unknown, but is independent of nuclear division and occurs prior to daughter formation.
Collapse
Affiliation(s)
- D J P Ferguson
- Nuffield Department of Pathology, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Vaidya AB, Mather MW. A post-genomic view of the mitochondrion in malaria parasites. Curr Top Microbiol Immunol 2006; 295:233-50. [PMID: 16265893 DOI: 10.1007/3-540-29088-5_9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Mitochondria in Plasmodium parasites have many characteristics that distinguish them from mammalian mitochondria. Selective targeting of malaria parasite mitochondrial physiology has been exploited in successful antimalarial chemotherapy. At present, our understanding of the functions served by the parasite mitochondrion is somewhat limited, but the availability of the genomic sequences makes it possible to develop a framework of possible mitochondrial functions by providing information on genes encoding mitochondrially targeted proteins. This review aims to provide an overview of mitochondrial physiology in this post-genomic era. Although in many cases direct experimental proof for their mitochondrial functions may not be available at present, descriptions of these potential mitochondrial proteins can provide a basis for experimental approaches.
Collapse
Affiliation(s)
- A B Vaidya
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA.
| | | |
Collapse
|
19
|
Khan SM, Franke-Fayard B, Mair GR, Lasonder E, Janse CJ, Mann M, Waters AP. Proteome analysis of separated male and female gametocytes reveals novel sex-specific Plasmodium biology. Cell 2005; 121:675-87. [PMID: 15935755 DOI: 10.1016/j.cell.2005.03.027] [Citation(s) in RCA: 295] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 03/10/2005] [Accepted: 03/22/2005] [Indexed: 11/22/2022]
Abstract
Gametocytes, the precursor cells of malaria-parasite gametes, circulate in the blood and are responsible for transmission from host to mosquito vector. The individual proteomes of male and female gametocytes were analyzed using mass spectrometry, following separation by flow sorting of transgenic parasites expressing green fluorescent protein, in a sex-specific manner. Promoter tagging in transgenic parasites confirmed the designation of stage and sex specificity of the proteins. The male proteome contained 36% (236 of 650) male-specific and the female proteome 19% (101 of 541) female-specific proteins, but they share only 69 proteins, emphasizing the diverged features of the sexes. Of all the malaria life-cycle stages analyzed, the male gametocyte has the most distinct proteome, containing many proteins involved in flagellar-based motility and rapid genome replication. By identification of gender-specific protein kinases and phosphatases and using targeted gene disruption of two kinases, new sex-specific regulatory pathways were defined.
Collapse
Affiliation(s)
- Shahid M Khan
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
20
|
Williamson DH, Preiser PR, Wilson RJ. Organelle DNAs: The bit players in malaria parasite DNA replication. ACTA ACUST UNITED AC 2005; 12:357-62. [PMID: 15275174 DOI: 10.1016/0169-4758(96)10053-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The replication mechanics of the extrachromosomal DNAs of the malaria parasite are beginning to be anravelled. At 6 kb, the mitochondrial genome is the smallest known and, unlike higher eukaryotes, its multiple copies per cell occur as polydisperse linear concatemers. Here, Don Williamson, Peter Preiser and Iain Wilson discuss recent evidence that this DNA replicates by a process akin to those of certain bacteriophages, which make use of extensive recombination coupled with rolling circles. The parasite's second extrachromosomal DNA, a 35 kb circular molecule thought to be a plastid remnant inherited from a remote photoautotroph, probably replicates in a more familiar fashion from conventional origins or D loops. Improved understanding of both organelle's replicative mechanisms could give new leads to malaria chemotherapy.
Collapse
Affiliation(s)
- D H Williamson
- Parasitology Division, National Institute for Medical Research, Mill Hill, London, UK.
| | | | | |
Collapse
|
21
|
Rathore D, Wahl AM, Sullivan M, McCutchan TF. A phylogenetic comparison of gene trees constructed from plastid, mitochondrial and genomic DNA of Plasmodium species. Mol Biochem Parasitol 2001; 114:89-94. [PMID: 11356517 DOI: 10.1016/s0166-6851(01)00241-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gene trees of Plasmodium species have been reported for the nuclear encoded genes (e.g. the Small Subunit rRNA) and a mitochondrial encoded gene, cytochrome b. Here, we have analyzed a plastid gene coding for caseinolytic protease ClpC, whose structure, function and evolutionary history have been studied in various organisms. This protein possesses a 220-250 amino acid long AAA domain (ATPases associated with a variety of cellular activities) that belongs to the Walker super family of ATPases and GTPases. We have sequenced the AAA motif of this gene, encoding the protein from nine different species of Plasmodium infecting rodents, birds, monkeys, and humans. The codon usage and GC content of each gene were nearly identical in contrast to the widely varying nucleotide composition of genomic DNAs. Phylogenetic trees derived from both DNA and inferred protein sequences have consistent topologies. We have used the ClpC sequence to analyze the phylogenetic relationship among Plasmodium species and compared it with those derived from mitochondrial and genomic sequences. The results corroborate well with the trees constructed using the mitochondrially encoded cytochrome b. However, an important element distinguishes the trees: the placement of Plasmodium elongatum near the base of the plastid tree, indicating an ancient lineage of parasites in birds that branches from the tree prior to other lineages of avian malaria and the human parasite, P. falciparum.
Collapse
Affiliation(s)
- D Rathore
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Center Drive MSC 0425, Bethesda, MD 20892-0425, USA
| | | | | | | |
Collapse
|
22
|
Abstract
An extrachromosomal genome of between 27 and 35 kb has been described in several apicomplexan parasites including Plasmodium falciparum and Toxoplasma gondii. Examination of sequence data proved the genomes to be a remnant plastid genome, from which all genes encoding photosynthetic functions had been lost. Localisation studies had shown that the genome was located within a multi-walled organelle, anterior to the nucleus. This organelle had been previously described in ultrastructural studies of several genera of apicomplexa, but no function had been attributed to it. This invited review describes the evolution of knowledge on the apicomplexan plastid, then discusses current research findings on the likely role of the plastid in the Apicomplexa. How the plastid may be used to effect better drug treatments for apicomplexan diseases, and its potential as a marker for investigating phylogenetic relationships among the Apicomplexa, are discussed.
Collapse
Affiliation(s)
- M T Gleeson
- Department of Cell and Molecular Biology, Faculty of Science, University of Technology, Westbourne Street, Gore Hill NSW 2065, Sydney, Australia.
| |
Collapse
|
23
|
Duraisingh MT, Roper C, Walliker D, Warhurst DC. Increased sensitivity to the antimalarials mefloquine and artemisinin is conferred by mutations in the pfmdr1 gene of Plasmodium falciparum. Mol Microbiol 2000; 36:955-61. [PMID: 10844681 DOI: 10.1046/j.1365-2958.2000.01914.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The declining efficacy of chloroquine and pyrimethamine/sulphadoxine in the treatment of human malaria has led to the use of newer antimalarials such as mefloquine and artemisinin. Sequence polymorphisms in the pfmdr1 gene, the gene encoding the plasmodial homologue of mammalian multidrug resistance transporters, have previously been linked to resistance to chloroquine in some, but not all, studies. In this study, we have used a genetic cross between the strains HB3 and 3D7 to study inheritance of sensitivity to the structurally unrelated drugs mefloquine and artemisinin, and to several other antimalarials. We find a complete allelic association between the HB3-like pfmdr1 allele and increased sensitivity to these drugs in the progeny. Different pfmdr1 sequence polymorphisms in other unrelated lines were also associated with increased sensitivity to these drugs. Our results indicate that the pfmdr1 gene is an important determinant of susceptibility to antimalarials, which has major implications for the future development of resistance.
Collapse
Affiliation(s)
- M T Duraisingh
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | | | | | | |
Collapse
|
24
|
Srivastava IK, Morrisey JM, Darrouzet E, Daldal F, Vaidya AB. Resistance mutations reveal the atovaquone-binding domain of cytochrome b in malaria parasites. Mol Microbiol 1999; 33:704-11. [PMID: 10447880 DOI: 10.1046/j.1365-2958.1999.01515.x] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Atovaquone represents a class of antimicrobial agents with a broad-spectrum activity against various parasitic infections, including malaria, toxoplasmosis and Pneumocystis pneumonia. In malaria parasites, atovaquone inhibits mitochondrial electron transport at the level of the cytochrome bc1 complex and collapses mitochondrial membrane potential. In addition, this drug is unique in being selectively toxic to parasite mitochondria without affecting the host mitochondrial functions. A better understanding of the structural basis for the selective toxicity of atovaquone could help in designing drugs against infections caused by mitochondria-containing parasites. To that end, we derived nine independent atovaquone-resistant malaria parasite lines by suboptimal treatment of mice infected with Plasmodium yoelii; these mutants exhibited resistance to atovaquone-mediated collapse of mitochondrial membrane potential as well as inhibition of electron transport. The mutants were also resistant to the synergistic effects of atovaquone/ proguanil combination. Sequencing of the mitochondrially encoded cytochrome b gene placed these mutants into four categories, three with single amino acid changes and one with two adjacent amino acid changes. Of the 12 nucleotide changes seen in the nine independently derived mutants 11 replaced A:T basepairs with G:C basepairs, possibly because of reactive oxygen species resulting from atovaquone treatment. Visualization of the resistance-conferring amino acid positions on the recently solved crystal structure of the vertebrate cytochrome bc1 complex revealed a discrete cavity in which subtle variations in hydrophobicity and volume of the amino acid side-chains may determine atovaquone-binding affinity, and thereby selective toxicity. These structural insights may prove useful in designing agents that selectively affect cytochrome bc1 functions in a wide range of eukaryotic pathogens.
Collapse
Affiliation(s)
- I K Srivastava
- Department of Microbiology and Immunology, 2900 Queen Lane, MCP Hahnemann School of Medicine, Philadelphia, PA 19129, USA
| | | | | | | | | |
Collapse
|
25
|
Abstract
Organisms in the phylum Apicomplexa possess, in addition to their mitochondrial genome, an extrachromosomal DNA that possesses significant similarities with the extrachromosomal genomes of plastids. To date, the majority of data on these plastid-like DNAs have been obtained from the human malarial organism, Plasmodium falciparum. In common with plastid DNAs, the plastid-like DNA of P. falciparum possesses genes for DNA-dependent RNA polymerase subunits beta and beta 1 and for organellar-like large- and small-subunits ribosomal RNAs. Both the polymerase subunit and ribosomal RNA gene sequences share a number of features with those from plastid DNAs. In addition, the ribosomal RNA genes are organised in an inverted repeat arrangement, reminiscent of plastid DNAs. Additional molecular features shared between the 2 genomes are discussed. Plastid-like DNAs have also been identified in other Plasmodium species as well as Toxoplasma gondii, Eimeria tenella, Babesia bovis and a number of Sarcocystis species. A cryptic organelle often observed in apicomplexans has been proposed as the organelle that harbours the plastid-like DNAs, but conclusive evidence for this has not yet been obtained. Although approximately 1/2 of the plastid-like DNA of P. falciparum has been sequenced to date, no function has yet been ascribed to this DNA or its putative organelle. Phylogenetic inferences based on sequence data from this DNA have indicated an evolutionary origin from photosynthetic organisms, but the true provenance of the plastid-like DNAs remains to be determined. Because of the specific nature of the plastid-like DNAs, they may prove useful as effective targets for chemotherapeutics.
Collapse
Affiliation(s)
- A C Jeffries
- Department of Cell and Molecular Biology, University of Technology Sydney, NSW, Australia
| | | |
Collapse
|
26
|
|
27
|
Vaidya AB, Muratova O, Guinet F, Keister D, Wellems TE, Kaslow DC. A genetic locus on Plasmodium falciparum chromosome 12 linked to a defect in mosquito-infectivity and male gametogenesis. Mol Biochem Parasitol 1995; 69:65-71. [PMID: 7723789 DOI: 10.1016/0166-6851(94)00199-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Infection of mosquitoes by Plasmodium spp. requires sexual differentiation of the malarial parasite in the vertebrate host and mating of the heterogametes in the vector midgut. A Plasmodium falciparum clone, Dd2, differentiates into normal-appearing gametocytes, yet poorly infects mosquitoes. The Dd2 clone, however, effectively cross-fertilized HB3, a Central American P. falciparum clone, and yielded several independent recombinant progeny. We have examined 11 HB3 x Dd2 progeny for their ability to infect mosquitoes and to differentiate into male gametes. Our analyses indicate that the poor mosquito-infectivity of the Dd2 clone results from a defect in male gametogenesis. This defect was inherited as a single locus in the independent recombinant progeny of HB3 x Dd2. Comparison with a restriction fragment length polymorphism map of the HB3 x Dd2 cross indicates that the defective phenotype of Dd2 maps to a locus on P. falciparum chromosome 12. This genetic locus may contain determinants that play a crucial role in male gametogenesis by P. falciparum.
Collapse
Affiliation(s)
- A B Vaidya
- Laboratory of Malaria Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Molecular genetics is having an important impact on the study of genes in natural populations of malaria parasites. The polymerase chain reaction (PCR) is proving particularly valuable for identifying genes in parasites taken directly from their hosts, without the need to establish them in culture. This is leading to novel methods of diagnosis, for example of drug-resistant parasites. Molecular techniques are also greatly assisting understanding of the genetic structure of parasite populations. This is relevant to the current debate on whether Plasmodium falciparum has a clonal or randomly interbreeding structure. Many patients are infected with mixtures of genetically distinct clones. PCR is being used to examine the genotypes of individual oocysts in the mosquito vector. In wild-caught mosquitoes in areas highly endemic for P. falciparum, a large proportion of oocysts are heterozygous, showing that cross-mating occurs frequently between clones during mosquito feeds. In areas of lower endemicity, there is evidence of less frequent crossing.
Collapse
Affiliation(s)
- D Walliker
- Division of Biological Sciences, University of Edinburgh, U.K
| |
Collapse
|
29
|
Creasey A, Mendis K, Carlton J, Williamson D, Wilson I, Carter R. Maternal inheritance of extrachromosomal DNA in malaria parasites. Mol Biochem Parasitol 1994; 65:95-8. [PMID: 7935632 DOI: 10.1016/0166-6851(94)90118-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Plasmodium falciparum has two extrachromosomal genomes, the mitochondrial 6-kb DNA element and the 35-kb circular DNA. The mitochondrial gene cytochrome b on the 6-kb element has been shown to be inherited uniparentally. In order to ascertain whether the route is maternal or paternal we have examined preparations of male and female gametes of the closely related Plasmodium gallinaceum for the presence of extrachromosomal DNA. DNA from purified preparations of gametes was hybridised to probes for both the 6-kb and 35-kb extrachromosomal genomes. Both probes hybridised to the preparation of Plasmodium gallinaceum female gametes but not to that of the males. We conclude that the extrachromosomal DNAs of malaria parasites are transmitted maternally.
Collapse
Affiliation(s)
- A Creasey
- Division of Biological Sciences, I.C.A.P.B., University of Edinburgh, UK
| | | | | | | | | | | |
Collapse
|