1
|
Huang W, Zhang L, Zhu Y, Chen J, Zhu Y, Lin F, Chen X, Huang J. A genetic screen in Arabidopsis reveals the identical roles for RBP45d and PRP39a in 5' cryptic splice site selection. FRONTIERS IN PLANT SCIENCE 2022; 13:1086506. [PMID: 36618610 PMCID: PMC9813592 DOI: 10.3389/fpls.2022.1086506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Cryptic splice sites in eukaryotic genome are generally dormant unless activated by mutation of authentic splice sites or related splicing factors. How cryptic splice sites are used remains unclear in plants. Here, we identified two cryptic splicing regulators, RBP45d and PRP39a that are homologs of yeast U1 auxiliary protein Nam8 and Prp39, respectively, via genetic screening for suppressors of the virescent sot5 mutant, which results from a point mutation at the 5' splice site (5' ss) of SOT5 intron 7. Loss-of-function mutations in RBP45d and PRP39a significantly increase the level of a cryptically spliced variant that encodes a mutated but functional sot5 protein, rescuing sot5 to the WT phenotype. We furtherly demonstrated that RBP45d and PRP39a interact with each other and also with the U1C, a core subunit of U1 snRNP. We found that RBP45d directly binds to the uridine (U)-rich RNA sequence downstream the 5' ss of SOT5 intron 7. However, other RBP45/47 members do not function redundantly with RBP45d, at least in regulation of cryptic splicing. Taken together, RBP45d promotes U1 snRNP to recognize the specific 5' ss via binding to intronic U-rich elements in plants.
Collapse
Affiliation(s)
- Weihua Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Liqun Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yajuan Zhu
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jingli Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yawen Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Fengru Lin
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xiaomei Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
2
|
A Silent Exonic Mutation in a Rice Integrin-α FG-GAP Repeat-Containing Gene Causes Male-Sterility by Affecting mRNA Splicing. Int J Mol Sci 2020; 21:ijms21062018. [PMID: 32188023 PMCID: PMC7139555 DOI: 10.3390/ijms21062018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 12/11/2022] Open
Abstract
Pollen development plays crucial roles in the life cycle of higher plants. Here we characterized a rice mutant with complete male-sterile phenotype, pollen-less 1 (pl1). pl1 exhibited smaller anthers with arrested pollen development, absent Ubisch bodies, necrosis-like tapetal hypertrophy, and smooth anther cuticular surface. Molecular mapping revealed a synonymous mutation in the fourth exon of PL1 co-segregated with the mutant phenotype. This mutation disrupts the exon-intron splice junction in PL1, generating aberrant mRNA species and truncated proteins. PL1 is highly expressed in the tapetal cells of developing anther, and its protein is co-localized with plasma membrane (PM) and endoplasmic reticulum (ER) signal. PL1 encodes an integrin-α FG-GAP repeat-containing protein, which has seven β-sheets and putative Ca2+-binding motifs and is broadly conserved in terrestrial plants. Our findings therefore provide insights into both the role of integrin-α FG-GAP repeat-containing protein in rice male fertility and the influence of exonic mutation on intronic splice donor site selection.
Collapse
|
3
|
Catania F, Gao X, Scofield DG. Endogenous mechanisms for the origins of spliceosomal introns. J Hered 2009; 100:591-6. [PMID: 19635762 DOI: 10.1093/jhered/esp062] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Over 30 years since their discovery, the origin of spliceosomal introns remains uncertain. One nearly universally accepted hypothesis maintains that spliceosomal introns originated from self-splicing group-II introns that invaded the uninterrupted genes of the last eukaryotic common ancestor (LECA) and proliferated by "insertion" events. Although this is a possible explanation for the original presence of introns and splicing machinery, the emphasis on a high number of insertion events in the genome of the LECA neglects a considerable body of empirical evidence showing that spliceosomal introns can simply arise from coding or, more generally, nonintronic sequences within genes. After presenting a concise overview of some of the most common hypotheses and mechanisms for intron origin, we propose two further hypotheses that are broadly based on central cellular processes: 1) internal gene duplication and 2) the response to aberrant and fortuitously spliced transcripts. These two nonmutually exclusive hypotheses provide a powerful way to explain the establishment of spliceosomal introns in eukaryotes without invoking an exogenous source.
Collapse
Affiliation(s)
- Francesco Catania
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
4
|
Lambermon MH, Simpson GG, Wieczorek Kirk DA, Hemmings-Mieszczak M, Klahre U, Filipowicz W. UBP1, a novel hnRNP-like protein that functions at multiple steps of higher plant nuclear pre-mRNA maturation. EMBO J 2000; 19:1638-49. [PMID: 10747031 PMCID: PMC310232 DOI: 10.1093/emboj/19.7.1638] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/1999] [Revised: 02/02/2000] [Accepted: 02/04/2000] [Indexed: 01/06/2023] Open
Abstract
Efficient splicing of higher plant pre-mRNAs depends on AU- or U-rich sequences in introns. Moreover, AU-rich sequences present in 3'-untranslated regions (3'-UTRs) may play a role in 3' end processing of plant mRNAs. Here, we describe the cloning and characterization of a Nicotiana plumbaginifolia nuclear protein that can be cross-linked to U-rich intron and 3'-UTR sequences in vitro, and associates with nuclear poly(A)(+) RNA in vivo. The protein, UBP1, strongly enhances the splicing of otherwise inefficiently processed introns when overexpressed in protoplasts. It also increases the accumulation of reporter mRNAs that contain suboptimal introns or are intronless. The enhanced accumulation is apparently due to UBP1 interacting with the 3'-UTR and protecting mRNA from exonucleolytic degradation. The effect on mRNA accumulation but not on mRNA splicing was found to be promoter specific. The fact that these effects of UBP1 can be separated suggests that they represent two independent activities. The properties of UBP1 indicate that it is an hnRNP protein that functions at multiple steps to facilitate the nuclear maturation of plant pre-mRNAs.
Collapse
Affiliation(s)
- M H Lambermon
- Friedrich Miescher-Institut, PO Box 2543, 4002 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
5
|
McCullough AJ, Berget SM. G triplets located throughout a class of small vertebrate introns enforce intron borders and regulate splice site selection. Mol Cell Biol 1997; 17:4562-71. [PMID: 9234714 PMCID: PMC232310 DOI: 10.1128/mcb.17.8.4562] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Splicing of small introns in lower eucaryotes can be distinguished from vertebrate splicing by the inability of such introns to be expanded and by the inability of splice site mutations to cause exon skipping-properties suggesting that the intron rather than the exon is the unit of recognition. Vertebrates do contain small introns. To see if they possess properties similar to small introns in lower eucaryotes, we studied the small second intron from the human alpha-globin gene. Mutation of the 5' splice site of this intron resulted in in vivo intron inclusion, not exon skipping, suggesting the presence of intron bridging interactions. The intron had an unusual base composition reflective of a sequence bias present in a collection of small human introns in which multiple G triplets stud the interior of the introns. Each G triplet represented a minimal sequence element additively contributing to maximal splicing efficiency and spliceosome assembly. More importantly, G triplets proximal to a duplicated splice site caused preferential utilization of the 5' splice site upstream of the triplets or the 3' splice site downstream of the triplets; i.e., sequences containing G triplets were preferentially used as introns when a choice was possible. Thus, G triplets internal to a small intron have the ability to affect splice site decisions at both ends of the intron. Each G triplet additively contributed to splice site selectivity. We suggest that G triplets are a common component of human 5' splice sites and aid in the definition of exon-intron borders as well as overall splicing efficiency. In addition, our data suggest that such intronic elements may be characteristic of small introns and represent an intronic equivalent to the exon enhancers that facilitate recognition of both ends of an exon during exon definition.
Collapse
Affiliation(s)
- A J McCullough
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
6
|
McCullough AJ, Schuler MA. Intronic and exonic sequences modulate 5' splice site selection in plant nuclei. Nucleic Acids Res 1997; 25:1071-7. [PMID: 9023120 PMCID: PMC146543 DOI: 10.1093/nar/25.5.1071] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Pre-mRNA transcripts in a variety of organisms, including plants, Drosophila and Caenorhabditis elegans, contain introns which are significantly richer in adenosine and uridine residues than their flanking exons. Previous analyses using exonic and intronic replacements between two nonequivalent 5'splice sites in the 469 nt long rbcS3A intron 1 provided the first evidence indicating that, in both tobacco and Drosophila nuclei, 5'splice site selection is strongly influenced by the position of that site relative to the AU transition point between exon and intron. To differentiate between two potential models for 5'splice site recognition, we have expressed a completely different set of intronic and exonic replacement constructs containing identical 5'splice sites upstream of beta-conglycinin intron 4 (115 nt). Mutagenesis and deletion of the upstream 5'splice site demonstrate that intronic AU-rich sequences function by promoting recognition of the most upstream 5'splice site rather than by masking the downstream 5'splice site. Sequence insertions define a role for AG-rich exonic sequences in plant pre-mRNA splicing by demonstrating that an AG-rich element is capable of promoting downstream 5'splice site recognition. We conclude that AU-rich intronic sequences, AG-rich exonic sequences and the 5'splice site itself collectively define 5'intron boundaries in dicot nuclei.
Collapse
Affiliation(s)
- A J McCullough
- Verna and Marrs McClean Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
7
|
Kleffe J, Hermann K, Vahrson W, Wittig B, Brendel V. Logitlinear models for the prediction of splice sites in plant pre-mRNA sequences. Nucleic Acids Res 1996; 24:4709-18. [PMID: 8972857 PMCID: PMC146321 DOI: 10.1093/nar/24.23.4709] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Pre-mRNA splicing in plants, while generally similar to the processes in vertebrates and yeast, is thought to involve plant specific cis-acting elements. Both monocot and dicot introns are typically strongly enriched in U nucleotides, and AU- or U-rich segments are thought to be involved in intron recognition, splice site selection, and splicing efficiency. We have applied logitlinear models to find optimal combinations of splice site variables for the purpose of separating true splice sites from a large excess of potential sites. It is shown that plant splice site prediction from sequence inspection is greatly improved when compositional contrast between exons and introns is considered in addition to degree of matching to the splice site consensus (signal quality). The best model involves subclassification of splice sites according to the identity of the base immediately upstream of the GU and AG signals and gives substantial performance gains compared with conventional profile methods.
Collapse
Affiliation(s)
- J Kleffe
- Freie Universität Berlin, Institut für Molekularbiologie und Biochemie, Germany
| | | | | | | | | |
Collapse
|
8
|
Lopato S, Mayeda A, Krainer AR, Barta A. Pre-mRNA splicing in plants: characterization of Ser/Arg splicing factors. Proc Natl Acad Sci U S A 1996; 93:3074-9. [PMID: 8610170 PMCID: PMC39763 DOI: 10.1073/pnas.93.7.3074] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The fact that animal introns are not spliced out in plants suggests that recognition of pre-mRNA splice sites differs between the two kingdoms. In plants, little is known about proteins required for splicing, as no plant in vitro splicing system is available. Several essential splicing factors from animals, such as SF2/ASF and SC-35, belong to a family of highly conserved proteins consisting of one or two RNA binding domain(s) (RRM) and a C-terminal Ser/Arg-rich (SR or RS) domain. These animal SR proteins are required for splice site recognition and spliceosome assembly. We have screened for similar proteins in plants by using monoclonal antibodies specific for a phosphoserine epitope of the SR proteins (mAb1O4) or for SF2/ASF. These experiments demonstrate that plants do possess SR proteins, including SF2/ASF-like proteins. Similar to the animal SR proteins, this group of proteins can be isolated by two salt precipitations. However, compared to the animal SR proteins, which are highly conserved in size and number, SR proteins from Arabidopsis, carrot, and tobacco exhibit a complex pattern of intra- and interspecific variants. These plant SR proteins are able to complement inactive HeLa cell cytoplasmic S1OO extracts that are deficient in SR proteins, yielding functional splicing extracts. In addition, plant SR proteins were active in a heterologous alternative splicing assay. Thus, these plant SR proteins are authentic plant splicing factors.
Collapse
Affiliation(s)
- S Lopato
- Institute of Biochemistry, Vienna Biocenter, Austria
| | | | | | | |
Collapse
|
9
|
Gniadkowski M, Hemmings-Mieszczak M, Klahre U, Liu HX, Filipowicz W. Characterization of intronic uridine-rich sequence elements acting as possible targets for nuclear proteins during pre-mRNA splicing in Nicotiana plumbaginifolia. Nucleic Acids Res 1996; 24:619-27. [PMID: 8604302 PMCID: PMC145670 DOI: 10.1093/nar/24.4.619] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Introns of nuclear pre-mRNAs in dicotyledonous plants, unlike introns in vertebrates or yeast, are distinctly rich in A+U nucleotides and this feature is essential for their processing. In order to define more precisely sequence elements important for intron recognition in plants, we investigated the effects of short insertions, either U-rich or A-rich, on splicing of synthetic introns in transfected protoplast of Nicotiana plumbaginifolia. It was found that insertions of U-rich (sequence UUUUUAU) but not A-rich (AUAAAAA) segments can activate splicing of a GC-rich synthetic infron, and that U-rich segments, or multimers thereof, can function irrespective of the site of insertion within the intron. Insertions of multiple U-rich segments, either at the same or different locations, generally had an additive, stimulatory effect on splicing. Mutational analysis showed that replacement of one or two U residues in the UUUUUAU sequence with A or C residues had only a small effect on splicing, but replacement with G residues was strongly inhibitory. Proteins that interact with fragments of natural and synthetic pre-mRNAs in vitro were identified in nuclear extracts of N.plumbaginifolia by UV cross- linking. The profile of cross-linked plant proteins was considerably less complex than that obtained with a HeLa cell nuclear extract. Two major cross-linkable plant proteins had apparent molecular mass of 50 and 54 kDa and showed affinity for oligouridilates present in synGC introns or for poly(U).
Collapse
Affiliation(s)
- M Gniadkowski
- Friedrich Miescher Institute, Ch-4002 Basel, Switzerland
| | | | | | | | | |
Collapse
|
10
|
Lazar G, Schaal T, Maniatis T, Goodman HM. Identification of a plant serine-arginine-rich protein similar to the mammalian splicing factor SF2/ASF. Proc Natl Acad Sci U S A 1995; 92:7672-6. [PMID: 7644475 PMCID: PMC41207 DOI: 10.1073/pnas.92.17.7672] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We show that the higher plant Arabidopsis thaliana has a serine-arginine-rich (SR) protein family whose members contain a phosphoepitope shared by the animal SR family of splicing factors. In addition, we report the cloning and characterization of a cDNA encoding a higher-plant SR protein from Arabidopsis, SR1, which has striking sequence and structural homology to the human splicing factor SF2/ASF. Similar to SF2/ASF, the plant SR1 protein promotes splice site switching in mammalian nuclear extracts. A novel feature of the Arabidopsis SR protein is a C-terminal domain containing a high concentration of proline, serine, and lysine residues (PSK domain), a composition reminiscent of histones. This domain includes a putative phosphorylation site for the mitotic kinase cyclin/p34cdc2.
Collapse
Affiliation(s)
- G Lazar
- Department of Molecular Biology, Massachusetts General Hospital, Boston 02114, USA
| | | | | | | |
Collapse
|
11
|
AU-rich intronic elements affect pre-mRNA 5' splice site selection in Drosophila melanogaster. Mol Cell Biol 1994. [PMID: 8246985 DOI: 10.1128/mcb.13.12.7689] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
cis-spliced nuclear pre-mRNA introns found in a variety of organisms, including Tetrahymena thermophila, Drosophila melanogaster, Caenorhabditis elegans, and plants, are significantly richer in adenosine and uridine residues than their flanking exons are. The functional significance of this intronic AU richness, however, has been demonstrated only in plant nuclei. In these nuclei, 5' and 3' splice sites are selected in part by their positions relative to AU-rich elements spread throughout the length of an intron. Because of this position-dependent selection scheme, a 5' splice site at the normal (+1) exon-intron boundary having only three contiguous consensus nucleotides can compete effectively with an enhanced exonic site (-57E) having nine consensus nucleotides and outcompete an enhanced site (+106E) embedded within the AU-rich intron. To determine whether transitions from AU-poor exonic sequences to AU-rich intronic sequences influence 5' splice site selection in other organisms, alleles of the pea rbcS3A1 intron were expressed in Drosophila Schneider 2 cells, and their splicing patterns were compared with those in tobacco nuclei. We demonstrate that this heterologous transcript can be accurately spliced in transfected Drosophila nuclei and that a +1 G-to-A knockout mutation at the normal splice site activates the same three cryptic 5' splice sites as in tobacco. Enhancement of the exonic (-57) and intronic (+106) sites to consensus splice sites indicates that potential splice sites located in the upstream exon or at the 5' exon-intron boundary are preferred in Drosophila cells over those embedded within AU-rich intronic sequences. In contrast to tobacco, in which the activities of two competing 5' splice sites upstream of the AU-rich intron are modulated by their proximity to the AU transition point, D. melanogaster utilizes the upstream site which has a higher proportion of consensus nucleotides. The enhanced version of the cryptic intronic site is efficiently selected in D. melanogaster when the normal +1 site is weakened or discrete AU-rich elements upstream of the +106E site are disrupted. Selection of this internal site in tobacco requires more drastic disruption of these motifs. We conclude that 5' splice site selection in Drosophila nuclei is influenced by the intrinsic strengths of competing sites and by the presence of AU-rich intronic elements but to a different extent than in tobacco.
Collapse
|
12
|
McCullough AJ, Schuler MA. AU-rich intronic elements affect pre-mRNA 5' splice site selection in Drosophila melanogaster. Mol Cell Biol 1993; 13:7689-97. [PMID: 8246985 PMCID: PMC364840 DOI: 10.1128/mcb.13.12.7689-7697.1993] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
cis-spliced nuclear pre-mRNA introns found in a variety of organisms, including Tetrahymena thermophila, Drosophila melanogaster, Caenorhabditis elegans, and plants, are significantly richer in adenosine and uridine residues than their flanking exons are. The functional significance of this intronic AU richness, however, has been demonstrated only in plant nuclei. In these nuclei, 5' and 3' splice sites are selected in part by their positions relative to AU-rich elements spread throughout the length of an intron. Because of this position-dependent selection scheme, a 5' splice site at the normal (+1) exon-intron boundary having only three contiguous consensus nucleotides can compete effectively with an enhanced exonic site (-57E) having nine consensus nucleotides and outcompete an enhanced site (+106E) embedded within the AU-rich intron. To determine whether transitions from AU-poor exonic sequences to AU-rich intronic sequences influence 5' splice site selection in other organisms, alleles of the pea rbcS3A1 intron were expressed in Drosophila Schneider 2 cells, and their splicing patterns were compared with those in tobacco nuclei. We demonstrate that this heterologous transcript can be accurately spliced in transfected Drosophila nuclei and that a +1 G-to-A knockout mutation at the normal splice site activates the same three cryptic 5' splice sites as in tobacco. Enhancement of the exonic (-57) and intronic (+106) sites to consensus splice sites indicates that potential splice sites located in the upstream exon or at the 5' exon-intron boundary are preferred in Drosophila cells over those embedded within AU-rich intronic sequences. In contrast to tobacco, in which the activities of two competing 5' splice sites upstream of the AU-rich intron are modulated by their proximity to the AU transition point, D. melanogaster utilizes the upstream site which has a higher proportion of consensus nucleotides. The enhanced version of the cryptic intronic site is efficiently selected in D. melanogaster when the normal +1 site is weakened or discrete AU-rich elements upstream of the +106E site are disrupted. Selection of this internal site in tobacco requires more drastic disruption of these motifs. We conclude that 5' splice site selection in Drosophila nuclei is influenced by the intrinsic strengths of competing sites and by the presence of AU-rich intronic elements but to a different extent than in tobacco.
Collapse
Affiliation(s)
- A J McCullough
- Department of Plant Biology, University of Illinois, Urbana 61801-3838
| | | |
Collapse
|
13
|
Abstract
In contrast to mammalian and yeast systems, the mechanism for intron recognition and splice site selection in plant pre-mRNAs is poorly understood. Splice site sequences and putative branchpoint sequences are loosely conserved in plant introns compared with other eukaryotes. Perhaps to compensate for these variations, plant introns are significantly richer in adenosine and uridine residues than are their adjacent exons. To define elements critical for 3' splice site selection in dicotyledonous plant nuclei, pre-mRNA transcripts containing intron 3 of the maize Adh1 gene were expressed in Nicotiana benthamiana nuclei by using an autonomously replicating plant expression vector. Using a series of intron rearrangements which reposition the 3' intron-exon border, we demonstrate that the normal 3' splice site is defined in a position-dependent manner and that cryptic 3' splice sites within the intron are masked by the presence of a functional downstream 3' splice site. Disruption of the AU-rich elements upstream from the normal 3' splice site indicates that multiple AU elements between -66 and -6 cooperatively define the 3' boundary of the intron. These results are consistent with a model for plant intron recognition in which AU-rich elements spread throughout the length of the intron roughly define the intron boundaries by generating strong AU transition points. Functional 3' splice sites located downstream from these AU-rich sequences are preferentially selected over sites embedded within them.
Collapse
|
14
|
Lou H, McCullough AJ, Schuler MA. 3' splice site selection in dicot plant nuclei is position dependent. Mol Cell Biol 1993; 13:4485-93. [PMID: 8336697 PMCID: PMC360058 DOI: 10.1128/mcb.13.8.4485-4493.1993] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In contrast to mammalian and yeast systems, the mechanism for intron recognition and splice site selection in plant pre-mRNAs is poorly understood. Splice site sequences and putative branchpoint sequences are loosely conserved in plant introns compared with other eukaryotes. Perhaps to compensate for these variations, plant introns are significantly richer in adenosine and uridine residues than are their adjacent exons. To define elements critical for 3' splice site selection in dicotyledonous plant nuclei, pre-mRNA transcripts containing intron 3 of the maize Adh1 gene were expressed in Nicotiana benthamiana nuclei by using an autonomously replicating plant expression vector. Using a series of intron rearrangements which reposition the 3' intron-exon border, we demonstrate that the normal 3' splice site is defined in a position-dependent manner and that cryptic 3' splice sites within the intron are masked by the presence of a functional downstream 3' splice site. Disruption of the AU-rich elements upstream from the normal 3' splice site indicates that multiple AU elements between -66 and -6 cooperatively define the 3' boundary of the intron. These results are consistent with a model for plant intron recognition in which AU-rich elements spread throughout the length of the intron roughly define the intron boundaries by generating strong AU transition points. Functional 3' splice sites located downstream from these AU-rich sequences are preferentially selected over sites embedded within them.
Collapse
Affiliation(s)
- H Lou
- Department of Plant Biology, University of Illinois, Urbana 61801
| | | | | |
Collapse
|