1
|
Abstract
N-myristoyltransferase 1 (NMT1) is an indispensable eukaryotic enzyme that catalyses the transfer of myristoyl groups to the amino acid terminal residues of numerous proteins. This catalytic process is required for the growth and development of many eukaryotes and viruses. Elevated expression and activity of NMT1 is observed to varying degrees in a variety of tumour types (e.g. colon, lung and breast tumours). Furthermore, an elevated level of NMT1 in tumours is associated with poor survival. Therefore, a relationship exists between NMT1 and tumours. In this review, we discuss the underlying mechanisms by which NMT1 is associated with tumour development from the perspective of oncogene signalling, involvement in cellular metabolism, and endoplasmic reticulum stress. Several NMT inhibitors used in cancer treatment are introduced. The review will provide some directions for future research.Key MessagesElevated expression and activity of NMT1 is observed to varying degrees in a variety of tumour types which creates the possibility of targeting NMT1 in tumours.NMT1-mediated myristoylation plays a pivotal role in cancer cell metabolism and may be particularly relevant to cancer metastasis and drug resistance. These insights can be used to direct potential therapeutic avenues for NMT1 inhibitors.
Collapse
Affiliation(s)
- Hong Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Xu
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Thoracic OncologyShanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Thoracic OncologyShanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Medical Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongxia Qiao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Gurumoorthy V, Shrestha UR, Zhang Q, Pingali SV, Boder ET, Urban VS, Smith JC, Petridis L, O'Neill H. Disordered Domain Shifts the Conformational Ensemble of the Folded Regulatory Domain of the Multidomain Oncoprotein c-Src. Biomacromolecules 2023; 24:714-723. [PMID: 36692364 DOI: 10.1021/acs.biomac.2c01158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
c-Src kinase is a multidomain non-receptor tyrosine kinase that aberrantly phosphorylates several signaling proteins in cancers. Although the structural properties of the regulatory domains (SH3-SH2) and the catalytic kinase domain have been extensively characterized, there is less knowledge about the N-terminal disordered region (SH4UD) and its interactions with the other c-Src domains. Here, we used domain-selective isotopic labeling combined with the small-angle neutron scattering contrast matching technique to study SH4UD interactions with SH3-SH2. Our results show that in the presence of SH4UD, the radius of gyration (Rg) of SH3-SH2 increases, indicating that it has a more extended conformation. Hamiltonian replica exchange molecular dynamics simulations provide a detailed molecular description of the structural changes in SH4UD-SH3-SH2 and show that the regulatory loops of SH3 undergo significant conformational changes in the presence of SH4UD, while SH2 remains largely unchanged. Overall, this study highlights how a disordered region can drive a folded region of a multidomain protein to become flexible, which may be important for allosteric interactions with binding partners. This may help in the design of therapeutic interventions that target the regulatory domains of this important family of kinases.
Collapse
Affiliation(s)
- Viswanathan Gurumoorthy
- UT/ORNL Graduate School of Genome and Science Technology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Utsab R Shrestha
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Qiu Zhang
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sai Venkatesh Pingali
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Eric T Boder
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Volker S Urban
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jeremy C Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Loukas Petridis
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Hugh O'Neill
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
3
|
Kato G. Regulatory Roles of the N-Terminal Intrinsically Disordered Region of Modular Src. Int J Mol Sci 2022; 23:2241. [PMID: 35216357 PMCID: PMC8874404 DOI: 10.3390/ijms23042241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022] Open
Abstract
Src, the prototype of Src family kinases (SFKs), is a modular protein consisting of SH4 (SH4) and unique (UD) domains in an N-terminal intrinsically disordered region (IDR), and SH3, SH2, and kinase (KD) folded domains conserved among SFKs. Src functions as a pleiotropic signaling hub in proliferating and post-mitotic cells, and it is related to cancer and neurological diseases. However, its regulatory mechanism is unclear because the existing canonical model is derived from crystallographic analyses of folded constructs lacking the IDR. This work reviews nuclear magnetic resonance analyses of partially structured lipid-binding segments in the flexible UD and the fuzzy intramolecular complex (FIMC) comprising IDR and SH3 domains, which interacts with lipid membranes and proteins. Furthermore, recently determined IDR-related Src characteristics are discussed, including dimerization, SH4/KD intramolecular fastener bundling of folded domains, and the sorting of adhesive structures. Finally, the modulatory roles of IDR phosphorylation in Src activities involving the FIMC are explored. The new regulatory roles of IDRs are integrated with the canonical model to elucidate the functions of full-length Src. This review presents new aspects of Src regulation, and provides a future direction for studies on the structure and function of Src, and their implications for pathological processes.
Collapse
Affiliation(s)
- Goro Kato
- Laboratory of Biological Chemistry, Center for Medical Education and Sciences, University of Yamanashi, 1110 Shimokato, Chuo 409-3898, Yamanashi, Japan
| |
Collapse
|
4
|
Spassov DS, Ruiz-Saenz A, Piple A, Moasser MM. A Dimerization Function in the Intrinsically Disordered N-Terminal Region of Src. Cell Rep 2019; 25:449-463.e4. [PMID: 30304684 PMCID: PMC6226010 DOI: 10.1016/j.celrep.2018.09.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 07/09/2018] [Accepted: 09/12/2018] [Indexed: 01/30/2023] Open
Abstract
The mode of regulation of Src kinases has been elucidated by crystallographic studies identifying conserved structured protein modules involved in an orderly set of intramolecular associations and ligand interactions. Despite these detailed insights, much of the complex behavior and diversity in the Src family remains unexplained. A key missing piece is the function of the unstructured N-terminal region. We report here the function of the N-terminal region in binding within a hydrophobic pocket in the kinase domain of a dimerization partner. Dimerization substantially enhances autophosphorylation and phosphorylation of selected substrates, and interfering with dimerization is disruptive to these functions. Dimerization and Y419 phosphorylation are codependent events creating a bistable switch. Given the versatility inherent in this intrinsically disordered region, its multisite phosphorylations, and its divergence within the family, the unique domain likely functions as a central signaling hub overseeing much of the activities and unique functions of Src family kinases. Spassov et al. report that Src exists in cells and functions as a dimer and that dimerization and autophosphorylation are codependent events. Through a comprehensive structure-function analysis, they show that the dimer is an asymmetric dimer held through the interaction of the myristoylated N-terminal unique domain of one partner with a hydrophobic pocket in the kinase domain of another.
Collapse
Affiliation(s)
- Danislav S Spassov
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ana Ruiz-Saenz
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amit Piple
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mark M Moasser
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
5
|
Le Roux AL, Mohammad IL, Mateos B, Arbesú M, Gairí M, Khan FA, Teixeira JMC, Pons M. A Myristoyl-Binding Site in the SH3 Domain Modulates c-Src Membrane Anchoring. iScience 2019; 12:194-203. [PMID: 30690395 PMCID: PMC6354742 DOI: 10.1016/j.isci.2019.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/04/2018] [Accepted: 01/04/2019] [Indexed: 12/25/2022] Open
Abstract
The c-Src oncogene is anchored to the cytoplasmic membrane through its N-terminal myristoylated SH4 domain. This domain is part of an intramolecular fuzzy complex with the SH3 and Unique domains. Here we show that the N-terminal myristoyl group binds to the SH3 domain in the proximity of the RT loop, when Src is not anchored to a lipid membrane. Residues in the so-called Unique Lipid Binding Region modulate this interaction. In the presence of lipids, the myristoyl group is released from the SH3 domain and inserts into the lipid membrane. The fuzzy complex with the SH4 and Unique domains is retained in the membrane-bound form, placing the SH3 domain close to the membrane surface and restricting its orientation. The apparent affinity of myristoylated proteins containing the SH4, Unique, and SH3 domains is modulated by these intramolecular interactions, suggesting a mechanism linking c-Src activation and membrane anchoring.
Collapse
Affiliation(s)
- Anabel-Lise Le Roux
- BioNMR Laboratory, Inorganic and Organic Chemistry Department, Universitat de Barcelona, Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Irrem-Laareb Mohammad
- BioNMR Laboratory, Inorganic and Organic Chemistry Department, Universitat de Barcelona, Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Borja Mateos
- BioNMR Laboratory, Inorganic and Organic Chemistry Department, Universitat de Barcelona, Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Miguel Arbesú
- BioNMR Laboratory, Inorganic and Organic Chemistry Department, Universitat de Barcelona, Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Margarida Gairí
- NMR Facility, Scientific and Technological Centers, Universitat de Barcelona, Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Farman Ali Khan
- BioNMR Laboratory, Inorganic and Organic Chemistry Department, Universitat de Barcelona, Baldiri Reixac, 10-12, 08028 Barcelona, Spain; Department of Biochemistry, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - João M C Teixeira
- BioNMR Laboratory, Inorganic and Organic Chemistry Department, Universitat de Barcelona, Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Miquel Pons
- BioNMR Laboratory, Inorganic and Organic Chemistry Department, Universitat de Barcelona, Baldiri Reixac, 10-12, 08028 Barcelona, Spain.
| |
Collapse
|
6
|
Kim S, Alsaidan OA, Goodwin O, Li Q, Sulejmani E, Han Z, Bai A, Albers T, Beharry Z, Zheng YG, Norris JS, Szulc ZM, Bielawska A, Lebedyeva I, Pegan SD, Cai H. Blocking Myristoylation of Src Inhibits Its Kinase Activity and Suppresses Prostate Cancer Progression. Cancer Res 2017; 77:6950-6962. [PMID: 29038344 DOI: 10.1158/0008-5472.can-17-0981] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/24/2017] [Accepted: 10/09/2017] [Indexed: 11/16/2022]
Abstract
Protein N-myristoylation enables localization to membranes and helps maintain protein conformation and function. N-myristoyltransferases (NMT) catalyze co- or posttranslational myristoylation of Src family kinases and other oncogenic proteins, thereby regulating their function. In this study, we provide genetic and pharmacologic evidence that inhibiting the N-myristoyltransferase NMT1 suppresses cell-cycle progression, proliferation, and malignant growth of prostate cancer cells. Loss of myristoylation abolished the tumorigenic potential of Src and its synergy with androgen receptor in mediating tumor invasion. We identified the myristoyl-CoA analogue B13 as a small-molecule inhibitor of NMT1 enzymatic activity. B13 exposure blocked Src myristoylation and Src localization to the cytoplasmic membrane, attenuating Src-mediated oncogenic signaling. B13 exerted its anti-invasive and antitumor effects against prostate cancer cells, with minimal toxic side-effects in vivo Structural optimization based on structure-activity relationships enabled the chemical synthesis of LCL204, with enhanced inhibitory potency against NMT1. Collectively, our results offer a preclinical proof of concept for the use of protein myristoylation inhibitors as a strategy to block prostate cancer progression. Cancer Res; 77(24); 6950-62. ©2017 AACR.
Collapse
Affiliation(s)
- Sungjin Kim
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Omar Awad Alsaidan
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Octavia Goodwin
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Qianjin Li
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Essilvo Sulejmani
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Zhen Han
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Aiping Bai
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Thomas Albers
- Department of Chemistry and Physics, Augusta University, Augusta, Georgia
| | - Zanna Beharry
- Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, Florida
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - James S Norris
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Zdzislaw M Szulc
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Alicja Bielawska
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Iryna Lebedyeva
- Department of Chemistry and Physics, Augusta University, Augusta, Georgia
| | - Scott D Pegan
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Houjian Cai
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia.
| |
Collapse
|
7
|
Kim S, Yang X, Li Q, Wu M, Costyn L, Beharry Z, Bartlett MG, Cai H. Myristoylation of Src kinase mediates Src-induced and high-fat diet-accelerated prostate tumor progression in mice. J Biol Chem 2017; 292:18422-18433. [PMID: 28939770 DOI: 10.1074/jbc.m117.798827] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/21/2017] [Indexed: 12/11/2022] Open
Abstract
Exogenous fatty acids provide substrates for energy production and biogenesis of the cytoplasmic membrane, but they also enhance cellular signaling during cancer cell proliferation. However, it remains controversial whether dietary fatty acids are correlated with tumor progression. In this study, we demonstrate that increased Src kinase activity is associated with high-fat diet-accelerated progression of prostate tumors and that Src kinases mediate this pathological process. Moreover, in the in vivo prostate regeneration assay, host SCID mice carrying Src(Y529F)-transduced regeneration tissues were fed a low-fat diet or a high-fat diet and treated with vehicle or dasatinib. The high-fat diet not only accelerated Src-induced prostate tumorigenesis in mice but also compromised the inhibitory effect of the anticancer drug dasatinib on Src kinase oncogenic potential in vivo We further show that myristoylation of Src kinase is essential to facilitate Src-induced and high-fat diet-accelerated tumor progression. Mechanistically, metabolism of exogenous myristic acid increased the biosynthesis of myristoyl CoA and myristoylated Src and promoted Src kinase-mediated oncogenic signaling in human cells. Of the fatty acids tested, only exogenous myristic acid contributed to increased intracellular myristoyl CoA levels. Our results suggest that targeting Src kinase myristoylation, which is required for Src kinase association at the cellular membrane, blocks dietary fat-accelerated tumorigenesis in vivo Our findings uncover the molecular basis of how the metabolism of myristic acid stimulates high-fat diet-mediated prostate tumor progression.
Collapse
Affiliation(s)
- Sungjin Kim
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602 and
| | - Xiangkun Yang
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602 and
| | - Qianjin Li
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602 and
| | - Meng Wu
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602 and
| | - Leah Costyn
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602 and
| | - Zanna Beharry
- the Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, Florida 33965
| | - Michael G Bartlett
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602 and
| | - Houjian Cai
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602 and
| |
Collapse
|
8
|
He Y, Ren Y, Wu B, Decourt B, Lee AC, Taylor A, Suter DM. Src and cortactin promote lamellipodia protrusion and filopodia formation and stability in growth cones. Mol Biol Cell 2015. [PMID: 26224308 PMCID: PMC4569314 DOI: 10.1091/mbc.e15-03-0142] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
How Src tyrosine kinase and cortactin control actin organization and dynamics in neuronal growth cones is not well understood. Using multiple high-resolution imaging techniques, this study shows that Src and cortactin control the persistence of lamellipodial protrusion as well as the formation, stability, and elongation of filopodia in growth cones. Src tyrosine kinases have been implicated in axonal growth and guidance; however, the underlying cellular mechanisms are not well understood. Specifically, it is unclear which aspects of actin organization and dynamics are regulated by Src in neuronal growth cones. Here, we investigated the function of Src2 and one of its substrates, cortactin, in lamellipodia and filopodia of Aplysia growth cones. We found that up-regulation of Src2 activation state or cortactin increased lamellipodial length, protrusion time, and actin network density, whereas down-regulation had opposite effects. Furthermore, Src2 or cortactin up-regulation increased filopodial density, length, and protrusion time, whereas down-regulation promoted lateral movements of filopodia. Fluorescent speckle microscopy revealed that rates of actin assembly and retrograde flow were not affected in either case. In summary, our results support a model in which Src and cortactin regulate growth cone motility by increasing actin network density and protrusion persistence of lamellipodia by controlling the state of actin-driven protrusion versus retraction. In addition, both proteins promote the formation and stability of actin bundles in filopodia.
Collapse
Affiliation(s)
- Yingpei He
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Yuan Ren
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Bingbing Wu
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Boris Decourt
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Aih Cheun Lee
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Aaron Taylor
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907
| | - Daniel M Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907 )
| |
Collapse
|
9
|
Myristoylation and membrane binding regulate c-Src stability and kinase activity. Mol Cell Biol 2010; 30:4094-107. [PMID: 20584982 DOI: 10.1128/mcb.00246-10] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myristoylation is critical for membrane association of Src kinases, but a role for myristate in regulating other aspects of Src biology has not been explored. In the c-Abl tyrosine kinase, myristate binds within a hydrophobic pocket at the base of the kinase domain and latches the protein into an autoinhibitory conformation. A similar pocket has been predicted to exist in c-Src, raising the possibility that Src might also be regulated by myristoylation. Here we show that in contrast to the case for c-Abl, myristoylation exerts a positive effect on c-Src kinase activity. We also demonstrate that myristoylation and membrane binding regulate c-Src ubiquitination and degradation. Nonmyristoylated c-Src exhibited reduced kinase activity but had enhanced stability compared to myristoylated c-Src. We then mutated critical residues in the predicted myristate binding pocket of c-Src. Mutation of L360 and/or E486 had no effect on c-Src membrane binding or localization. However, constructs containing a T456A mutation were partially released from the membrane, suggesting that mutagenesis could induce c-Src to undergo an artificial myristoyl switch. All of the pocket mutants exhibited decreased kinase activity. We concluded that myristoylation and the pocket residues regulate c-Src, but in a manner very different from that for c-Abl.
Collapse
|
10
|
Wright MH, Heal WP, Mann DJ, Tate EW. Protein myristoylation in health and disease. J Chem Biol 2010; 3:19-35. [PMID: 19898886 PMCID: PMC2816741 DOI: 10.1007/s12154-009-0032-8] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 10/05/2009] [Accepted: 10/19/2009] [Indexed: 02/07/2023] Open
Abstract
N-myristoylation is the attachment of a 14-carbon fatty acid, myristate, onto the N-terminal glycine residue of target proteins, catalysed by N-myristoyltransferase (NMT), a ubiquitous and essential enzyme in eukaryotes. Many of the target proteins of NMT are crucial components of signalling pathways, and myristoylation typically promotes membrane binding that is essential for proper protein localisation or biological function. NMT is a validated therapeutic target in opportunistic infections of humans by fungi or parasitic protozoa. Additionally, NMT is implicated in carcinogenesis, particularly colon cancer, where there is evidence for its upregulation in the early stages of tumour formation. However, the study of myristoylation in all organisms has until recently been hindered by a lack of techniques for detection and identification of myristoylated proteins. Here we introduce the chemistry and biology of N-myristoylation and NMT, and discuss new developments in chemical proteomic technologies that are meeting the challenge of studying this important co-translational modification in living systems.
Collapse
Affiliation(s)
- Megan H. Wright
- Chemical Biology Centre, Imperial College London, Exhibition Rd., London, SW72AZ UK
- Department of Chemistry, Imperial College London, Exhibition Rd., London, SW72AZ UK
- Department of Life Sciences, Imperial College London, Exhibition Rd., London, SW72AZ UK
| | - William P. Heal
- Department of Chemistry, Imperial College London, Exhibition Rd., London, SW72AZ UK
- Department of Life Sciences, Imperial College London, Exhibition Rd., London, SW72AZ UK
| | - David J. Mann
- Chemical Biology Centre, Imperial College London, Exhibition Rd., London, SW72AZ UK
- Department of Life Sciences, Imperial College London, Exhibition Rd., London, SW72AZ UK
| | - Edward W. Tate
- Chemical Biology Centre, Imperial College London, Exhibition Rd., London, SW72AZ UK
- Department of Chemistry, Imperial College London, Exhibition Rd., London, SW72AZ UK
| |
Collapse
|
11
|
Yadav SS, Miller WT. The evolutionarily conserved arrangement of domains in SRC family kinases is important for substrate recognition. Biochemistry 2008; 47:10871-80. [PMID: 18803405 PMCID: PMC2841526 DOI: 10.1021/bi800930e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The SH3-SH2-kinase domain arrangement in nonreceptor tyrosine kinases has been conserved throughout evolution. For Src family kinases, the relative positions of the domains are important for enzyme regulation; they permit the assembly of Src kinases into autoinhibited conformations. The SH3 and SH2 domains of Src family kinases have an additional role in determining the substrate specificity of the kinase. We addressed the question of whether the domain arrangement of Src family kinases has a role in substrate specificity by producing mutants with alternative arrangements. Our results suggest that changes in the positions of domains can lead to specific changes in the phosphorylation of Sam68 and Cas by Src. Phosphorylation of Cas by several mutants triggers downstream signaling leading to cell migration. The placement of the SH2 domain with respect to the catalytic domain of Src appears to be especially important for proper substrate recognition, while the placement of the SH3 domain is more flexible. The results suggest that the involvement of the SH3 and SH2 domains in substrate recognition is one reason for the strict conservation of the SH3-SH2-kinase architecture.
Collapse
Affiliation(s)
- Shalini S. Yadav
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, New York 11794-8661
| | - W. Todd Miller
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, New York 11794-8661
| |
Collapse
|
12
|
Zheng XM, Resnick RJ, Shalloway D. Mitotic activation of protein-tyrosine phosphatase alpha and regulation of its Src-mediated transforming activity by its sites of protein kinase C phosphorylation. J Biol Chem 2002; 277:21922-9. [PMID: 11923305 PMCID: PMC5641391 DOI: 10.1074/jbc.m201394200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During mitosis, the catalytic activity of protein-tyrosine phosphatase (PTP) alpha is enhanced, and its inhibitory binding to Grb2, which specifically blocks Src dephosphorylation, is decreased. These effects act synergistically to activate Src in mitosis. We show here that these effects are abrogated by mutation of Ser180 and/or Ser204, the sites of protein kinase C-mediated phosphorylation within PTPalpha. Moreover, either a Ser-to-Ala substitution or serine dephosphorylation specifically eliminated the ability of PTPalpha to dephosphorylate and activate Src even during interphase. This explains why the substitutions eliminated PTPalpha transforming activity, even though PTPalpha interphase dephosphorylation of nonspecific substrates was only slightly decreased. This occurred without change in the phosphorylation of PTPalpha at Tyr789, which is required for "phosphotyrosine displacement" during Src dephosphorylation. Thus, in addition to increasing PTPalpha nonspecific catalytic activity, Ser180 and Ser204 phosphorylation (along with Tyr789 phosphorylation) regulates PTPalpha substrate specificity. This involves serine phosphorylation-dependent differential modulation of the affinity of Tyr(P)789 for the Src and Grb2 SH2 domains. The results suggest that protein kinase C may participate in the mitotic activation of PTPalpha and Src and that there are intramolecular interactions between the PTPalpha C-terminal and membrane-proximal regions that are regulated, at least in part, by serine phosphorylation.
Collapse
Affiliation(s)
- Xin-Min Zheng
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Ross J. Resnick
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - David Shalloway
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| |
Collapse
|
13
|
Abstract
We show that, dependent on serine hyperphosphorylation, protein tyrosine phosphatase alpha (PTPalpha) is activated by two different mechanisms during mitosis: its specific activity increases and its inhibitory binding to Grb2 decreases. The latter effect probably abates Grb2 inhibition of the phosphotyrosine displacement process that is required specifically for Src dephosphorylation and causes a mitotic increase in transient PTPalpha-Src binding. Thus, part of the increased protein tyrosine phosphatase activity may be specific for Src family members. These effects cease along with Src activation when cells exit mitosis. Src is not activated in mitosis in PTPalpha-knockout cells, indicating a unique mitotic role for this phosphatase. The activation of PTPalpha, combined with the effects of mitotic Cdc2-mediated phosphorylations of Src, quantitatively accounts for the mitotic activation of Src, indicating that PTPalpha is the membrane-bound, serine phosphorylation-activated, protein tyrosine phosphatase that activates Src during mitosis.
Collapse
Affiliation(s)
| | - David Shalloway
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
Corresponding author e-mail:
| |
Collapse
|
14
|
Kriauciunas KM, Myers MG, Kahn CR. Cellular compartmentalization in insulin action: altered signaling by a lipid-modified IRS-1. Mol Cell Biol 2000; 20:6849-59. [PMID: 10958681 PMCID: PMC86221 DOI: 10.1128/mcb.20.18.6849-6859.2000] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While most receptor tyrosine kinases signal by recruiting SH2 proteins directly to phosphorylation sites on their plasma membrane receptor, the insulin receptor phosphorylates intermediary IRS proteins that are distributed between the cytoplasm and a state of loose association with intracellular membranes. To determine the importance of this distribution to IRS-1-mediated signaling, we constructed a prenylated, constitutively membrane-bound IRS-1 by adding the COOH-terminal 9 amino acids from p21(ras), including the CAAX motif, to IRS-1 (IRS-CAAX) and analyzed its function in 32D cells expressing the insulin receptor. IRS-CAAX migrated more slowly on sodium dodecyl sulfate-polyacrylamide gel electrophoresis than did IRS-1 and demonstrated increased levels of serine/threonine phosphorylation. Insulin-stimulated tyrosyl phosphorylation of IRS-CAAX was slightly decreased, while IRS-CAAX-mediated phosphatidylinositol 3'-kinase (PI3'-kinase) binding and activation were decreased by approximately 75% compared to those for wild-type IRS-1. Similarly, expression of IRS-CAAX desensitized insulin-stimulated [(3)H]thymidine incorporation into DNA by about an order of magnitude compared to IRS-1. By contrast, IRS-CAAX-expressing cells demonstrated increased signaling by mitogen-activated protein kinase, Akt, and p70(S6) kinase in response to insulin. Hence, tight association with the membrane increased IRS-1 serine phosphorylation and reduced coupling between the insulin receptor, PI3'-kinase, and proliferative signaling while enhancing other signaling pathways. Thus, the correct distribution of IRS-1 between the cytoplasm and membrane compartments is critical to the normal balance in the network of insulin signaling.
Collapse
Affiliation(s)
- K M Kriauciunas
- Research Division, Joslin Diabetes Center, and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
15
|
Zheng XM, Resnick RJ, Shalloway D. A phosphotyrosine displacement mechanism for activation of Src by PTPalpha. EMBO J 2000; 19:964-78. [PMID: 10698938 PMCID: PMC305636 DOI: 10.1093/emboj/19.5.964] [Citation(s) in RCA: 198] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Protein tyrosine phosphatase alpha (PTPalpha) is believed to dephosphorylate physiologically the Src proto-oncogene at phosphotyrosine (pTyr)527, a critical negative-regulatory residue. It thereby activates Src, and PTPalpha overexpression neoplastically transforms NIH 3T3 cells. pTyr789 in PTPalpha is constitutively phosphorylated and binds Grb2, an interaction that may inhibit PTPalpha activity. We show here that this phosphorylation also specifically enables PTPalpha to dephosphorylate pTyr527. Tyr789-->Phe mutation abrogates PTPalpha-Src binding, dephosphorylation of pTyr527 (although not of other substrates), and neoplastic transformation by overexpressed PTPalpha in vivo. We suggest that pTyr789 enables pTyr527 dephosphorylation by a pilot binding with the Src SH2 domain that displaces the intramolecular pTyr527-SH2 binding. Consistent with model predictions, we find that excess SH2 domains can disrupt PTPalpha-Src binding and can block PTPalpha-mediated dephosphorylation and activation in proportion to their affinity for pTyr789. Moreover, we show that, as predicted by the model, catalytically defective PTPalpha has reduced Src binding in vivo. The displacement mechanism provides another potential control point for physiological regulation of Src-family signal transduction pathways.
Collapse
Affiliation(s)
- X M Zheng
- Department of Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
16
|
Abstract
Myristoylation refers to the co-translational addition of a myristoyl group to an amino-terminal glycine residue of a protein by an ubiquitously distributed enzyme myristoyl-CoA:protein N-myristoyltransferase (NMT, EC 2.3.1.97). This review describes the basic enzymology, molecular cloning and regulation of NMT activity in various pathophysiological processes such as colon cancer and diabetes.
Collapse
Affiliation(s)
- R V Rajala
- Department of Pathology and Saskatoon Cancer Centre, College of Medicine, Royal University Hospital, University of Saskatchewan, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Weissinger EM, Eissner G, Grammer C, Fackler S, Haefner B, Yoon LS, Lu KS, Bazarov A, Sedivy JM, Mischak H, Kolch W. Inhibition of the Raf-1 kinase by cyclic AMP agonists causes apoptosis of v-abl-transformed cells. Mol Cell Biol 1997; 17:3229-41. [PMID: 9154822 PMCID: PMC232176 DOI: 10.1128/mcb.17.6.3229] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Here we investigate the role of the Raf-1 kinase in transformation by the v-abl oncogene. Raf-1 can activate a transforming signalling cascade comprising the consecutive activation of Mek and extracellular-signal-regulated kinases (Erks). In v-abl-transformed cells the endogenous Raf-1 protein was phosphorylated on tyrosine and displayed high constitutive kinase activity. The activities of the Erks were constitutively elevated in both v-raf- and v-abl-transformed cells. In both cell types the activities of Raf-1 and v-raf were almost completely suppressed after activation of the cyclic AMP-dependent kinase (protein kinase A [PKA]), whereas the v-abl kinase was not affected. Raf inhibition substantially diminished the activities of Erks in v-raf-transformed cells but not in v-abl-transformed cells, indicating that v-abl can activate Erks by a Raf-1-independent pathway. PKA activation induced apoptosis in v-abl-transformed cells while reverting v-raf transformation without severe cytopathic effects. Overexpression of Raf-1 in v-abl-transformed cells partially protected the cells from apoptosis induced by PKA activation. In contrast to PKA activators, a Mek inhibitor did not induce apoptosis. The diverse biological responses correlated with the status of c-myc gene expression. v-abl-transformed cells featured high constitutive levels of expression of c-myc, which were not reduced following PKA activation. Myc activation has been previously shown to be essential for transformation by oncogenic Abl proteins. Using estrogen-regulated c-myc and temperature-sensitive Raf-1 mutants, we found that Raf-1 activation could protect cells from c-myc-induced apoptosis. In conclusion, these results suggest (i) that Raf-1 participates in v-abl transformation via an Erk-independent pathway by providing a survival signal which complements c-myc in transformation, and (ii) that cAMP agonists might become useful for the treatment of malignancies where abl oncogenes are involved, such as chronic myeloid leukemias.
Collapse
Affiliation(s)
- E M Weissinger
- Institut für Klinische Hämatologie, GSF, Hamatologikum, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Cao X, Tay A, Guy GR, Tan YH. Activation and association of Stat3 with Src in v-Src-transformed cell lines. Mol Cell Biol 1996; 16:1595-603. [PMID: 8657134 PMCID: PMC231145 DOI: 10.1128/mcb.16.4.1595] [Citation(s) in RCA: 300] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
STAT proteins are a group of latent cytoplasmic transcription factors which function as signal transducers and activators of transcription. Stat1 and -2 were originally identified to function in interferon signaling, and Stat1 was also found to be activated by epidermal growth factor (EGF) and other cytokines. New members of the STAT gene family are identified. Among them, Stat3 has 52.5% amino acid sequence homology with Stat1 and is activated by platelet-derived growth factor (PDGF), colony-stimulating factor 1 (CSF-1), EGF, interleukin-6, and other cytokines. Treatment of cells with EGF activates Stat1 and Stat3, which become phosphorylated on tyrosine residues to form homo - or heterodimers and translocate into the nucleus, binding to the sis-inducible element (SIE) in the c-fos promoter. Somatic cell genetic analyses demonstrated that Jaks, a family of nontransmembrane protein tyrosine kinases, are required for the activation of Stat1 and Stat2 in interferon-treated cells. However, little is known about the activation of Stat3 by growth factors. Here we report that in all v-Src-transformed cell lines examined, Stat3 is constitutively activated to bind to DNA and the phosphorylation of tyrosine on Stat3 is enhanced by the induction of v-Src expression. We also report that Src is shown to be associated with Stat3 in vivo, as well as in vitro, and phosphorylates Stat3 in vitro. Stat3 is also activated by CSF-1, possibly through CSF-1 receptor-c Src association in NIH 3T3 cells overexpressing CSF-1 receptors. Together, the data suggest that Src is involved in activation of Stat3 in growth factor signal transduction.
Collapse
Affiliation(s)
- X Cao
- Signal Transduction Laboratory, Institute of Molecular and Cell Biology, National University of Singapore
| | | | | | | |
Collapse
|
19
|
Rodier JM, Vallés AM, Denoyelle M, Thiery JP, Boyer B. pp60c-src is a positive regulator of growth factor-induced cell scattering in a rat bladder carcinoma cell line. J Biophys Biochem Cytol 1995; 131:761-73. [PMID: 7593195 PMCID: PMC2120611 DOI: 10.1083/jcb.131.3.761] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The NBT-II rat carcinoma cell line exhibits two mutually exclusive responses to FGF-1 and EGF, entering mitosis at cell confluency while undergoing an epithelium-to-mesenchyme transition (EMT) when cultured at subconfluency. EMT is characterized by acquisition of cell motility, modifications of cell morphology, and cell dissociation correlating with the loss of desmosomes from cellular cortex. The pleiotropic effects of EGF and FGF-1 on NBT-II cells suggest that multiple signaling pathways may be activated. We demonstrate here that growth factor activation is linked to at least two intracellular signaling pathways. One pathway leading to EMT involves an early and sustained stimulation of pp60c-src kinase activity, which is not observed during the growth factor-induced entry into the cell cycle. Overexpression of normal c-src causes a subpopulation of cells to undergo spontaneous EMT and sensitizes the rest of the population to the scattering activity of EGF and FGF-1 without affecting their mitogenic responsiveness. Addition of cholera toxin, a cAMP-elevating agent, severely perturbs growth factor induction of EMT without altering pp60c-src activation, therefore demonstrating that cAMP blockade takes place downstream or independently of pp60c-src. On the other hand, overexpression of a mutated, constitutively activated form of pp60c-src does not block cell dispersion while strongly inhibiting growth factor-induced entry into cell division. Moreover, stable transfection of a dominant negative mutant of c-src inhibits the scattering response without affecting mitogenesis induced by the growth factors. Altogether, these results suggest a role for pp60c-src in epithelial cell scattering and indicate that pp60c-src might contribute unequally to the two separate biological activities engendered by a single signal.
Collapse
Affiliation(s)
- J M Rodier
- UMR 144 CNRS, Institut Curie Section de Recherche, Paris, France
| | | | | | | | | |
Collapse
|
20
|
Park J, Cartwright CA. Src activity increases and Yes activity decreases during mitosis of human colon carcinoma cells. Mol Cell Biol 1995; 15:2374-82. [PMID: 7739521 PMCID: PMC230466 DOI: 10.1128/mcb.15.5.2374] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Src and Yes protein-tyrosine kinase activities are elevated in malignant and premalignant tumors of the colon. To determine whether Src activity is elevated throughout the human colon carcinoma cell cycle as it is in polyomavirus middle T antigen- or F527 Src-transformed cells, and whether Yes activity, which is lower than that of Src in the carcinoma cells, is regulated differently, we measured their activities in cycling cells. We observed that the activities of both kinases were higher throughout all phases of the HT-29 colon carcinoma cell cycle than in corresponding phases of the fibroblast cycle. In addition, during mitosis of HT-29 cells, Src specific activity increased two- to threefold more, while Yes activity and abundance decreased threefold. The decreased steady-state protein levels of Yes during mitosis appeared to be due to both decreased synthesis and increased degradation of the protein. Inhibition of tyrosine but not serine/threonine phosphatases abolished the mitotic activation of Src. Mitotic Src was phosphorylated at novel serine and threonine sites and dephosphorylated at Tyr-527. Two cellular proteins (p160 and p180) were phosphorylated on tyrosine only during mitosis. Tyrosine phosphorylation of several other proteins decreased during mitosis. Thus, Src in HT-29 colon carcinoma cells, similar to Src complexed to polyomavirus middle T antigen or activated by mutation at Tyr-527, is highly active in all phases of the cell cycle. Moreover, Src activity further increases during mitosis, whereas Yes activity and abundance decrease. Thus, Src and Yes appear to be regulated differently during mitosis of HT-29 colon carcinoma cells.
Collapse
Affiliation(s)
- J Park
- Department of Medicine, Stanford University, California 94305, USA
| | | |
Collapse
|
21
|
Huang M, Jolicoeur P. Myristylation of Pr60gag of the murine AIDS-defective virus is required to induce disease and notably for the expansion of its target cells. J Virol 1994; 68:5648-55. [PMID: 8057445 PMCID: PMC236966 DOI: 10.1128/jvi.68.9.5648-5655.1994] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Murine AIDS (MAIDS) is characterized by severe lymphadenopathy and splenomegaly. The proliferation of the infected target B cells is also an important manifestation of the disease (M. Huang, C. Simard, D. G. Kay, and P. Jolicoeur, J. Virol. 65:6562-6571, 1991). The etiologic agent of MAIDS is a defective murine leukemia virus that is deleted of most of its pol and env genes and appears to encode a single protein, the Gag precursor Pr60gag protein. Pr60gag is myristylated and attached to the plasma membrane. To study the role myristylation on the function of Pr60gag, we have generated a myristylation-negative (Myr-) mutant of the MAIDS defective virus. We found that Myr- Pr60gag interacted less tightly with the plasma membrane. In addition, the Myr- MAIDS defective virus mutant was unable to induce expansion of infected cells and was nonpathogenic. These results emphasize the essential role of Pr60gag in the disease process. Our data also suggest that Pr60gag, once recruited to the cell membrane through its myristylation, interacts with other membrane-bound effectors to send signals to induce proliferation of the infected cells and to initiate immune dysfunctions.
Collapse
Affiliation(s)
- M Huang
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Québec, Canada
| | | |
Collapse
|
22
|
Abstract
Csk phosphorylates Src family members at a key regulatory tyrosine in the C-terminal tail and suppresses their activities. It is not known whether Csk activity is regulated. To examine the features of Csk required for Src suppression, we expressed Csk mutants in a cell line with a disrupted csk gene. Expression of wild-type Csk suppressed Src, but Csk with mutations in the SH2, SH3, and catalytic domains did not suppress Src. An SH3 deletion mutant of Csk was fully active against in vitro substrates, but two SH2 domain mutants were essentially inactive. Whereas Src repressed by Csk was predominantly perinuclear, the activated Src in cells lacking Csk was localized to structures resembling podosomes. Activated mutant Src was also in podosomes, even in the presence of Csk. When Src was not active, Csk was diffusely located in the cytosol, but when Src was active, Csk colocalized with activated Src to podosomes. Csk also localizes to podosomes of cells transformed by an activated Src that lacks the major tyrosine autophosphorylation site, suggesting that the relocalization of Csk is not a consequence of the binding of the Csk SH2 domain to phosphorylated Src. A catalytically inactive Csk mutant also localized with Src to podosomes, but SH3 and SH2 domain mutants did not, suggesting that the SH3 and SH2 domains are both necessary to target Csk to places where Src is active. The failure of the catalytically active SH3 mutant of Csk to regulate Src may be due to its inability to colocalize with active Src.
Collapse
|
23
|
Abstract
Csk phosphorylates Src family members at a key regulatory tyrosine in the C-terminal tail and suppresses their activities. It is not known whether Csk activity is regulated. To examine the features of Csk required for Src suppression, we expressed Csk mutants in a cell line with a disrupted csk gene. Expression of wild-type Csk suppressed Src, but Csk with mutations in the SH2, SH3, and catalytic domains did not suppress Src. An SH3 deletion mutant of Csk was fully active against in vitro substrates, but two SH2 domain mutants were essentially inactive. Whereas Src repressed by Csk was predominantly perinuclear, the activated Src in cells lacking Csk was localized to structures resembling podosomes. Activated mutant Src was also in podosomes, even in the presence of Csk. When Src was not active, Csk was diffusely located in the cytosol, but when Src was active, Csk colocalized with activated Src to podosomes. Csk also localizes to podosomes of cells transformed by an activated Src that lacks the major tyrosine autophosphorylation site, suggesting that the relocalization of Csk is not a consequence of the binding of the Csk SH2 domain to phosphorylated Src. A catalytically inactive Csk mutant also localized with Src to podosomes, but SH3 and SH2 domain mutants did not, suggesting that the SH3 and SH2 domains are both necessary to target Csk to places where Src is active. The failure of the catalytically active SH3 mutant of Csk to regulate Src may be due to its inability to colocalize with active Src.
Collapse
Affiliation(s)
- B W Howell
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | |
Collapse
|
24
|
Sabe H, Hata A, Okada M, Nakagawa H, Hanafusa H. Analysis of the binding of the Src homology 2 domain of Csk to tyrosine-phosphorylated proteins in the suppression and mitotic activation of c-Src. Proc Natl Acad Sci U S A 1994; 91:3984-8. [PMID: 7513429 PMCID: PMC43707 DOI: 10.1073/pnas.91.9.3984] [Citation(s) in RCA: 192] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Csk (C-terminal Src kinase), a protein-tyrosine kinase, bearing the Src homology 2 and 3 (SH2 and SH3) domains, has been implicated in phosphorylation of c-Src Tyr-527, resulting in suppression of c-Src kinase activity. We found that mutations in the SH2 or SH3 domain of Csk, though they did not affect its kinase activity, resulted in a loss of suppression of c-Src activity in fibroblasts. In normal fibroblasts, tyrosine-phosphorylated paxillin and focal adhesion kinase pp125FAK, which colocalize at focal adhesion plaques, were the major proteins to which the Csk SH2 domain bound. Loss of binding to these proteins by the Csk SH2 mutants correlated with loss of the activity to suppress c-Src. Consistent with this observation, the levels of tyrosine phosphorylation of paxillin and pp125FAK were greatly reduced during mitosis, whereas the kinase activity of c-Src was elevated. We suggest that the SH2 domain is required for Csk to suppress c-Src, perhaps in combination with the SH3 domain, by anchoring Csk to a particular subcellular location where c-Src may exist. Our data also indicate that a certain fraction of the Csk and Src family kinases function at the focal adhesion plaques. The activity of the c-Src kinase localized at the focal adhesion plaques appears to be regulated by cell adhesion to the extracellular matrix.
Collapse
Affiliation(s)
- H Sabe
- Laboratory of Molecular Oncology, Rockefeller University, New York, NY 10021
| | | | | | | | | |
Collapse
|
25
|
Hildebrand JD, Schaller MD, Parsons JT. Identification of sequences required for the efficient localization of the focal adhesion kinase, pp125FAK, to cellular focal adhesions. J Biophys Biochem Cytol 1993; 123:993-1005. [PMID: 8227154 PMCID: PMC2200138 DOI: 10.1083/jcb.123.4.993] [Citation(s) in RCA: 314] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The integrin family of heterodimeric cell surface receptors play critical roles in multiple biological processes by mediating cellular adhesion to the extracellular matrix (ECM). Adhesion triggers intracellular signaling cascades, including tyrosine phosphorylation and elevation of [Ca2+]i. The Focal Adhesion Kinase (FAK or pp125FAK), a protein tyrosine kinase that colocalizes with integrins in cellular focal adhesions, is a prime candidate for a mediator of integrin signaling events. Here we report an analysis of the domain structure of FAK in which we have identified a contiguous stretch of 159 amino acids within the COOH terminus essential for correct subcellular localization. When placed in the context of an unrelated cytosolic protein, this Focal Adhesion Targeting (FAT) sequence functions to efficiently mediate the focal adhesion localization of this fusion protein. Furthermore, this analysis suggests that pp125FAK cannot be activated oncogenically by mutation. This result could be explained if pp125FK either exhibits a narrow substrate specificity or is diametrically opposed by cellular phosphatases or other cellular processes.
Collapse
Affiliation(s)
- J D Hildebrand
- Department of Microbiology, University of Virginia, Charlottesville 22908
| | | | | |
Collapse
|