1
|
Tseng CK, Cheng SC. Arresting Spliceosome Intermediates at Various Stages of the Splicing Pathway. Methods Mol Biol 2023; 2666:193-211. [PMID: 37166667 DOI: 10.1007/978-1-0716-3191-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The spliceosome is a dynamic ribonucleoprotein particle and is assembled via sequential binding of five snRNAs and numerous protein factors. To understand the molecular mechanism of the splicing reaction, it is necessary to dissect the spliceosome pathway and isolate spliceosome intermediates in various stages of the pathway for biochemical and structural analysis. Here, we describe protocols for preparing intron-containing transcripts, cell-free splicing extracts, and in vitro splicing reactions, as well as procedures to arrest the spliceosome at different stages of the pathway for characterization of specific splicing complexes from the budding yeast Saccharomyces cerevisiae. Methods for arresting spliceosomes at specific stages include depletion with antibodies against factors required for specific steps of the pathway, use of extracts prepared from temperature-sensitive mutants, use of dominant negative mutants of DExD/H-box proteins, and use of mutant substrates.
Collapse
Affiliation(s)
- Chi-Kang Tseng
- Graduate Institute of Microbiology, National Taiwan University, College of Medicine, Taipei, Taiwan, Republic of China
| | - Soo-Chen Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China.
| |
Collapse
|
2
|
Su YL, Chen HC, Tsai RT, Lin PC, Cheng SC. Cwc23 is a component of the NTR complex and functions to stabilize Ntr1 and facilitate disassembly of spliceosome intermediates. Nucleic Acids Res 2018; 46:3764-3773. [PMID: 29390077 PMCID: PMC6044358 DOI: 10.1093/nar/gky052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 01/22/2023] Open
Abstract
Cwc23 is a member of the J protein family, and has been shown to interact with Ntr1, a scaffold protein that interacts with Ntr2 and Prp43 to form the NTR complex that mediates spliceosome disassembly. We show that Cwc23 is also an intrinsic component of the NTR complex, and that it interacts with the carboxyl terminus of Ntr1. Metabolic depletion of Cwc23 concurrently depleted Ntr1 and Ntr2, suggesting a role for Cwc23 in stabilizing these two proteins. Ntr1, Ntr2 and Cwc23 are stoichiometrically balanced, and form a stable heterotrimer. Depletion of Cwc23 from splicing extracts using antibodies resulted in depletion of all three proteins and accumulation of intron-lariat in the splicing reaction. Cwc23 is not required for disassembly of intron-lariat spliceosome (ILS), but facilitates disassembly of spliceosome intermediates after the actions of Prp2 and Prp16 by stabilizing the association of Ntr1 with the spliceosome. Cwc23 has a more limited effect on the association of Ntr1 with the ILS. Our data suggest that Cwc23 is important for maintaining the levels of Ntr1 and Ntr2, and that it also plays a regulatory role in targeting spliceosome intermediates for disassembly.
Collapse
Affiliation(s)
- Yu-Lun Su
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Hsin-Chou Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Rong-Tzong Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Pei-Chun Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Soo-Chen Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| |
Collapse
|
3
|
Tseng CK, Chung CS, Chen HC, Cheng SC. A central role of Cwc25 in spliceosome dynamics during the catalytic phase of pre-mRNA splicing. RNA (NEW YORK, N.Y.) 2017; 23:546-556. [PMID: 28057857 PMCID: PMC5340917 DOI: 10.1261/rna.059204.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/03/2017] [Indexed: 05/22/2023]
Abstract
Splicing of precursor mRNA occurs via two consecutive steps of transesterification reaction; both require ATP and several proteins. Despite the energy requirement in the catalytic phase, incubation of the purified spliceosome under proper ionic conditions can elicit competitive reversible transesterification, debranching, and spliced-exon-reopening reactions without the necessity for ATP or other factors, suggesting that small changes in the conformational state of the spliceosome can lead to disparate chemical consequences for the substrate. We show here that Cwc25 plays a central role in modulating the conformational state of the catalytic spliceosome during normal splicing reactions. Cwc25 binds tightly to the spliceosome after the reaction and is then removed from the spliceosome, which normally requires DExD/H-box protein Prp16 and ATP hydrolysis, to allow the occurrence of the second reaction. When deprived of Cwc25, the purified first-step spliceosome catalyzes both forward and reverse splicing reactions under normal splicing conditions without requiring energy. Both reactions are inhibited when Cwc25 is added back, presumably due to the stabilization of first-step conformation. Prp16 is dispensable for the second reaction when splicing is carried out under conditions that destabilize Cwc25. We also show that the purified precatalytic spliceosome can catalyze two steps of the reaction at a low efficiency without requiring Cwc25, Slu7, or Prp18 when incubated under proper conditions. Our study reveals conformational modulation of the spliceosome by Cwc25 and Prp16 in stabilization and destabilization of first-step conformation, respectively, to facilitate the splicing process.
Collapse
Affiliation(s)
- Chi-Kang Tseng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Che-Sheng Chung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Hsin-Chou Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Soo-Chen Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| |
Collapse
|
4
|
Pre-mRNA Processing Factor Prp18 Is a Stimulatory Factor of Influenza Virus RNA Synthesis and Possesses Nucleoprotein Chaperone Activity. J Virol 2017; 91:JVI.01398-16. [PMID: 27852861 DOI: 10.1128/jvi.01398-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/13/2016] [Indexed: 11/20/2022] Open
Abstract
The genome of influenza virus (viral RNA [vRNA]) is associated with the nucleoprotein (NP) and viral RNA-dependent RNA polymerases and forms helical viral ribonucleoprotein (vRNP) complexes. The NP-vRNA complex is the biologically active template for RNA synthesis by the viral polymerase. Previously, we identified human pre-mRNA processing factor 18 (Prp18) as a stimulatory factor for viral RNA synthesis using a Saccharomyces cerevisiae replicon system and a single-gene deletion library of Saccharomyces cerevisiae (T. Naito, Y. Kiyasu, K. Sugiyama, A. Kimura, R. Nakano, A. Matsukage, and K. Nagata, Proc Natl Acad Sci USA, 104:18235-18240, 2007, https://doi.org/10.1073/pnas.0705856104). In infected Prp18 knockdown (KD) cells, the synthesis of vRNA, cRNA, and viral mRNAs was reduced. Prp18 was found to stimulate in vitro viral RNA synthesis through its interaction with NP. Analyses using in vitro RNA synthesis reactions revealed that Prp18 dissociates newly synthesized RNA from the template after the early elongation step to stimulate the elongation reaction. We found that Prp18 functions as a chaperone for NP to facilitate the formation of NP-RNA complexes. Based on these results, it is suggested that Prp18 accelerates influenza virus RNA synthesis as an NP chaperone for the processive elongation reaction. IMPORTANCE Templates for viral RNA synthesis of negative-stranded RNA viruses are not naked RNA but rather RNA encapsidated by viral nucleocapsid proteins forming vRNP complexes. However, viral basic proteins tend to aggregate under physiological ionic strength without chaperones. We identified the pre-mRNA processing factor Prp18 as a stimulatory factor for influenza virus RNA synthesis. We found that one of the targets of Prp18 is NP. Prp18 facilitates the elongation reaction of viral polymerases by preventing the deleterious annealing of newly synthesized RNA to the template. Prp18 functions as a chaperone for NP to stimulate the formation of NP-RNA complexes. Based on these results, we propose that Prp18 may be required to maintain the structural integrity of vRNP for processive template reading.
Collapse
|
5
|
Bertram K, Agafonov DE, Liu WT, Dybkov O, Will CL, Hartmuth K, Urlaub H, Kastner B, Stark H, Lührmann R. Cryo-EM structure of a human spliceosome activated for step 2 of splicing. Nature 2017; 542:318-323. [DOI: 10.1038/nature21079] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/04/2017] [Indexed: 12/18/2022]
|
6
|
Mayerle M, Guthrie C. Prp8 retinitis pigmentosa mutants cause defects in the transition between the catalytic steps of splicing. RNA (NEW YORK, N.Y.) 2016; 22:793-809. [PMID: 26968627 PMCID: PMC4836653 DOI: 10.1261/rna.055459.115] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/11/2016] [Indexed: 05/14/2023]
Abstract
Pre-mRNA splicing must occur with high fidelity and efficiency for proper gene expression. The spliceosome uses DExD/H box helicases to promote on-pathway interactions while simultaneously minimizing errors. Prp8 and Snu114, an EF2-like GTPase, regulate the activity of the Brr2 helicase, promoting RNA unwinding by Brr2 at appropriate points in the splicing cycle and repressing it at others. Mutations linked to retinitis pigmentosa (RP), a disease that causes blindness in humans, map to the Brr2 regulatory region of Prp8. Previous in vitro studies of homologous mutations in Saccharomyces cerevisiaes how that Prp8-RP mutants cause defects in spliceosome activation. Here we show that a subset of RP mutations in Prp8 also causes defects in the transition between the first and second catalytic steps of splicing. Though Prp8-RP mutants do not cause defects in splicing fidelity, they result in an overall decrease in splicing efficiency. Furthermore, genetic analyses link Snu114 GTP/GDP occupancy to Prp8-dependent regulation of Brr2. Our results implicate the transition between the first and second catalytic steps as a critical place in the splicing cycle where Prp8-RP mutants influence splicing efficiency. The location of the Prp8-RP mutants, at the "hinge" that links the Prp8 Jab1-MPN regulatory "tail" to the globular portion of the domain, suggests that these Prp8-RP mutants inhibit regulated movement of the Prp8 Jab1/MPN domain into the Brr2 RNA binding channel to transiently inhibit Brr2. Therefore, in Prp8-linked RP, disease likely results not only from defects in spliceosome assembly and activation, but also because of defects in splicing catalysis.
Collapse
Affiliation(s)
- Megan Mayerle
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94143, USA
| | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
7
|
Hayduk AJ, Stark MR, Rader SD. In vitro reconstitution of yeast splicing with U4 snRNA reveals multiple roles for the 3' stem-loop. RNA (NEW YORK, N.Y.) 2012; 18:1075-1090. [PMID: 22411955 PMCID: PMC3334694 DOI: 10.1261/rna.031757.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 01/26/2012] [Indexed: 05/31/2023]
Abstract
U4 small nuclear RNA (snRNA) plays a fundamental role in the process of premessenger RNA splicing, yet many questions remain regarding the location, interactions, and roles of its functional domains. To address some of these questions, we developed the first in vitro reconstitution system for yeast U4 small nuclear ribonucleoproteins (snRNPs). We used this system to examine the functional domains of U4 by measuring reconstitution of splicing, U4/U6 base-pairing, and triple-snRNP formation. In contrast to previous work in human extracts and Xenopus oocytes, we found that the 3' stem-loop of U4 is necessary for efficient base-pairing with U6. In particular, the loop is sensitive to changes in both length and sequence. Intriguingly, a number of mutations that we tested resulted in more stable interactions with U6 than wild-type U4. Nevertheless, each of these mutants was impaired in its ability to support splicing, indicating that these regions of U4 have functions subsequent to base pair formation with U6. Our data suggest that one such function is likely to be in tri-snRNP formation, when U5 joins the U4/U6 di-snRNP. We have identified two regions, the upper stem of the 3' stem-loop and the central domain, that promote tri-snRNP formation. In addition, the loop of the 3' stem-loop promotes di-snRNP formation, while the central domain and the 3'-terminal domain appear to antagonize di-snRNP formation.
Collapse
Affiliation(s)
- Amy J. Hayduk
- Department of Chemistry, University of Northern British Columbia, Prince George, British Columbia, V2N 4Z9 Canada
| | - Martha R. Stark
- Department of Chemistry, University of Northern British Columbia, Prince George, British Columbia, V2N 4Z9 Canada
| | - Stephen D. Rader
- Department of Chemistry, University of Northern British Columbia, Prince George, British Columbia, V2N 4Z9 Canada
| |
Collapse
|
8
|
Roca X, Karginov FV. RNA biology in a test tube--an overview of in vitro systems/assays. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:509-27. [PMID: 22447682 DOI: 10.1002/wrna.1115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In vitro systems have provided a wealth of information in the field of RNA biology, as they constitute a superior and sometimes the unique approach to address many important questions. Such cell-free methods can be sorted by the degree of complexity of the preparation of enzymatic and/or regulatory activity. Progress in the study of pre-mRNA processing has largely relied on traditional in vitro methods, as these reactions have been recapitulated in cell-free systems. The pre-mRNA capping, editing, and cleavage/polyadenylation reactions have even been reconstituted using purified components, and the enzymes responsible for catalysis have been characterized by such techniques. In vitro splicing using nuclear or cytoplasmic extracts has yielded clues on spliceosome assembly, kinetics, and mechanisms of splicing and has been essential to elucidate the function of splicing factors. Coupled systems have been important to functionally connect distinct processes, like transcription and splicing. Extract preparation has also been adapted to cells from a variety of tissues and species, revealing general versus species-specific mechanisms. Cell-free assays have also been applied to newly discovered pathways such as those involving small RNAs, including microRNAs (miRNAs), small interfering RNAs (siRNAs), and Piwi-interacting RNAs (piRNAs). The first two pathways have been well characterized largely by in vitro methods, which need to be developed for piRNAs. Finally, new techniques, such as single-molecule studies, are continuously being established, providing new and important insights into the field. Thus, in vitro approaches have been, are, and will continue being at the forefront of RNA research.
Collapse
Affiliation(s)
- Xavier Roca
- Division of Molecular Genetics & Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | | |
Collapse
|
9
|
He F, Inoue M, Kigawa T, Takahashi M, Kuwasako K, Tsuda K, Kobayashi N, Terada T, Shirouzu M, Güntert P, Yokoyama S, Muto Y. Solution structure of the splicing factor motif of the human Prp18 protein. Proteins 2011; 80:968-74. [PMID: 22213562 DOI: 10.1002/prot.24003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/25/2011] [Accepted: 11/09/2011] [Indexed: 11/08/2022]
Affiliation(s)
- Fahu He
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Horowitz DS. The mechanism of the second step of pre-mRNA splicing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:331-50. [PMID: 22012849 DOI: 10.1002/wrna.112] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The molecular mechanisms of the second step of pre-mRNA splicing in yeast and higher eukaryotes are reviewed. The important elements in the pre-mRNA, the participating proteins, and the proposed secondary structures and roles of the snRNAs are described. The sequence of events in the second step is presented, focusing on the actions of the proteins in setting up and facilitating the second reaction. Mechanisms for avoiding errors in splicing are discussed.
Collapse
Affiliation(s)
- David S Horowitz
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| |
Collapse
|
11
|
Tseng CK, Liu HL, Cheng SC. DEAH-box ATPase Prp16 has dual roles in remodeling of the spliceosome in catalytic steps. RNA (NEW YORK, N.Y.) 2011; 17:145-54. [PMID: 21098140 PMCID: PMC3004056 DOI: 10.1261/rna.2459611] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The assembly of the spliceosome involves dynamic rearrangements of interactions between snRNAs, protein components, and the pre-mRNA substrate. DExD/H-box ATPases are required to mediate structural changes of the spliceosome, utilizing the energy of ATP hydrolysis. Two DExD/H-box ATPases are required for the catalytic steps of the splicing pathway, Prp2 for the first step and Prp16 for the second step, both belonging to the DEAH subgroup of the protein family. The detailed mechanism of their action was not well understood until recently, when Prp2 was shown to be required for the release of U2 components SF3a and SF3b, presumably to allow the binding of Cwc25 to promote the first transesterification reaction. We show here that Cwc25 and Yju2 are released after the reaction in Prp16- and ATP-dependent manners, possibly to allow for the binding of Prp22, Prp18, and Slu7 to promote the second catalytic reaction. The binding of Cwc25 to the spliceosome is destabilized by mutations at the branchpoint sequence, suggesting that Cwc25 may bind to the branch site. We also show that Prp16 has an ATP-independent role in the first catalytic step, in addition to its known role in the second step. In the absence of ATP, Prp16 stabilizes the binding of Cwc25 to the spliceosome formed with branchpoint mutated pre-mRNAs to facilitate their splicing. Our results uncovered novel functions of Prp16 in both catalytic steps, and provide mechanistic insights into splicing catalysis.
Collapse
Affiliation(s)
- Chi-Kang Tseng
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan 112, Republic of China
| | | | | |
Collapse
|
12
|
The splicing factor Prp17 interacts with the U2, U5 and U6 snRNPs and associates with the spliceosome pre- and post-catalysis. Biochem J 2008; 416:365-74. [DOI: 10.1042/bj20081195] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Saccharomyces cerevisiae PRP17-null mutants are temperature-sensitive for growth. In vitro splicing with extracts lacking Prp17 are kinetically slow for the first step of splicing and are arrested for the second step at temperatures greater than 34 °C. In the present study we show that these stalled spliceosomes are compromised for an essential conformational switch that is triggered by Prp16 helicase. These results suggest a plausible mechanistic basis for the second-step arrest in prp17Δ extracts and support a role for Prp17 in conjunction with Prp16. To understand the association of Prp17 with spliceosomes we used a functional epitope-tagged protein in co-immunoprecipitation experiments. Examination of co-precipitated snRNAs (small nuclear RNAs) show that Prp17 interacts with U2, U5 and U6 snRNPs (small nuclear ribonucleoproteins) but it is not a core component of any one snRNP. Prp17 association with in-vitro-assembled spliceosome complexes on actin pre-mRNAs was also investigated. Although the U5 snRNP proteins Prp8 and Snu114 are found in early pre-spliceosomes that contain all five snRNPs, Prp17 is not detectable at this step; however, Prp17 is present in the subsequent pre-catalytic A1 complex, containing unspliced pre-mRNA, formed after the dissociation of U4 snRNP. Thus Prp17 joins the spliceosome prior to both catalytic reactions. Our results indicate continued interactions in catalytic spliceosomes that contain reaction intermediates and in post-splicing complexes containing the lariat intron. These Prp17–spliceosome association analyses provide a biochemical basis for the delayed first step in prp17Δ and explain the previously known multiple genetic interactions between Prp17, factors of the Prp19-complex [NTC (nineteen complex)], functional elements in U2 and U5 snRNAs and other second-step splicing factors.
Collapse
|
13
|
Matlin AJ, Moore MJ. Spliceosome assembly and composition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 623:14-35. [PMID: 18380338 DOI: 10.1007/978-0-387-77374-2_2] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cells control alternative splicing by modulating assembly of the pre-mRNA splicing machinery at competing splice sites. Therefore, a working knowledge of spliceosome assembly is essential for understanding how alternative splice site choices are achieved. In this chapter, we review spliceosome assembly with particular emphasis on the known steps and factors subject to regulation during alternative splice site selection in mammalian cells. We also review recent advances regarding similarities and differences between the in vivo and in vitro assembly pathways, as well as proofreading mechanisms contributing to the fidelity of splice site selection.
Collapse
Affiliation(s)
- Arianne J Matlin
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | | |
Collapse
|
14
|
Galy V, Gadal O, Fromont-Racine M, Romano A, Jacquier A, Nehrbass U. Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1. Cell 2004; 116:63-73. [PMID: 14718167 DOI: 10.1016/s0092-8674(03)01026-2] [Citation(s) in RCA: 280] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The molecular mechanism underlying the retention of intron-containing mRNAs in the nucleus is not understood. Here, we show that retention of intron-containing mRNAs in yeast is mediated by perinuclearly located Mlp1. Deletion of MLP1 impairs retention while having no effect on mRNA splicing. The Mlp1-dependent leakage of intron-containing RNAs is increased in presence of ts-prp18 delta, a splicing mutant. When overall pre-mRNA levels are increased by deletion of RRP6, a nuclear exosome component, MLP1 deletion augments leakage of only the intron-containing portion of mRNAs. Our data suggest, moreover, that Mlp1-dependent retention is mediated via the 5' splice site. Intriguingly, we found Mlp-proteins to be present only on sections of the NE adjacent to chromatin. We propose that at this confined site the perinuclear Mlp1 implements a quality control step prior to export, physically retaining faulty pre-mRNAs.
Collapse
Affiliation(s)
- Vincent Galy
- Unité de Biologie Cellulaire du Noyau, CNRS URA 2582, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
15
|
Bacíková D, Horowitz DS. Mutational analysis identifies two separable roles of the Saccharomyces cerevisiae splicing factor Prp18. RNA (NEW YORK, N.Y.) 2002; 8:1280-1293. [PMID: 12403466 PMCID: PMC1370337 DOI: 10.1017/s1355838202023099] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Prp18 functions in the second step of pre-mRNA splicing, joining the spliceosome just prior to the transesterification reaction that creates the mature mRNA. Prp18 interacts with Slu7, and the functions of the two proteins are intertwined. Using the X-ray structure of Prp18, we have designed mutants in Prp18 that imply that Prp18 has two distinct roles in splicing. Deletion mutations were used to delineate the surface of Prp18 that interacts with Slu7, and point mutations in Prp18 were used to define amino acids that contact Slu7. Experiments in which Slu7 and mutant Prp18 proteins were expressed at different levels support a model in which interaction between the proteins is needed for stable binding of both proteins to the spliceosome. Mutations in an evolutionarily conserved region show that it is critical for Prp18 function but is not involved in binding Slu7. Alleles with mutations in the conserved region are dominant negative, suggesting that the resulting mutant prp18 proteins make proper contacts with the spliceosome, but fail to carry out a Prp18-specific function. Prp18 thus appears to have two separable roles in splicing, one in stabilizing interaction of Slu7 with the spliceosome, and a second that requires the conserved loop.
Collapse
Affiliation(s)
- Dagmar Bacíková
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | |
Collapse
|
16
|
Peng R, Dye BT, Pérez I, Barnard DC, Thompson AB, Patton JG. PSF and p54nrb bind a conserved stem in U5 snRNA. RNA (NEW YORK, N.Y.) 2002; 8:1334-47. [PMID: 12403470 PMCID: PMC1370341 DOI: 10.1017/s1355838202022070] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
PTB-associated splicing factor (PSF) has been implicated in both early and late steps of pre-mRNA splicing, but its exact role in this process remains unclear. Here we show that PSF interacts with p54nrb, a highly related protein first identified based on cross-reactivity to antibodies against the yeast second-step splicing factor Prpl8. We performed RNA-binding experiments to determine the preferred RNA-binding sequences for PSF and p54nrb, both individually and in combination. In all cases, iterative selection assays identified a purine-rich sequence located on the 3' side of U5 snRNA stem 1b. Filter-binding assays and RNA affinity selection experiments demonstrated that PSF and p54nrb bind U5 snRNA with both the sequence and structure of stem 1b contributing to binding specificity. Sedimentation analyses show that both proteins associate with spliceosomes and with U4/U6.U5 tri-snPNP.
Collapse
Affiliation(s)
- Rui Peng
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | | | |
Collapse
|
17
|
James SA, Turner W, Schwer B. How Slu7 and Prp18 cooperate in the second step of yeast pre-mRNA splicing. RNA (NEW YORK, N.Y.) 2002; 8:1068-77. [PMID: 12212850 PMCID: PMC1370317 DOI: 10.1017/s1355838202022033] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Slu7 and Prp18 act in concert during the second step of yeast pre-mRNA splicing. Here we show that the 382-amino-acid Slu7 protein contains two functionally important domains: a zinc knuckle (122CRNCGEAGHKEKDC135) and a Prp18-interaction domain (215EIELMKLELY224). Alanine cluster mutations of 215EIE217 and 221LELY224 abrogated Slu7 binding to Prp18 in a two-hybrid assay and in vitro, and elicited temperature-sensitive growth phenotypes in vivo. Yet, the mutations had no impact on Slu7 function in pre-mRNA splicing in vitro. Single alanine mutations of zinc knuckle residues Cys122, His130, and Cys135 had no effect on cell growth, but caused Slu7 function during pre-mRNA splicing in vitro to become dependent on Prp18. Specifically, zinc knuckle mutants required Prp18 in order to bind to the spliceosome. Compound mutations in both Slu7 domains (e.g., C122A-EIE, H130A-EIE, and C135A-EIE) were lethal in vivo and abolished splicing in vitro, suggesting that the physical interaction between Slu7 and Prp18 is important for cooperation in splicing. Depletion/reconstitution studies coupled with immunoprecipitations suggest that second step factors are recruited to the spliceosome in the following order: Slu7 --> Prp18 --> Prp22. All three proteins are released from the spliceosome after step 2 concomitant with release of mature mRNA.
Collapse
Affiliation(s)
- Shelly-Ann James
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | |
Collapse
|
18
|
Gonzalez-Santos JM, Wang A, Jones J, Ushida C, Liu J, Hu J. Central region of the human splicing factor Hprp3p interacts with Hprp4p. J Biol Chem 2002; 277:23764-72. [PMID: 11971898 DOI: 10.1074/jbc.m111461200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human splicing factors Hprp3p and Hprp4p are associated with the U4/U6 small nuclear ribonucleoprotein particle, which is essential for the assembly of an active spliceosome. Currently, little is known about the specific roles of these factors in splicing. In this study, we characterized the molecular interaction between Hprp3p and Hprp4p. Constructs were created for expression of Hprp3p or its mutants in bacterial or mammalian cells. We showed that antibodies against either Hprp3p or Hprp4p were able to pull-down the Hprp3p-Hprp4p complex formed in Escherichia coli lysates. By co-immunoprecipitation and isothermal titration calorimetry, we demonstrated that purified Hprp3p and its mutants containing the central region, but lacking either the N-terminal 194 amino acids or the C-terminal 240 amino acids, were able to interact with Hprp4p. Conversely, Hprp3p mutants containing only the N- or C-terminal region did not interact with Hprp4p. In addition, by co-immunoprecipitation, we showed that intact Hprp3p and its mutants containing the central region interacted with Hprp4p in HeLa cell nuclear extracts. Primer extension analysis illustrated that the central region of Hprp3p is required to maintain the association of Hprp3p-Hprp4p with U4/U6 small nuclear RNAs, suggesting that this Hprp3p/Hprp4p interaction allows the recruitment of Hprp4p, and perhaps other protein(s), to the U4/U6 small nuclear ribonucleoprotein particle.
Collapse
|
19
|
Stevens SW, Ryan DE, Ge HY, Moore RE, Young MK, Lee TD, Abelson J. Composition and functional characterization of the yeast spliceosomal penta-snRNP. Mol Cell 2002; 9:31-44. [PMID: 11804584 DOI: 10.1016/s1097-2765(02)00436-7] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pre-mRNA introns are spliced in a macromolecular machine, the spliceosome. For each round of splicing, the spliceosome assembles de novo in a series of ATP-dependent steps involving numerous changes in RNA-RNA and RNA-protein interactions. As currently understood, spliceosome assembly proceeds by addition of discrete U1, U2, and U4/U6*U5 snRNPs to a pre-mRNA substrate to form functional splicing complexes. We characterized a 45S yeast penta-snRNP which contains all five spliceosomal snRNAs and over 60 pre-mRNA splicing factors. The particle is functional in extracts and, when supplied with soluble factors, is capable of splicing pre-mRNA. We propose that the spliceosomal snRNPs associate prior to binding of a pre-mRNA substrate rather than with pre-mRNA via stepwise addition of discrete snRNPs.
Collapse
Affiliation(s)
- Scott W Stevens
- California Institute of Technology, Division of Biology 147-75, Pasadena, CA 91125, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Gottschalk A, Kastner B, Lührmann R, Fabrizio P. The yeast U5 snRNP coisolated with the U1 snRNP has an unexpected protein composition and includes the splicing factor Aar2p. RNA (NEW YORK, N.Y.) 2001; 7:1554-1565. [PMID: 11720285 PMCID: PMC1370198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We describe the purification and characterization of a 16S U5 snRNP from the yeast Saccharomyces cerevisiae and the identification of its proteins. In contrast to the human 20S U5 snRNP, it has a comparatively simple protein composition. In addition to the Sm core proteins, it contains only two of the U5 snRNP specific proteins, Prp8p and Snu114p. Interestingly, the 16S U5 snRNP contains also Aar2p, a protein that was previously implicated in splicing of the two introns of the MATa1 pre-mRNA. Here, we demonstrate that Aar2p is essential and required for in vivo splicing of U3 precursors. However, it is not required for splicing in vitro. Aar2p is associated exclusively with this simple form of the U5 snRNP (Aar2-U5), but not with the [U4/U6.U5] tri-snRNP or spliceosomal complexes. Consistent with this, we show that depletion of Aar2p interferes with later rounds of splicing, suggesting that it has an effect when splicing depends on snRNP recycling. Remarkably, the Aar2-U5 snRNP is invariably coisolated with the U1 snRNP regardless of the purification protocol used. This is consistent with the previously suggested cooperation between the U1 and U5 snRNPs prior to the catalytic steps of splicing. Electron microscopy of the Aar2-U5 snRNP revealed that, despite the comparatively simple protein composition, the yeast Aar2-U5 snRNP appears structurally similar to the human 20S U5 snRNP. Thus, the basic structural scaffold of the Aar2-U5 snRNP seems to be essentially determined by Prp8p, Snu114p, and the Sm proteins.
Collapse
Affiliation(s)
- A Gottschalk
- Max-Planck-Institute of Biophysical Chemistry, Department of Cellular Biochemistry, Göttingen, Germany
| | | | | | | |
Collapse
|
21
|
Lindsey LA, Garcia-Blanco MA. Functional conservation of the human homolog of the yeast pre-mRNA splicing factor Prp17p. J Biol Chem 1998; 273:32771-5. [PMID: 9830021 DOI: 10.1074/jbc.273.49.32771] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Splicing of pre-mRNAs involves two sequential transesterification reactions commonly referred to as the first and second steps. In Saccharomyces cerevisiae, four proteins, Prp16p, Prp17p, Prp18p, and Slu7p are exclusively required for the second step of splicing. The human homologs of Prp16p, Prp17p, and Prp18p have been identified, and the human proteins hPrp16 and hPrp18 have been shown to be required for the second step of splicing in vitro. Here we provide further evidence for the functional conservation of the second step factors between yeast and humans. Human hPrp17, which is 35% identical to the S. cerevisiae protein, is able to partially rescue the temperature-sensitive phenotype in a yeast strain where PRP17 has been knocked out, suggesting that the human and yeast proteins are functionally conserved. Overexpression of hPrp17 in the knockout yeast strain partially rescues the splicing defect seen in vitro and in vivo. In HeLa cells, hPrp17 is highly concentrated in the nuclear speckles, as is SC35 and many other splicing factors, thus providing further support that this protein also functions as a splicing factor in humans.
Collapse
Affiliation(s)
- L A Lindsey
- Department of Pharmacology and Cancer Biology, Levine Science Research Center, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
22
|
Wang Y, Guthrie C. PRP16, a DEAH-box RNA helicase, is recruited to the spliceosome primarily via its nonconserved N-terminal domain. RNA (NEW YORK, N.Y.) 1998; 4:1216-1229. [PMID: 9769096 PMCID: PMC1369694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Dynamic rearrangement of RNA structure is crucial for intron recognition and formation of the catalytic core during pre-mRNA splicing. Three of the splicing factors that contain sequence motifs characteristic of the DExD/DExH-box family of RNA-dependent ATPases (Prp16, Prp22, and the human homologue of Brr2) recently have been shown to unwind RNA duplexes in vitro, providing biochemical evidence that they may direct structural rearrangements on the spliceosome. Notably, however, the unwinding activity of these proteins is sequence nonspecific, raising the question of how their functional specificity is determined. Because the highly conserved DExD/DExH-box domain in these proteins is typically flanked by one or more nonconserved domains, we have tested the hypothesis that the nonconserved regions of Prp16 determine the functional specificity of the protein. We found that the nonconserved N-terminal domain of Prp16 is (1) essential for viability, (2) required for the nuclear localization of Prp16, and (3) capable of binding to the spliceosome specifically at the step of Prp16 function. Moreover, this domain can interact with the rest of the protein to allow trans-complementation. Based on these results, we propose that the spliceosomal target of the unwinding activity of Prp16, and possibly other DExD/DExH-box splicing factors as well, is defined by factors that specifically interact with the nonconserved domains of the protein.
Collapse
Affiliation(s)
- Y Wang
- Department of Biochemistry, University of California, San Francisco 94143-0448, USA
| | | |
Collapse
|
23
|
Dix I, Russell CS, O'Keefe RT, Newman AJ, Beggs JD. Protein-RNA interactions in the U5 snRNP of Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 1998; 4:1239-50. [PMID: 9769098 PMCID: PMC1369696 DOI: 10.1017/s1355838298981109] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We present here the first insights into the organization of proteins on the RNA in the U5 snRNP of Saccharomyces cerevisiae. Photo-crosslinking with uniformly labeled U5 RNA in snRNPs reconstituted in vitro revealed five contacting proteins, Prp8p, Snu114p, p30, p16, and p10, contact by the three smaller proteins requiring an intact Sm site. Site-specific crosslinking showed that Snu114p contacts the 5' side of internal loop 1, whereas Prp8p interacts with five different regions of the 5' stem-loop, but not with the Sm site or 3' stem-loop. Both internal loops in the 5' domain are essential for Prp8p to associate with the snRNP, but the conserved loop 1 is not, although this is the region to which Prp8p crosslinks most strongly. The extensive contacts between Prp8p and the 5' stem-loop of U5 RNA support the hypothesis that, in spliceosomes, Prp8p stabilizes loop 1-exon interactions. Moreover, data showing that Prp8p contacts the exons even in the absence of loop 1 indicate that Prp8p may be the principal anchoring factor for exons in the spliceosome. This and the close proximity of the spliceosomal translocase, Snu114p, to U5 loop 1 and Prp8p support and extend the proposal that Snu114p mimics U5 loop 1 during a translocation event in the spliceosome.
Collapse
Affiliation(s)
- I Dix
- Institute of Cell and Molecular Biology, University of Edinburgh, United Kingdom
| | | | | | | | | |
Collapse
|
24
|
Raghunathan PL, Guthrie C. RNA unwinding in U4/U6 snRNPs requires ATP hydrolysis and the DEIH-box splicing factor Brr2. Curr Biol 1998; 8:847-55. [PMID: 9705931 DOI: 10.1016/s0960-9822(07)00345-4] [Citation(s) in RCA: 247] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND The dynamic rearrangements of RNA structure which occur during pre-mRNA splicing are thought to be mediated by members of the DExD/H-box family of RNA-dependent ATPases. Although three DExD/H-box splicing factors have recently been shown to unwind synthetic RNA duplexes in purified systems, in no case has the natural biological substrate been identified. A duplex RNA target of particular interest is the extensive base-pairing interaction between U4 and U6 small nuclear RNAs. Because these helices must be disrupted to activate the spliceosome for catalysis, this rearrangement is believed to be tightly regulated in vivo. RESULTS We have immunopurified Brr2, a DEIH-box ATPase, in a native complex containing U1, U2, U5 and duplex U4/U6 small nuclear ribonucleoprotein particles (snRNPs). Addition of hydrolyzable ATP to this complex results in the disruption of U4/U6 base-pairing, and the release of free U4 and U6 snRNPs. A mutation in the helicase-like domain of Brr2 (brr2-1) prevents these RNA rearrangements. Notably, U4/U6 dissociation and release occur in the absence of exogenously added pre-mRNA. CONCLUSIONS Disruption of U4/U6 base-pairing in native snRNPs requires ATP hydrolysis and Brr2. This is the first assignment of a DExD/H-box splicing factor to a specific biological unwinding event. The unwinding function of Brr2 can be antagonized by the annealing activity of Prp24. We propose the existence of a dynamic cycle, uncoupled from splicing, that interconverts free and base-paired U4/U6 snRNPs.
Collapse
Affiliation(s)
- P L Raghunathan
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448, USA
| | | |
Collapse
|
25
|
Nakashima A, Hosaka K, Nikawa J. Cloning of a human cDNA for CTP-phosphoethanolamine cytidylyltransferase by complementation in vivo of a yeast mutant. J Biol Chem 1997; 272:9567-72. [PMID: 9083101 DOI: 10.1074/jbc.272.14.9567] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
CTP-phosphoethanolamine cytidylyltransferase (ET) is the enzyme that catalyzes the formation of CDP-ethanolamine in the phosphatidylethanolamine biosynthetic pathway from ethanolamine. We constructed a Saccharomyces cerevisiae mutant of which the ECT1 gene, putatively encoding ET, was disrupted. This mutant showed a growth defect on ethanolamine-containing medium and a decrease of ET activity. A cDNA clone was isolated from a human glioblastoma cDNA expression library by complementation of the yeast mutant. Introduction of this cDNA into the yeast mutant clearly restored the formation of CDP-ethanolamine and phosphatidylethanolamine in cells. ET activity in transformants was higher than that in wild-type cells. The deduced protein sequence exhibited homology with the yeast, rat, and human CTP-phosphocholine cytidylyltransferases, as well as yeast ET. The cDNA gene product was expressed as a fusion with glutathione S-transferase in Escherichia coli and shown to have ET activity. These results clearly indicate that the cDNA obtained here encodes human ET.
Collapse
Affiliation(s)
- A Nakashima
- Department of Biochemical Engineering and Science, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820, Japan
| | | | | |
Collapse
|
26
|
Lauber J, Fabrizio P, Teigelkamp S, Lane WS, Hartmann E, Luhrmann R. The HeLa 200 kDa U5 snRNP-specific protein and its homologue in Saccharomyces cerevisiae are members of the DEXH-box protein family of putative RNA helicases. EMBO J 1996; 15:4001-15. [PMID: 8670905 PMCID: PMC452120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The primary structure of the 200 kDa protein of purified HeLa U5 snRNPs (U5-200kD) was characterized by cloning and sequencing of its cDNA. In order to confirm that U5-200kD is distinct from U5-220kD we demonstrate by protein sequencing that the human U5-specific 220 kDa protein is homologous to the yeast U5-specific protein Prp8p. A 246 kDa protein (Snu246p) homologous to U5-200kD was identified in Saccharomyces cerevisiae. Both proteins contain two conserved domains characteristic of the DEXH-box protein family of putative RNA helicases and RNA-stimulated ATPases. Antibodies raised against fusion proteins produced from fragments of the cloned mammalian cDNA interact specifically with the HeLa U5-200kD protein on Western blots and co-immunoprecipitate U5 snRNA and to a lesser extent U4 and U6 snRNAs from HeLa snRNPs. Similarly, U4, U5 and U6 snRNAs can be co-immunoprecipitated from yeast splicing extracts containing an HA-tagged derivative of Snu246p with HA-tag specific antibodies. U5-200kD and Snu246p are thus the first putative RNA helicases shown to be intrinsic components of snRNPs. Disruption of the SNU246 gene in yeast is lethal and leads to a splicing defect in vivo, indicating that the protein is essential for splicing. Anti-U5-200kD antibodies specifically block the second step of mammalian splicing in vitro, demonstrating for the first time that a DEXH-box protein is involved in mammalian splicing. We propose that U5-200kD and Snu246p promote one or more conformational changes in the dynamic network of RNA-RNA interactions in the spliceosome.
Collapse
Affiliation(s)
- J Lauber
- Institut fur Molekularbiologie und Tumorforschung, Philipps-Universitat Marburg, Emil Mannkopff-Strasse 2, D35037 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Vaidya VC, Seshadri V, Vijayraghavan U. An extragenic suppressor of prp24-1 defines genetic interaction between PRP24 and PRP21 gene products of Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1996; 250:267-76. [PMID: 8602141 DOI: 10.1007/bf02174384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The temperature-sensitive prp24-1 mutation defines a gene product required for the first step in pre-mRNA splicing. PRP24 is probably a component of the U6 snRNP particle. We have applied genetic reversion analysis to identify proteins that interact with PRP24. Spontaneous revertants of the temperature-sensitive (ts)prp24-1 phenotype were analyzed for those that are due to extragenic suppression. We then extended our analysis to screen for suppressors that confer a distinct conditional phenotype. We have identified a temperature-sensitive extragenic suppressor, which was shown by genetic complementation analysis to be allelic to prp21-1. This suppressor, prp21-2, accumulates pre-mRNA at the non-permissive temperature, a phenotype similar to that of prp21-1. prp21-2 completely suppresses the splicing defect and restores in vivo levels of the U6 snRNA in the prp24-1 strain. Genetic analysis of the suppressor showed that prp21-2 is not a bypass suppressor of prp24-1. The suppression of prp24-1 by prp21-2 is gene specific and also allele specific with respect to both the loci. Genetic interactions with other components of the pre-spliceosome have also been studied. Our results indicate an interaction between PRP21, a component of the U2 snRNP, and PRP24, a component of the U6 snRNP. These results substantiate other data showing U2-U6 snRNA interactions.
Collapse
Affiliation(s)
- V C Vaidya
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|
28
|
Vasudevan S, Usha V. A method for rapid mapping of mutations by plasmid rescue strategy inSaccharomyces cerevisiae. J Genet 1995. [DOI: 10.1007/bf02932198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Bork P, Holm L, Koonin EV, Sander C. The cytidylyltransferase superfamily: identification of the nucleotide-binding site and fold prediction. Proteins 1995; 22:259-66. [PMID: 7479698 DOI: 10.1002/prot.340220306] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The crystal structure of glycerol-3-phosphate cytidylyltransferase from B. subtilis (TagD) is about to be solved. Here, we report a testable structure prediction based on the identification by sequence analysis of a superfamily of functionally diverse but structurally similar nucleotide-binding enzymes. We predict that TagD is a member of this family. The most conserved region in this superfamily resembles the ATP-binding HiGH motif of class I aminoacyl-tRNA synthetases. The predicted secondary structure of cytidylyltransferase and its homologues is compatible with the alpha/beta topography of the class I aminoacyl-tRNA synthetases. The hypothesis of similarity of fold is strengthened by sequence-structure alignment and 3D model building using the known structure of tyrosyl tRNA synthetase as template. The proposed 3D model of TagD is plausible both structurally, with a well packed hydrophobic core, and functionally, as the most conserved residues cluster around the putative nucleotide binding site. If correct, the model would imply a very ancient evolutionary link between class I tRNA synthetases and the novel cytidylyltransferase superfamily.
Collapse
Affiliation(s)
- P Bork
- EMBL, Heidelberg, Germany
| | | | | | | |
Collapse
|
30
|
Lindsey LA, Crow AJ, Garcia-Blanco MA. A mammalian activity required for the second step of pre-messenger RNA splicing. J Biol Chem 1995; 270:13415-21. [PMID: 7768943 DOI: 10.1074/jbc.270.22.13415] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Splicing of precursors to messenger RNAs occurs via a two-step mechanism. In the first step, the 5'-exon is released concomitant with the production of a lariat intermediate, and in the second step, the exons are joined, releasing the intron in the form of a lariat product. Several gene products of the yeast Saccharomyces cerevisiae have been shown to be required exclusively for the second step. Although mammalian proteins have been implicated in the second step of splicing, none have been shown to act only at this step. We identify here the first mammalian activity shown to be exclusively required for the second step. The activity was shown to increase by 5-fold the rate for this splicing step, whereas it had no effect on the rate of the first step. The activity was not affected by treatment with micrococcal nuclease, whereas it is sensitive to heating to 55 degrees C, suggesting that it is not dependent on an RNA, but more likely is a protein. The second step activity was separated from other factors required for the first step and from PSF, a splicing factor thought to have a second step activity. The activity does not require ATP hydrolysis, suggesting that it acts at a late stage of the second step of splicing.
Collapse
Affiliation(s)
- L A Lindsey
- Department of Molecular Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
31
|
Gaur RK, Valcárcel J, Green MR. Sequential recognition of the pre-mRNA branch point by U2AF65 and a novel spliceosome-associated 28-kDa protein. RNA (NEW YORK, N.Y.) 1995; 1:407-417. [PMID: 7493318 PMCID: PMC1482402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Splicing of pre-mRNAs occurs via a lariat intermediate in which an intronic adenosine, embedded within a branch point sequence, forms a 2',5'-phosphodiester bond (RNA branch) with the 5' end of the intron. How the branch point is recognized and activated remains largely unknown. Using site-specific photochemical cross-linking, we have identified two proteins that specifically interact with the branch point during the splicing reaction. U2AF65, an essential splicing factor that binds to the adjacent polypyrimidine tract, crosslinks to the branch point at the earliest stage of spliceosome formation in an ATP-independent manner. A novel 28-kDa protein, which is a constituent of the mature spliceosome, contacts the branch point after the first catalytic step. Our results indicate that the branch point is sequentially recognized by distinct splicing factors in the course of the splicing reaction.
Collapse
Affiliation(s)
- R K Gaur
- Howard Hughes Medical Institute Program in Molecular Medicine, University of Massachusetts Medical Center, Worcester 01605, USA
| | | | | |
Collapse
|
32
|
|
33
|
Kalmar GB, Kay RJ, LaChance AC, Cornell RB. Primary structure and expression of a human CTP:phosphocholine cytidylyltransferase. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1219:328-34. [PMID: 7918629 DOI: 10.1016/0167-4781(94)90056-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Human CTP:phosphocholine cytidylyltransferase (CT) cDNAs were isolated by PCR amplification of a human erythroleukemic K562 cell library. Initially two degenerate oligonucleotide primers derived from the sequence of the rat liver CT cDNA were used to amplify a centrally located 230 bp fragment. Subsequently overlapping 5' and 3' fragments were amplified, each using one human CT primer and one vector-specific primer. Two cDNAs encoding the entire translated domain were also amplified. The human CT (HCT) has close homology at the nucleotide and amino acid level with other mammalian CTs (from rat liver, mouse testis or mouse B6SutA hemopoietic cells and Chinese hamster ovary). The region which deviates most from the rat liver CT sequence is near the C-terminus, where 7 changes are clustered within 34 residues (345-359), of the putative phosphorylation domain. The region of the proposed catalytic domain (residues 75-235) is 100% identical with the rat liver sequence. Significant homology was observed between the proposed catalytic domain of CT and the Saccharomyces cerevisiae MUQ1 gene product, and between the proposed amphipathic alpha-helical membrane binding domains of CT and soybean oleosin, a phospholipid-binding protein. There are several shared characteristics of these amphipathic helices. An approx. 42,000 Da protein was over-expressed in COS cells using a pAX142 expression vector containing one of the full-length HCT cDNA clones. The specific activity of the HCT in COS cell homogenates was the same as that of analogously expressed rat liver CT. The activity of HCT was lipid dependent. The soluble form was activated 3 to 4-fold by anionic phospholipids and by oleic acid or diacylglycerol-containing PC vesicles.
Collapse
Affiliation(s)
- G B Kalmar
- Institute of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | | | | | | |
Collapse
|
34
|
Abstract
Information from yeast and mammalian pre-mRNA splicing systems has advanced our understanding of the roles of protein factors in the early steps of spliceosome assembly. New results on the stereochemistry of nuclear pre-mRNA splicing and data on the transposition of Group II self-splicing introns in vivo have fuelled the long-running debate on the evolution of introns and RNA splicing.
Collapse
Affiliation(s)
- A J Newman
- MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|