1
|
Dietrich D, Jovanovic-Gasovic S, Cao P, Kohlstedt M, Wittmann C. Refactoring the architecture of a polyketide gene cluster enhances docosahexaenoic acid production in Yarrowia lipolytica through improved expression and genetic stability. Microb Cell Fact 2023; 22:199. [PMID: 37773137 PMCID: PMC10540379 DOI: 10.1186/s12934-023-02209-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Long-chain polyunsaturated fatty acids (LC-PUFAs), such as docosahexaenoic acid (DHA), are essential for human health and have been widely used in the food and pharmaceutical industries. However, the limited availability of natural sources, such as oily fish, has led to the pursuit of microbial production as a promising alternative. Yarrowia lipolytica can produce various PUFAs via genetic modification. A recent study upgraded Y. lipolytica for DHA production by expressing a four-gene cluster encoding a myxobacterial PKS-like PUFA synthase, reducing the demand for redox power. However, the genetic architecture of gene expression in Y. lipolytica is complex and involves various control elements, offering space for additional improvement of DHA production. This study was designed to optimize the expression of the PUFA cluster using a modular cloning approach. RESULTS Expression of the monocistronic cluster with each gene under the control of the constitutive TEF promoter led to low-level DHA production. By using the minLEU2 promoter instead and incorporating additional upstream activating UAS1B4 sequences, 5' promoter introns, and intergenic spacers, DHA production was increased by 16-fold. The producers remained stable over 185 h of cultivation. Beneficially, the different genetic control elements acted synergistically: UAS1B elements generally increased expression, while the intron caused gene-specific effects. Mutants with UAS1B16 sequences within 2-8 kb distance, however, were found to be genetically unstable, which limited production performance over time, suggesting the avoidance of long repetitive sequence blocks in synthetic multigene clusters and careful monitoring of genetic stability in producing strains. CONCLUSIONS Overall, the results demonstrate the effectiveness of synthetic heterologous gene clusters to drive DHA production in Y. lipolytica. The combinatorial exploration of different genetic control elements allowed the optimization of DHA production. These findings have important implications for developing Y. lipolytica strains for the industrial-scale production of valuable polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Demian Dietrich
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | | | - Peng Cao
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
2
|
Kamineni A, Chen S, Chifamba G, Tsakraklides V. Promoters for lipogenesis-specific downregulation in Yarrowia lipolytica. FEMS Yeast Res 2021; 20:5857169. [PMID: 32533836 PMCID: PMC7335367 DOI: 10.1093/femsyr/foaa035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/11/2020] [Indexed: 12/30/2022] Open
Abstract
Yarrowia lipolytica is a non-conventional yeast with potential applications in the biofuel and biochemical industries. It is an oleaginous yeast that accumulates lipids when it encounters nutrient limitation in the presence of excess carbon. Its molecular toolbox includes promoters for robust constitutive expression, regulated expression through the addition of media components and inducible expression during lipid accumulation. To date, no promoters have been identified that lead to downregulation at the transition from growth to lipid accumulation. We identified four native Y. lipolytica promoters that downregulate the expression of genes at this natural transition. Using the fatty acid desaturase genes FAD2 and OLE1 as reporter genes for these promoters, we correlated repression of desaturase transcript levels with a reduction of desaturated fatty acids at the transition to lipid accumulation. These promoters can restrict to the growth phase an essential or favorable activity that is undesirable during lipid accumulation under traditional fermentation conditions without media additions. This expression pattern results in lipogenesis phase-specific changes that could be useful in applications relating to optimizing lipid yield and composition.
Collapse
Affiliation(s)
| | - Shuyan Chen
- Novogy, Inc., 85 Bolton Street, Cambridge MA 02140, USA
| | | | | |
Collapse
|
3
|
Yarrowia lipolytica Strains and Their Biotechnological Applications: How Natural Biodiversity and Metabolic Engineering Could Contribute to Cell Factories Improvement. J Fungi (Basel) 2021; 7:jof7070548. [PMID: 34356927 PMCID: PMC8307478 DOI: 10.3390/jof7070548] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/20/2022] Open
Abstract
Among non-conventional yeasts of industrial interest, the dimorphic oleaginous yeast Yarrowia lipolytica appears as one of the most attractive for a large range of white biotechnology applications, from heterologous proteins secretion to cell factories process development. The past, present and potential applications of wild-type, traditionally improved or genetically modified Yarrowia lipolytica strains will be resumed, together with the wide array of molecular tools now available to genetically engineer and metabolically remodel this yeast. The present review will also provide a detailed description of Yarrowia lipolytica strains and highlight the natural biodiversity of this yeast, a subject little touched upon in most previous reviews. This work intends to fill this gap by retracing the genealogy of the main Yarrowia lipolytica strains of industrial interest, by illustrating the search for new genetic backgrounds and by providing data about the main publicly available strains in yeast collections worldwide. At last, it will focus on exemplifying how advances in engineering tools can leverage a better biotechnological exploitation of the natural biodiversity of Yarrowia lipolytica and of other yeasts from the Yarrowia clade.
Collapse
|
4
|
Patra P, Das M, Kundu P, Ghosh A. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts. Biotechnol Adv 2021; 47:107695. [PMID: 33465474 DOI: 10.1016/j.biotechadv.2021.107695] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/14/2020] [Accepted: 01/09/2021] [Indexed: 12/14/2022]
Abstract
Microbial bioproduction of chemicals, proteins, and primary metabolites from cheap carbon sources is currently an advancing area in industrial research. The model yeast, Saccharomyces cerevisiae, is a well-established biorefinery host that has been used extensively for commercial manufacturing of bioethanol from myriad carbon sources. However, its Crabtree-positive nature often limits the use of this organism for the biosynthesis of commercial molecules that do not belong in the fermentative pathway. To avoid extensive strain engineering of S. cerevisiae for the production of metabolites other than ethanol, non-conventional yeasts can be selected as hosts based on their natural capacity to produce desired commodity chemicals. Non-conventional yeasts like Kluyveromyces marxianus, K. lactis, Yarrowia lipolytica, Pichia pastoris, Scheffersomyces stipitis, Hansenula polymorpha, and Rhodotorula toruloides have been considered as potential industrial eukaryotic hosts owing to their desirable phenotypes such as thermotolerance, assimilation of a wide range of carbon sources, as well as ability to secrete high titers of protein and lipid. However, the advanced metabolic engineering efforts in these organisms are still lacking due to the limited availability of systems and synthetic biology methods like in silico models, well-characterised genetic parts, and optimized genome engineering tools. This review provides an insight into the recent advances and challenges of systems and synthetic biology as well as metabolic engineering endeavours towards the commercial usage of non-conventional yeasts. Particularly, the approaches in emerging non-conventional yeasts for the production of enzymes, therapeutic proteins, lipids, and metabolites for commercial applications are extensively discussed here. Various attempts to address current limitations in designing novel cell factories have been highlighted that include the advances in the fields of genome-scale metabolic model reconstruction, flux balance analysis, 'omics'-data integration into models, genome-editing toolkit development, and rewiring of cellular metabolisms for desired chemical production. Additionally, the understanding of metabolic networks using 13C-labelling experiments as well as the utilization of metabolomics in deciphering intracellular fluxes and reactions have also been discussed here. Application of cutting-edge nuclease-based genome editing platforms like CRISPR/Cas9, and its optimization towards efficient strain engineering in non-conventional yeasts have also been described. Additionally, the impact of the advances in promising non-conventional yeasts for efficient commercial molecule synthesis has been meticulously reviewed. In the future, a cohesive approach involving systems and synthetic biology will help in widening the horizon of the use of unexplored non-conventional yeast species towards industrial biotechnology.
Collapse
Affiliation(s)
- Pradipta Patra
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Manali Das
- School of Bioscience, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Pritam Kundu
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Amit Ghosh
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India; P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
5
|
Fatma Z, Schultz JC, Zhao H. Recent advances in domesticating non‐model microorganisms. Biotechnol Prog 2020; 36:e3008. [DOI: 10.1002/btpr.3008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Zia Fatma
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana‐Champaign Urbana Illinois USA
| | - J. Carl Schultz
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana‐Champaign Urbana Illinois USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana‐Champaign Urbana Illinois USA
- Departments of Chemistry, Biochemistry, and Bioengineering University of Illinois at Urbana‐Champaign Urbana Illinois USA
| |
Collapse
|
6
|
Gündüz Ergün B, Hüccetoğulları D, Öztürk S, Çelik E, Çalık P. Established and Upcoming Yeast Expression Systems. Methods Mol Biol 2019; 1923:1-74. [PMID: 30737734 DOI: 10.1007/978-1-4939-9024-5_1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Yeast was the first microorganism used by mankind for biotransformation of feedstock that laid the foundations of industrial biotechnology. Long historical use, vast amount of data, and experience paved the way for Saccharomyces cerevisiae as a first yeast cell factory, and still it is an important expression platform as being the production host for several large volume products. Continuing special needs of each targeted product and different requirements of bioprocess operations have led to identification of different yeast expression systems. Modern bioprocess engineering and advances in omics technology, i.e., genomics, transcriptomics, proteomics, secretomics, and interactomics, allow the design of novel genetic tools with fine-tuned characteristics to be used for research and industrial applications. This chapter focuses on established and upcoming yeast expression platforms that have exceptional characteristics, such as the ability to utilize a broad range of carbon sources or remarkable resistance to various stress conditions. Besides the conventional yeast S. cerevisiae, established yeast expression systems including the methylotrophic yeasts Pichia pastoris and Hansenula polymorpha, the dimorphic yeasts Arxula adeninivorans and Yarrowia lipolytica, the lactose-utilizing yeast Kluyveromyces lactis, the fission yeast Schizosaccharomyces pombe, and upcoming yeast platforms, namely, Kluyveromyces marxianus, Candida utilis, and Zygosaccharomyces bailii, are compiled with special emphasis on their genetic toolbox for recombinant protein production.
Collapse
Affiliation(s)
- Burcu Gündüz Ergün
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Damla Hüccetoğulları
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Sibel Öztürk
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Eda Çelik
- Department of Chemical Engineering, Hacettepe University, Ankara, Turkey
- Bioengineering Division, Institute of Science, Hacettepe University, Ankara, Turkey
| | - Pınar Çalık
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey.
- Industrial Biotechnology and Metabolic Engineering Laboratory, Department of Biotechnology, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara, Turkey.
| |
Collapse
|
7
|
Jensen MK. Design principles for nuclease-deficient CRISPR-based transcriptional regulators. FEMS Yeast Res 2018; 18:4966988. [PMID: 29726937 PMCID: PMC5932555 DOI: 10.1093/femsyr/foy039] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/06/2018] [Indexed: 12/18/2022] Open
Abstract
The engineering of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated proteins continues to expand the toolkit available for genome editing, reprogramming gene regulation, genome visualisation and epigenetic studies of living organisms. In this review, the emerging design principles on the use of nuclease-deficient CRISPR-based reprogramming of gene expression will be presented. The review will focus on the designs implemented in yeast both at the level of CRISPR proteins and guide RNA (gRNA), but will lend due credits to the seminal studies performed in other species where relevant. In addition to design principles, this review also highlights applications benefitting from the use of CRISPR-mediated transcriptional regulation and discusses the future directions to further expand the toolkit for nuclease-deficient reprogramming of genomes. As such, this review should be of general interest for experimentalists to get familiarised with the parameters underlying the power of reprogramming genomic functions by use of nuclease-deficient CRISPR technologies.
Collapse
Affiliation(s)
- Michael K Jensen
- Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kgs. Lyngby 2800, Denmark
| |
Collapse
|
8
|
Wong L, Engel J, Jin E, Holdridge B, Xu P. YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in Yarrowia lipolytica. Metab Eng Commun 2017; 5:68-77. [PMID: 29188186 PMCID: PMC5699529 DOI: 10.1016/j.meteno.2017.09.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 11/16/2022] Open
Abstract
Effective metabolic engineering of microorganisms relies on balanced expression of both heterologous and endogenous genes to channel metabolic flux towards products of interest while achieving reasonable biomass buildup. To facilitate combinatorial pathway engineering and facile genetic operation, we engineered a set of modular cloning vectors compatible with BioBrick standards, called YaliBricks, to allow for rapid assembly of multigene pathways with customized genetic control elements (promoters, intronic sequences and terminators) in the oleaginous yeast Yarrowia lipolytica. We established a sensitive luciferase reporter and characterized a set of 12 native promoters to expand the oleaginous yeast genetic toolbox for transcriptional fine-tuning. We harnessed the intron alternative splicing mechanism and explored three unique gene configurations that allow us to encode genetic structural variations into metabolic function. We elucidated the role of how these genetic structural variations affect gene expression. To demonstrate the simplicity and effectiveness of streamlined genetic operations, we assembled the 12 kb five-gene violacein biosynthetic pathway in one week. We also expanded this set of vectors to accommodate self-cleavage ribozymes and efficiently deliver guide RNA (gRNA) for targeted genome-editing with a codon-optimized CRISPR-Cas9 nuclease. Taken together, the tools built in this study provide a standard procedure to streamline and accelerate metabolic pathway engineering and genetic circuits construction in Yarrowia lipolytica.
Collapse
Affiliation(s)
- Lynn Wong
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| | - Jake Engel
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| | - Erqing Jin
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
- Department of Food Science and Engineering, Jinan University, 601 West Huangpu Road, Guangzhou 510632, China
| | - Benjamin Holdridge
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| | - Peng Xu
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| |
Collapse
|
9
|
Epova EY, Balovneva MV, Isakova EP, Kudykina YK, Zylkova MV, Deryabina YI, Shevelev AB. Expression system for Yarrowia lipolytica based on a promoter of the mitochondrial potential-dependent porin VDAC gene. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-016-0037-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances. Fungal Genet Biol 2016; 89:126-136. [DOI: 10.1016/j.fgb.2015.12.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/18/2015] [Accepted: 12/05/2015] [Indexed: 12/16/2022]
|
11
|
Celińska E, Borkowska M, Białas W. Evaluation of heterologous α-amylase production in two expression platforms dedicated for Yarrowia lipolytica: commercial Po1g-pYLSC (php4d) and custom-made A18-pYLTEF (pTEF). Yeast 2016; 33:165-81. [PMID: 26694961 DOI: 10.1002/yea.3149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/25/2015] [Accepted: 12/14/2015] [Indexed: 11/10/2022] Open
Abstract
In view of the constantly increasing demand for cost-effective, low-energy and environmentally friendly industrial processes and household care products, enzyme production occupies an essential place in the field of biotechnology. Along with increasing demand for industrial and household care enzymes, the demand for heterologous expression platforms has also increased. Apart from the conventional hosts, e.g. Escherichia coli, Saccharomyces cerevisiae and Pichia pastoris, routinely used in heterologous protein expression, the non-conventional ones have become more and more exploited in this field. Among the available yeast host systems, Yarrowia lipolytica appears to be an attractive alternative. The aim of this study was to compare efficiency of two Yarrowia-based expression platforms, commercial Po1g-pYLSC and custom-made A18-pYLTEF, in expression of an insect-derived, raw-starch-digesting α-amylase, to select the 'champion' system for further studies on this valuable enzyme. Both expression platforms were compared with respect to copy number of the integrated expression cassette/transformed genome, and the recombinant strains performance (Po1g-pYLSC-derived 4.29 strain, and A18-pYLTEF-derived B9 strain) during batch bioreactor cultures. Our results demonstrate that the average number of integration events into the recipient's genome was comparable for both expression systems under investigation, but with varying distribution of the multicopy integrants; and the number of the recombinant gene copies was highly correlated with the acquired amylolytic activity of the strains. Due to severe susceptibility of the recombinant AMY1 polypeptide to native proteases of the custom-made expression system, the final yield of the enzyme was substantially lower when compared to the commercial Po1g-pYLSC (reaching a maximum level of 142.84 AU/l). Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poland
| | - Monika Borkowska
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poland
| | - Wojciech Białas
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poland
| |
Collapse
|
12
|
Shabbir Hussain M, M Rodriguez G, Gao D, Spagnuolo M, Gambill L, Blenner M. Recent advances in bioengineering of the oleaginous yeast Yarrowia lipolytica. AIMS BIOENGINEERING 2016. [DOI: 10.3934/bioeng.2016.4.493] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
13
|
Lee KJ, Gil JY, Kim SY, Kwon O, Ko K, Kim DI, Kim DK, Kim HH, Oh DB. Molecular characterization of acidic peptide:N-glycanase from the dimorphic yeast Yarrowia lipolytica. J Biochem 2014; 157:35-43. [PMID: 25147194 DOI: 10.1093/jb/mvu051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Peptide:N-glycanase (PNGase) A is used preferentially to cleave the glycans from plant and insect glycopeptides. Although many putative PNGase A homologous genes have been found in the plant and fungus kingdoms through sequence similarity analyses, only several PNGases from plants and one from a filamentous fungus have been characterized. In this study, we identified and characterized a PNGase A-like enzyme, PNGase Yl, in the dimorphic yeast Yarrowia lipolytica. The corresponding gene was cloned and recombinantly expressed in Pichia pastoris. The purified enzyme cleaved glycans from glycopeptides with the maximum activity at pH 5. No metal ions were required for full activity, and rather it was repressed by three metal ions (Fe(3+), Cu(2+) and Zn(2+)). Using glycopeptide substrates, PNGase Yl was shown to release various types of N-glycans including high-mannose and complex-type glycans as well as glycans containing core-linked α(1,3)-fucose that are frequently found in plants and insects. Moreover, in comparison with PNGase A, PNGase Yl was able to cleave with higher efficiency the glycans from some denatured glycoproteins. Taken together, our results suggest that PNGase Yl, the first biochemically characterized yeast PNGase A homologue, can be developed through protein engineering as a useful deglycosylation tool for N-glycosylation study.
Collapse
Affiliation(s)
- Kyung Jin Lee
- Biochemicals and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahakro, Yuseong-Gu, Daejeon 305-806, Korea; Department of Medicine, Chung-Ang University, Seoul 156-756, Korea; Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350, Korea; Department of Biological Engineering, Inha University, Incheon 402-751, Korea; and College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea Biochemicals and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahakro, Yuseong-Gu, Daejeon 305-806, Korea; Department of Medicine, Chung-Ang University, Seoul 156-756, Korea; Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350, Korea; Department of Biological Engineering, Inha University, Incheon 402-751, Korea; and College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Jin Young Gil
- Biochemicals and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahakro, Yuseong-Gu, Daejeon 305-806, Korea; Department of Medicine, Chung-Ang University, Seoul 156-756, Korea; Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350, Korea; Department of Biological Engineering, Inha University, Incheon 402-751, Korea; and College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Sang-Yoon Kim
- Biochemicals and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahakro, Yuseong-Gu, Daejeon 305-806, Korea; Department of Medicine, Chung-Ang University, Seoul 156-756, Korea; Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350, Korea; Department of Biological Engineering, Inha University, Incheon 402-751, Korea; and College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Ohsuk Kwon
- Biochemicals and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahakro, Yuseong-Gu, Daejeon 305-806, Korea; Department of Medicine, Chung-Ang University, Seoul 156-756, Korea; Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350, Korea; Department of Biological Engineering, Inha University, Incheon 402-751, Korea; and College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea Biochemicals and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahakro, Yuseong-Gu, Daejeon 305-806, Korea; Department of Medicine, Chung-Ang University, Seoul 156-756, Korea; Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350, Korea; Department of Biological Engineering, Inha University, Incheon 402-751, Korea; and College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Kisung Ko
- Biochemicals and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahakro, Yuseong-Gu, Daejeon 305-806, Korea; Department of Medicine, Chung-Ang University, Seoul 156-756, Korea; Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350, Korea; Department of Biological Engineering, Inha University, Incheon 402-751, Korea; and College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Dong-Il Kim
- Biochemicals and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahakro, Yuseong-Gu, Daejeon 305-806, Korea; Department of Medicine, Chung-Ang University, Seoul 156-756, Korea; Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350, Korea; Department of Biological Engineering, Inha University, Incheon 402-751, Korea; and College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Dae Kyong Kim
- Biochemicals and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahakro, Yuseong-Gu, Daejeon 305-806, Korea; Department of Medicine, Chung-Ang University, Seoul 156-756, Korea; Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350, Korea; Department of Biological Engineering, Inha University, Incheon 402-751, Korea; and College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Ha Hyung Kim
- Biochemicals and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahakro, Yuseong-Gu, Daejeon 305-806, Korea; Department of Medicine, Chung-Ang University, Seoul 156-756, Korea; Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350, Korea; Department of Biological Engineering, Inha University, Incheon 402-751, Korea; and College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Doo-Byoung Oh
- Biochemicals and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahakro, Yuseong-Gu, Daejeon 305-806, Korea; Department of Medicine, Chung-Ang University, Seoul 156-756, Korea; Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350, Korea; Department of Biological Engineering, Inha University, Incheon 402-751, Korea; and College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea Biochemicals and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahakro, Yuseong-Gu, Daejeon 305-806, Korea; Department of Medicine, Chung-Ang University, Seoul 156-756, Korea; Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350, Korea; Department of Biological Engineering, Inha University, Incheon 402-751, Korea; and College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| |
Collapse
|
14
|
Darvishi Harzevili F. Yarrowia lipolytica in Biotechnological Applications. SPRINGERBRIEFS IN MICROBIOLOGY 2014. [DOI: 10.1007/978-3-319-06437-6_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
15
|
|
16
|
Madzak C, Beckerich JM. Heterologous Protein Expression and Secretion in Yarrowia lipolytica. YARROWIA LIPOLYTICA 2013. [DOI: 10.1007/978-3-642-38583-4_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Generalizing a hybrid synthetic promoter approach in Yarrowia lipolytica. Appl Microbiol Biotechnol 2012; 97:3037-52. [PMID: 23053080 DOI: 10.1007/s00253-012-4421-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 08/03/2012] [Accepted: 09/06/2012] [Indexed: 12/13/2022]
Abstract
Both varied and strong promoters are essential for metabolic and pathway engineering applications in any host organism. To enable this capacity, here we demonstrate a generalizable method for the de novo construction of strong, synthetic hybrid promoter libraries. Specifically, we demonstrate how promoter truncation and fragment dissection analysis can be utilized to identify both novel upstream activating sequences (UAS) and core promoters-the two components required to generate hybrid promoters. As a base case, the native TEF promoter in Yarrowia lipolytica was examined to identify putative UAS elements that serve as modular synthetic transcriptional activators. Resulting synthetic promoters containing a core promoter region activated by between one and twelve tandem repeats of the newly isolated, 230 nucleotide UASTEF#2 element showed promoter strengths 3- to 4.5-fold times the native TEF promoter. Further analysis through transcription factor binding site abrogation revealed the GCR1p binding site to be necessary for complete UASTEF#2 function. These various promoters were tested for function in a variety of carbon sources. Finally, by combining disparate UAS elements (in this case, UASTEF and UAS1B), we developed a high-strength promoter with for Y. lipolytica with an expression level of nearly sevenfold higher than that of the strong, constitutive TEF promoter. Thus, the general strategy described here enables the efficient, de novo construction of synthetic promoters to both increase native expression capacity and to produce libraries for tunable gene expression.
Collapse
|
18
|
Blazeck J, Alper HS. Promoter engineering: Recent advances in controlling transcription at the most fundamental level. Biotechnol J 2012; 8:46-58. [DOI: 10.1002/biot.201200120] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 06/25/2012] [Accepted: 07/17/2012] [Indexed: 12/25/2022]
|
19
|
Yuzbashev TV, Yuzbasheva EY, Vibornaya TV, Sobolevskaya TI, Laptev IA, Gavrikov AV, Sineoky SP. Production of recombinant Rhizopus oryzae lipase by the yeast Yarrowia lipolytica results in increased enzymatic thermostability. Protein Expr Purif 2011; 82:83-9. [PMID: 22155648 DOI: 10.1016/j.pep.2011.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 11/25/2011] [Accepted: 11/26/2011] [Indexed: 11/27/2022]
Abstract
The gene encoding Rhizopus oryzae lipase (ROL) was expressed in the non-conventional yeast Yarrowia lipolytica under the control of the strong inducible XPR2 gene promoter. The effects of three different preprosequence variants were examined: a preprosequence of the Y. lipolytica alkaline extracellular protease (AEP) encoded by XPR2, the native preprosequence of ROL, and a hybrid variant of the presequence of AEP and the prosequence of ROL. Lipase production was highest (7.6 U/mL) with the hybrid prepropeptide. The recombinant protein was purified by ion-exchange chromatography. The ROL included 28 amino acids of the C-terminal region of the prosequence, indicating that proteolytic cleavage occurred below the KR site through the activity of the Kex2-like endoprotease. The optimum temperature for recombinant lipase activity was between 30 and 40 °C, and the optimum pH was 7.5. The enzyme was shown not to be glycosylated. Furthermore, recombinant ROL exhibited greater thermostability than previously reported, with the enzyme retaining 64% of its hydrolytic activity after 30 min of incubation at 55 °C.
Collapse
Affiliation(s)
- Tigran V Yuzbashev
- Russian State Collection of Industrial Microorganisms (VKPM), State Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow 117545, Russia.
| | | | | | | | | | | | | |
Collapse
|
20
|
Disruption of Yarrowia lipolytica TPS1 gene encoding trehalose-6-P synthase does not affect growth in glucose but impairs growth at high temperature. PLoS One 2011; 6:e23695. [PMID: 21931609 PMCID: PMC3171402 DOI: 10.1371/journal.pone.0023695] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 07/22/2011] [Indexed: 11/18/2022] Open
Abstract
We have cloned the Yarrowia lipolytica TPS1 gene encoding trehalose-6-P synthase by complementation of the lack of growth in glucose of a Saccharomyces cerevisiae tps1 mutant. Disruption of YlTPS1 could only be achieved with a cassette placed in the 3' half of its coding region due to the overlap of its sequence with the promoter of the essential gene YlTFC1. The Yltps1 mutant grew in glucose although the Y. lipolytica hexokinase is extremely sensitive to inhibition by trehalose-6-P. The presence of a glucokinase, insensitive to trehalose-6-P, that constitutes about 80% of the glucose phosphorylating capacity during growth in glucose may account for the growth phenotype. Trehalose content was below 1 nmol/mg dry weight in Y. lipolytica, but it increased in strains expressing YlTPS1 under the control of the YlTEF1 promoter or with a disruption of YALI0D15598 encoding a putative trehalase. mRNA levels of YlTPS1 were low and did not respond to thermal stresses, but that of YlTPS2 (YALI0D14476) and YlTPS3 (YALI0E31086) increased 4 and 6 times, repectively, by heat treatment. Disruption of YlTPS1 drastically slowed growth at 35°C. Homozygous Yltps1 diploids showed a decreased sporulation frequency that was ascribed to the low level of YALI0D20966 mRNA an homolog of the S. cerevisiae MCK1 which encodes a protein kinase that activates early meiotic gene expression.
Collapse
|
21
|
Xuan Y, Zhou X, Zhang W, Zhang X, Song Z, Zhang Y. An upstream activation sequence controls the expression of AOX1 gene in Pichia pastoris. FEMS Yeast Res 2009; 9:1271-82. [PMID: 19788557 DOI: 10.1111/j.1567-1364.2009.00571.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Alcohol oxidase I gene (AOX1) promoter (P(AOX1)) is a key promoter in the methylotrophic yeast Pichia pastoris. To identify the cis-acting element in the AOX1 promoter, we constructed expression plasmids in which the green fluorescent protein (GFP) gene coding region was fused to a series of internal deletion mutants of the AOX1 promoter. By analyzing the expression and transcription level of GFP by each plasmid, we identified a positive cis-element, Region D, which is located between positions -638 and -510 of the AOX1 promoter. This region contains an invert repeat-like sequence GTGGGGTCAAATAGTTTCATGTTCCCCAA that is similar to the upstream activation sequence 1 (UAS1) of alcohol dehydrogenase II gene (ADH2) in Saccharomyces cerevisiae. The inverted repeat sequence in the UAS1 is known to contain the binding site for alcohol dehydrogenase II synthesis regulator (Adr1p). When three tandem copies of Region D were inserted into the Region D-deleted AOX1 promoter, the expression of GFP at the protein level and the mRNA level increased to 157% and 135% of the wild type, respectively. An electrophoretic mobility shift assay indicated that Region D could form a DNA-protein complex with cell extracts under methanol-induced and glucose/methanol-repressed conditions. These data suggest that Region D may function as a cis-acting regulatory element in the AOX1 promoter to positively regulate the expression of AOX1.
Collapse
Affiliation(s)
- Yaoji Xuan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | | | | | | | | | | |
Collapse
|
22
|
Böer E, Steinborn G, Kunze G, Gellissen G. Yeast expression platforms. Appl Microbiol Biotechnol 2007; 77:513-23. [PMID: 17924105 DOI: 10.1007/s00253-007-1209-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 09/13/2007] [Accepted: 09/16/2007] [Indexed: 11/29/2022]
Abstract
Yeasts provide attractive expression platforms. They combine ease of genetic manipulations and the option for a simple fermentation design of a microbial organism with the capabilities of an eukaryotic organism to secrete and to modify a protein according to a general eukaryotic scheme. For platform applications, a range of yeast species has been developed during the last decades. We present in the following review a selection of established and newly defined expression systems. The review is concluded by the description of a wide-range vector system that allows the assessment of the selected organisms in parallel for criteria like secretion or appropriate processing and modification in a given case.
Collapse
Affiliation(s)
- Erik Böer
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, Corrensstr. 3, 06466, Gatersleben, Germany
| | | | | | | |
Collapse
|
23
|
Blanchin-Roland S, Costa GD, Gaillardin C. ESCRT-I components of the endocytic machinery are required for Rim101-dependent ambient pH regulation in the yeast Yarrowia lipolytica. MICROBIOLOGY-SGM 2005; 151:3627-3637. [PMID: 16272384 DOI: 10.1099/mic.0.28196-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ambient pH signalling involves a cascade of conserved Rim or Pal products in ascomycetous yeasts or filamentous fungi, respectively. Insertional mutagenesis in the yeast Yarrowia lipolytica identified two components of the endosome-associated ESCRT-I complex involved in multivesicular body (MVB) vesicle formation, YlVps28p and YlVps23p. They were shown to be required at alkaline pH, like Rim factors, for transcriptional activation of alkaline-induced genes and repression of acid-induced genes. The constitutively active YlRIM101-1119 allele, which suppresses the pH-signalling defects of Ylrim mutations, also suppresses Ylvps defects in pH response, but not in endocytosis. The contribution of the ESCRT-III component Snf7p could not be assessed due to the essential nature of this component in Y. lipolytica. Unlike Rim factors, YlVps4p, a component of the MVB pathway acting downstream from ESCRT complexes, seems not to be required for the alkaline response. In Y. lipolytica, all vps mutations including those affecting YlVPS4, affected growth at acidic pH, a feature not exhibited by Ylrim mutations. These results suggest that Rim and Vps pathways cooperate in ambient pH signalling and that this relation is conserved across the full range of hemiascomycetous yeasts.
Collapse
Affiliation(s)
- Sylvie Blanchin-Roland
- Microbiologie et Génétique Moléculaire, Institut National Agronomique Paris-Grignon, Institut National de la Recherche Agronomique UMR1238, Centre National de la Recherche Scientifique UMR2585, 78850 Thiverval-Grignon, France
| | - Grégory Da Costa
- Microbiologie et Génétique Moléculaire, Institut National Agronomique Paris-Grignon, Institut National de la Recherche Agronomique UMR1238, Centre National de la Recherche Scientifique UMR2585, 78850 Thiverval-Grignon, France
| | - Claude Gaillardin
- Microbiologie et Génétique Moléculaire, Institut National Agronomique Paris-Grignon, Institut National de la Recherche Agronomique UMR1238, Centre National de la Recherche Scientifique UMR2585, 78850 Thiverval-Grignon, France
| |
Collapse
|
24
|
Gellissen G, Kunze G, Gaillardin C, Cregg JM, Berardi E, Veenhuis M, van der Klei I. New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica - a comparison. FEMS Yeast Res 2005; 5:1079-96. [PMID: 16144775 DOI: 10.1016/j.femsyr.2005.06.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 06/09/2005] [Accepted: 06/09/2005] [Indexed: 11/29/2022] Open
Abstract
Yeasts combine the ease of genetic manipulation and fermentation of a microbial organism with the capability to secrete and to modify proteins according to a general eukaryotic scheme. Yeasts thus provide attractive platforms for the production of recombinant proteins. Here, four important species are presented and compared: the methylotrophic Hansenula polymorpha and Pichia pastoris, distinguished by an increasingly large track record as industrial platforms, and the dimorphic species Arxula adeninivorans and Yarrrowia lipolytica, not yet established as industrial platforms, but demonstrating promising technological potential, as discussed in this article.
Collapse
Affiliation(s)
- Gerd Gellissen
- PharmedArtis GmbH, Forckenbeckstr. 6, 52074 Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Peñalva MA, Arst HN. Recent advances in the characterization of ambient pH regulation of gene expression in filamentous fungi and yeasts. Annu Rev Microbiol 2004; 58:425-51. [PMID: 15487944 DOI: 10.1146/annurev.micro.58.030603.123715] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All microorganisms must adapt to the pH of their environment. One aspect of this adaptation, particularly important for organisms that grow over a wide pH range, is the ability to express appropriately genes whose roles ultimately involve functions at the cell surface or in the environment. Genes encoding permeases, secreted enzymes, enzymes involved in synthesis of exported metabolites such as toxins and antibiotics, and probably enzymes modifying secreted proteins posttranslationally all fall into this category. Here we discuss the most recent findings on the transcriptional regulatory system in fungi that enables such genes to be expressed only when the ambient pH is conducive to their ultimate functions. The intriguing issue of how pH is sensed and how the resulting signal is transmitted to the transcription factor involves at least one late endosome component. Proper functioning of the regulatory system responding to ambient pH is essential for fungal pathogenicity of both animals and plants.
Collapse
Affiliation(s)
- Miguel A Peñalva
- Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain.
| | | |
Collapse
|
26
|
Bhave SL, Chattoo BB. Expression of vitreoscilla hemoglobin improves growth and levels of extracellular enzyme in Yarrowia lipolytica. Biotechnol Bioeng 2004; 84:658-66. [PMID: 14595778 DOI: 10.1002/bit.10817] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Enhancement in oxygen uptake by high-cell-density cultivations has been achieved previously by expression of the bacterial hemoglobin gene from Vitreoscilla. The Vitreoscilla hemoglobin (VHb) gene was expressed in the yeast Yarrowia lipolytica to study the effect of expression in this commercially important yeast. The expression of VHb in this yeast was found to enhance growth, contrary to reported observations in wild-type Saccharomyces cerevisiae in which there was no significant growth enhancement. VHb-expressing Y. lipolytica exhibited higher specific growth rate, enhanced oxygen uptake rate, and higher respiratory activity. We report the beneficial effects of VHb expression on growth under microaerobic as well as under nonlimiting dissolved oxygen conditions. Earlier studies in Y. lipolytica have demonstrated inhibition of mycelia formation by respiratory inhibitors and poor nitrogen source, conditions poor for growth. VHb(+) Y. lipolytica cells were more efficient at forming mycelia, indicating better utilization of available oxygen as compared with the VHb(-) cells. Expression of VHb was also found to increase the levels of enzyme ribonuclease secreted into the medium, a property that may be beneficial for producing heterologous proteins in Y. lipolytica.
Collapse
Affiliation(s)
- Sanjay L Bhave
- Department of Microbiology and Biotechnology Center, Faculty of Science, MS University of Baroda, 390002 Gujarat, India
| | | |
Collapse
|
27
|
Madzak C, Gaillardin C, Beckerich JM. Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica: a review. J Biotechnol 2004; 109:63-81. [PMID: 15063615 DOI: 10.1016/j.jbiotec.2003.10.027] [Citation(s) in RCA: 277] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2002] [Revised: 09/25/2003] [Accepted: 10/14/2003] [Indexed: 11/20/2022]
Abstract
The production of heterologous proteins is a research field of high interest, with both academic and commercial applications. Yeasts offer a number of advantages as host systems, and, among them, Yarrowia lipolytica appears as one of the most attractive. This non-conventional dimorphic yeast exhibits a remarkable regularity of performance in the efficient secretion of various heterologous proteins. This review presents the main characteristics of Y. lipolytica, and the genetic and molecular tools available in this yeast. A particular emphasis is given to newly developed tools such as efficient promoters, a non-homologous integration method, and an amplification system using defective selection markers. A table recapitulates the 42 heterologous proteins produced until now in Y. lipolytica. A few relevant examples are exposed in more detail, in order to illustrate some peculiar points of the Y. lipolytica physiology, and to offer a comparison with other production systems. This amount of data demonstrates the global reliability and versatility of Y. lipolytica as a host for heterologous production.
Collapse
Affiliation(s)
- Catherine Madzak
- Laboratoire de Microbiologie et Génétique Moléculaire (LMGM), INRA/CNRS/INAP-G, Centre de Biotechnologie Agro-Industrielle, BP 01, 78850 Thiverval-Grignon, France.
| | | | | |
Collapse
|
28
|
Yang J, Kang HA, Ko SM, Chae SK, Ryu DD, Kim JY. Cloning of the Aspergillus niger pmrA gene, a homologue of yeast PMR1, and characterization of a pmrA null mutant. FEMS Microbiol Lett 2001; 199:97-102. [PMID: 11356574 DOI: 10.1111/j.1574-6968.2001.tb10657.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The pmrA gene, a yeast PMR1 homologue, was isolated from Aspergillus niger. Sequence analysis of the pmrA cDNA and the genomic DNA revealed that two introns exist in the coding region, and that an open reading frame in the cDNA encodes a polypeptide of 1056 amino acids containing all the conserved regions present in P-type Ca2+-ATPases. The predicted pmrA protein exhibited a high degree of sequence similarity to the Pmr1 proteins from yeasts and mammalians (50-59% identity). The expression of the pmrA cDNA partially restored the growth defect of Yarrowia lipolytica pmr1 null mutant on EGTA-containing medium. This indicates that the A. niger pmrA gene encodes a functional homologue of the yeast P-type Ca2+-ATPase involved in the secretory pathway. An A. niger pmrA null mutant exhibited growth retardation on EGTA-containing medium and the growth defect was overcome by adding Ca2+ or Mn2+ into the medium. This suggests an involvement of the pmrA protein in Ca2+ and Mn2+ homeostasis in A. niger.
Collapse
Affiliation(s)
- J Yang
- Department of Microbiology, Chungnam National University, Taejon, South Korea
| | | | | | | | | | | |
Collapse
|
29
|
Juretzek T, Le Dall M, Mauersberger S, Gaillardin C, Barth G, Nicaud J. Vectors for gene expression and amplification in the yeast Yarrowia lipolytica. Yeast 2001; 18:97-113. [PMID: 11169753 DOI: 10.1002/1097-0061(20010130)18:2<97::aid-yea652>3.0.co;2-u] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
New vector systems were developed for gene expression in Y. lipolytica. These plasmids contain: (a) as integration target sequences, either a rDNA region or the long terminal repeat zeta of the Y. lipolytica retrotransposon Ylt1; (b) the YlURA3 gene as selection marker for Y. lipolytica, either as the non-defective ura3d1 allele for single integration or the promotor truncated ura3d4 allele for multiple integration; (c) the inducible ICL1 or XPR2 promoters for gene expression; and (d) unique restriction sites for gene insertion. Multiple plasmid integration occurred as inserted tandem-repeats, which are present at 3-39 copies per cell. A correlation between gene copy number and the expressed enzyme activity was demonstrated with Escherichia coli lacZ as reporter gene under the control of the regulated ICL1 promoter. Increases in copy numbers from 5 to 13 for the lacZ expression cassettes resulted in an up to 10-11-fold linear increase of the beta-galactosidase activity in multicopy transformants during their growth on ethanol or glucose, compared with the low-copy replicative plasmid transformants (1.6 plasmid copies). These new tools will enhance the interest in Y. lipolytica as an alternative host for heterologous protein production.
Collapse
Affiliation(s)
- T Juretzek
- Institut für Mikrobiologie, Technische Universität Dresden, Mommsenstrasse 13, D-01062 Dresden, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Comparison of promoters suitable for regulated overexpression of β-galactosidase in the alkane-utilizing yeastYarrowia lipolytica. BIOTECHNOL BIOPROC E 2000. [DOI: 10.1007/bf02942206] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Glover DJ, McEwen RK, Thomas CR, Young TW. pH-regulated expression of the acid and alkaline extracellular proteases of Yarrowia lipolytica. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 9):3045-3054. [PMID: 9308186 DOI: 10.1099/00221287-143-9-3045] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The pH-regulated expression of the acid (AXP) and alkaline (AEP) extracellular proteases of the yeast Yarrowia lipolytica 148 was analysed. Expression in batch and continuous cultures was determined at the mRNA level by Northern blotting, and at the enzyme level by enzyme assays and Western blotting. Culture pH regulated AEP and AXP expression predominantly at the level of mRNA content. Highest levels of AEP mRNA were detected at pH 6.5 whereas highest levels of AXP mRNA were detected at pH 5.5. At pH values either side of these maxima AEP and AXP expression were progressively down-regulated. For both enzymes, the variation in mRNA levels with culture pH occurred progressively rather than by discrete steps. AXP expression did not occur above pH 7.0. Some degree of AEP expression occurred at all pH values tested in two unrelated strains of Y. lipolytica.
Collapse
Affiliation(s)
- David J Glover
- Schools of Biochemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Robert K McEwen
- Schools of Biochemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Colin R Thomas
- Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Thomas W Young
- Schools of Biochemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
32
|
Abstract
The ascomycetous yeast Yarrowia lipolytica (formerly Candida, Endomycopsis, or Saccharomyces lipolytica) is one of the more intensively studied 'non-conventional' yeast species. This yeast is quite different from the well-studied yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe with respect to its phylogenetic evolution, physiology, genetics, and molecular biology. However, Y. lipolytica is not only of interest for fundamental research, but also for biotechnological applications. It secretes several metabolites in large amounts (i.e. organic acids, extracellular proteins) and the tools are available for overproduction and secretion of foreign proteins. This review presents a comprehensive overview on the available data on physiology, cell biology, molecular biology and genetics of Y. lipolytica.
Collapse
Affiliation(s)
- G Barth
- Institut für Mikrobiologie, Technische Universität Dresden, Germany.
| | | |
Collapse
|
33
|
Otero RC, Gaillardin C. Dominant mutations affecting expression of pH-regulated genes in Yarrowia lipolytica. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:311-9. [PMID: 8842151 DOI: 10.1007/bf02173777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the yeast Yarrowia lipolytica the levels of the alkaline extracellular protease (AEP) and acid extracellular protease (AXP) are controlled by the pH of the growth medium. When the pH of growth medium is kept close to 4.0, levels of AXP are high and those of AEP are low, whereas at pH above 6.0 the opposite is true. Mutations which mimic the effects on the protease system of growth at alkaline pH have been identified in two genes, RPH1 and RPH2, in Y. lipolytica. Detailed genetic studies showed that mutations in these two genes are dominant in heterozygous diploids, and that their effects are additive in haploid double mutants. These mutants show that pH regulates AEP expression independently from other metabolic signals. These mutants are not detectably affected in their growth rates, nor in internal pH homeostasis.
Collapse
Affiliation(s)
- R C Otero
- Laboratoire de Génétique Moléculaire et Cellulaire INRA-CNRS, Institut National Agronomique Paris-Grignon, Thiverval-Grignon, France
| | | |
Collapse
|