1
|
Houser J, Jendruchova K, Knight A, Piskacek M. The NFkB activation domain is 14-amino-acid-long variant of the 9aaTAD. Biochem J 2023; 480:297-306. [PMID: 36825663 DOI: 10.1042/bcj20220605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 02/25/2023]
Abstract
The nine-amino-acid transactivation domains (9aaTAD) was identified in numerous transcription factors including Gal4, p53, E2A, MLL, c-Myc, N-Myc, and also in SP, KLF, and SOX families. Most of the 9aaTAD domains interact with the KIX domain of transcription mediators MED15 and CBP to activate transcription. The NFkB activation domain occupied the same position on the KIX domain as the 9aaTADs of MLL, E2A, and p53. Binding of the KIX domain is established by the two-point interaction involving 9aaTAD positions p3-4 and p6-7. The NFkB primary binding region (positions p3-4) is almost identical with MLL and E2A, but secondary NFkB binding region differs by the position and engages the distal NFkB region p10-11. Thus, the NFkB activation domain is five amino acids longer than the other 9aaTADs. The NFkB activation domain includes an additional region, which we called the Omichinski Insert extending activation domain length to 14 amino acids. By deletion, we demonstrated that Omichinski Insert is an entirely non-essential part of NFkB activation domain. In summary, we recognized the NFkB activation domain as prolonged 9aaTAD conserved in evolution from humans to amphibians.
Collapse
Affiliation(s)
- Josef Houser
- Central European Institute of Technology (CEITEC), Masaryk University Brno, Brno, Czech Republic
- National Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University Brno, Brno, Czech Republic
- Core Facility Biomolecular Interactions and Crystallization (CF BIC), Masaryk University Brno, Brno, Czech Republic
| | - Kristina Jendruchova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University Brno, Kamenice 5, 625 00 Brno, Czech Republic
| | - Andrea Knight
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University Brno, Kamenice 5, 625 00 Brno, Czech Republic
- Department of Neurosurgery, University Hospital Brno, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martin Piskacek
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University Brno, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
2
|
Leger MM, Ros-Rocher N, Najle SR, Ruiz-Trillo I. Rel/NF-κB Transcription Factors Emerged at the Onset of Opisthokonts. Genome Biol Evol 2022; 14:6499270. [PMID: 34999783 PMCID: PMC8763368 DOI: 10.1093/gbe/evab289] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2021] [Indexed: 12/23/2022] Open
Abstract
The Rel/NF-κB transcription factor family has myriad roles in immunity, development, and differentiation in animals, and was considered a key innovation for animal multicellularity. Rel homology domain-containing proteins were previously hypothesized to have originated in a last common ancestor of animals and some of their closest unicellular relatives. However, key taxa were missing from previous analyses, necessitating a systematic investigation into the distribution and evolution of these proteins. Here, we address this knowledge gap by surveying taxonomically broad data from eukaryotes, with a special emphasis on lineages closely related to animals. We report an earlier origin for Rel/NF-κB proteins than previously described, in the last common ancestor of animals and fungi, and show that even in the sister group to fungi, these proteins contain elements that in animals are necessary for the subcellular regulation of Rel/NF-κB.
Collapse
Affiliation(s)
- Michelle M Leger
- Institute of Evolutionary Biology (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Núria Ros-Rocher
- Institute of Evolutionary Biology (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Sebastián R Najle
- Institute of Evolutionary Biology (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Iñaki Ruiz-Trillo
- Institute of Evolutionary Biology (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain.,Department of Genetics, Microbiology and Statistics, Institute for Research on Biodiversity, University of Barcelona, Catalonia, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| |
Collapse
|
3
|
Ngo KA, Kishimoto K, Davis-Turak J, Pimplaskar A, Cheng Z, Spreafico R, Chen EY, Tam A, Ghosh G, Mitchell S, Hoffmann A. Dissecting the Regulatory Strategies of NF-κB RelA Target Genes in the Inflammatory Response Reveals Differential Transactivation Logics. Cell Rep 2021; 30:2758-2775.e6. [PMID: 32101750 PMCID: PMC7061728 DOI: 10.1016/j.celrep.2020.01.108] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/23/2019] [Accepted: 01/30/2020] [Indexed: 01/22/2023] Open
Abstract
Nuclear factor κB (NF-κB) RelA is the potent transcriptional activator of inflammatory response genes. We stringently defined a list of direct RelA target genes by integrating physical (chromatin immunoprecipitation sequencing [ChIP-seq]) and functional (RNA sequencing [RNA-seq] in knockouts) datasets. We then dissected each gene’s regulatory strategy by testing RelA variants in a primary-cell genetic-complementation assay. All endogenous target genes require RelA to make DNA-base-specific contacts, and none are activatable by the DNA binding domain alone. However, endogenous target genes differ widely in how they employ the two transactivation domains. Through model-aided analysis of the dynamic time-course data, we reveal the gene-specific synergy and redundancy of TA1 and TA2. Given that post-translational modifications control TA1 activity and intrinsic affinity for coactivators determines TA2 activity, the differential TA logics suggests context-dependent versus context-independent control of endogenous RelA-target genes. Although some inflammatory initiators appear to require co-stimulatory TA1 activation, inflammatory resolvers are a part of the NF-κB RelA core response. Ngo et al. developed a genetic complementation system for NF-κB RelA that reveals that NF-κB target-gene selection requires high-affinity RelA binding and transcriptional activation domains for gene induction. The synergistic and redundant functions of two transactivation domains define pro-inflammatory and inflammation-response genes.
Collapse
Affiliation(s)
- Kim A Ngo
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kensei Kishimoto
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jeremy Davis-Turak
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Aditya Pimplaskar
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhang Cheng
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Roberto Spreafico
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Emily Y Chen
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amy Tam
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92037, USA
| | - Simon Mitchell
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Department of Microbiology Immunology, and Molecular Genetics (MIMG), Institute for Quantitative and Computational Biosciences (QCB), Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
4
|
Srinivasan M, Lahiri N, Thyagarajan A, Witek E, Hickman D, Lahiri DK. Nuclear factor-kappa B: Glucocorticoid-induced leucine zipper interface analogs suppress pathology in an Alzheimer's disease model. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2018; 4:488-498. [PMID: 30338290 PMCID: PMC6186959 DOI: 10.1016/j.trci.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Glucocorticoid-induced leucine zipper is a regulatory protein that sequesters activated nuclear factor-kappa B p65. Previously, we showed that rationally designed analogs of the p65-binding domain of glucocorticoid-induced leucine zipper, referred to as glucocorticoid-induced leucine zipper analogs (GAs), inhibited amyloid β-induced metabolic activity and inflammatory cytokines in mixed brain cell cultures. Here, we investigate the therapeutic efficacy of GA in an Alzheimer's disease model. METHODS GA and control peptides were synthesized covalently as peptide amides with the cell-penetrating agent. C57Bl/6J mice induced with lipopolysaccharide-mediated neuroinflammation (250 mg/kg i.p/day for six days) were treated on alternate days with GA-1, GA-2, or control peptides (25 mg/kg i.v). Brain tissues were assessed for gliosis, cytokines, and antiapoptotic factors. RESULTS The brain tissues of GA-1- and GA-2-treated mice exhibited significantly reduced gliosis, suppressed inflammatory cytokines, and elevated antiapoptotic factors. DISCUSSION The antineuroinflammatory effects of GA suggest potential therapeutic application for Alzheimer's disease.
Collapse
Affiliation(s)
- Mythily Srinivasan
- Department of Oral Pathology, Medicine and Radiology, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Niloy Lahiri
- Provaidya LLC, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Anish Thyagarajan
- Provaidya LLC, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Emily Witek
- Stark Neuroscience Research Institute, Department of Psychiatry, Institute of Psychiatry Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Debra Hickman
- Stark Neuroscience Research Institute, Department of Psychiatry, Institute of Psychiatry Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Debomoy K. Lahiri
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indiana University–Purdue University Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
5
|
Lecoq L, Raiola L, Chabot PR, Cyr N, Arseneault G, Legault P, Omichinski JG. Structural characterization of interactions between transactivation domain 1 of the p65 subunit of NF-κB and transcription regulatory factors. Nucleic Acids Res 2017; 45:5564-5576. [PMID: 28334776 PMCID: PMC5435986 DOI: 10.1093/nar/gkx146] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 02/25/2017] [Indexed: 01/27/2023] Open
Abstract
p65 is a member of the NF-κB family of transcriptional regulatory proteins that functions as the activating component of the p65-p50 heterodimer. Through its acidic transactivation domain (TAD), p65 has the capacity to form interactions with several different transcriptional regulatory proteins, including TFIIB, TFIIH, CREB-binding protein (CBP)/p300 and TAFII31. Like other acidic TADs, the p65 TAD contains two subdomains (p65TA1 and p65TA2) that interact with different regulatory factors depending on the target gene. Despite its role in controlling numerous NF-κB target genes, there are no high-resolution structures of p65TA1 bound to a target transcriptional regulatory factor. In this work, we characterize the interaction of p65TA1 with two factors, the Tfb1/p62 subunit of TFIIH and the KIX domain of CBP. In these complexes, p65TA1 transitions into a helical conformation that includes its characteristic ΦXXΦΦ motif (Φ = hydrophobic amino acid). Structural and functional studies demonstrate that the two binding interfaces are primarily stabilized by three hydrophobic amino acids within the ΦXXΦΦ motif and these residues are also crucial to its ability to activate transcription. Taken together, the results provide an atomic level description of how p65TA1 is able to bind different transcriptional regulatory factors needed to activate NF-κB target genes.
Collapse
Affiliation(s)
- Lauriane Lecoq
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Luca Raiola
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Philippe R Chabot
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Normand Cyr
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Geneviève Arseneault
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Pascale Legault
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - James G Omichinski
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
6
|
Novel Nuclear Factor-KappaB Targeting Peptide Suppresses β-Amyloid Induced Inflammatory and Apoptotic Responses in Neuronal Cells. PLoS One 2016; 11:e0160314. [PMID: 27764084 PMCID: PMC5072831 DOI: 10.1371/journal.pone.0160314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 07/18/2016] [Indexed: 11/19/2022] Open
Abstract
In the central nervous system (CNS), activation of the transcription factor nuclear factor-kappa B (NF-κβ) is associated with both neuronal survival and increased vulnerability to apoptosis. The mechanisms underlying these dichotomous effects are attributed to the composition of NF-κΒ dimers. In Alzheimer’s disease (AD), β-amyloid (Aβ) and other aggregates upregulate activation of p65:p50 dimers in CNS cells and enhance transactivation of pathological mediators that cause neuroinflammation and neurodegeneration. Hence selective targeting of activated p65 is an attractive therapeutic strategy for AD. Here we report the design, structural and functional characterization of peptide analogs of a p65 interacting protein, the glucocorticoid induced leucine zipper (GILZ). By virtue of binding the transactivation domain of p65 exposed after release from the inhibitory IκΒ proteins in activated cells, the GILZ analogs can act as highly selective inhibitors of activated p65 with minimal potential for off-target effects.
Collapse
|
7
|
Erkina TY, Erkine AM. Nucleosome distortion as a possible mechanism of transcription activation domain function. Epigenetics Chromatin 2016; 9:40. [PMID: 27679670 PMCID: PMC5029090 DOI: 10.1186/s13072-016-0092-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/09/2016] [Indexed: 11/24/2022] Open
Abstract
After more than three decades since the discovery of transcription activation domains (ADs) in gene-specific activators, the mechanism of their function remains enigmatic. The widely accepted model of direct recruitment by ADs of co-activators and basal transcriptional machinery components, however, is not always compatible with the short size yet very high degree of sequence randomness and intrinsic structural disorder of natural and synthetic ADs. In this review, we formulate the basis for an alternative and complementary model, whereby sequence randomness and intrinsic structural disorder of ADs are necessary for transient distorting interactions with promoter nucleosomes, triggering promoter nucleosome translocation and subsequently gene activation.
Collapse
Affiliation(s)
- Tamara Y Erkina
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN 46208 USA
| | - Alexandre M Erkine
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN 46208 USA
| |
Collapse
|
8
|
Kim SH, Yang M, Xu JG, Yu X, Qian XJ. Role of licochalcone A on thymic stromal lymphopoietin expression: implications for asthma. Exp Biol Med (Maywood) 2014; 240:26-33. [PMID: 25055998 DOI: 10.1177/1535370214545020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Asthma is a common chronic inflammatory disease characterized by the infiltration and accumulation of memory-like Th2 cells and eosinophils. Viral infection has emerged as the most common cause of severe episodes of asthma. For the treatment of bronchial asthma, the root of liquorice (Glycyrrhiza glabra) has been used as a traditional medicine in the East and West. Licochalcone A is the predominant, characteristic chalcone in liquorice root. To determine whether licochalcone A possesses an anti-inflammatory effect, we tested its effect on the expression and production of thymic stromal lymphopoietin (TSLP) in BEAS 2B cells and primary bronchial epithelial cells. We found that polyinosinic-polycytidylic acid (poly-IC)-induced TSLP expression was suppressed by treatment with licochalcone A in a dose- and time-dependent manner. We also found that poly-IC-induced mRNA expression of other proinflammatory mediators such as MCP-1, RANTES, and IL-8 was suppressed by licochalcone A. Furthermore, licochalcone A suppressed poly-IC-induced nuclear factor kappa B (NF-κB) nuclear translocation and DNA-binding activity by suppressing the Iκβ kinase (IKK) activity but not by direct phosphorylation of p65 at serine 276. Collectively, our findings suggest that licochalcone A suppresses poly-IC-induced TSLP expression and production by inhibiting the IKK/NF-κB signaling pathway, which might be involved in the pathogenesis of virus-exacerbated asthma. Further elucidation of the mechanisms underlying these observations can help develop therapeutic strategies for virally induced asthma.
Collapse
Affiliation(s)
- Sung-Ho Kim
- Department of Respiration, Tianjin First Central Hospital, Tianjin 300192, China
| | - Min Yang
- Department of Respiration, Tianjin First Central Hospital, Tianjin 300192, China
| | - Jian-Gang Xu
- Department of Respiration, Tianjin First Central Hospital, Tianjin 300192, China
| | - Xi Yu
- Department of Respiration, Tianjin First Central Hospital, Tianjin 300192, China
| | - Xue-Jiao Qian
- Department of Respiration, Tianjin First Central Hospital, Tianjin 300192, China
| |
Collapse
|
9
|
Chabot PR, Raiola L, Lussier-Price M, Morse T, Arseneault G, Archambault J, Omichinski JG. Structural and functional characterization of a complex between the acidic transactivation domain of EBNA2 and the Tfb1/p62 subunit of TFIIH. PLoS Pathog 2014; 10:e1004042. [PMID: 24675874 PMCID: PMC3968163 DOI: 10.1371/journal.ppat.1004042] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/15/2014] [Indexed: 11/30/2022] Open
Abstract
Infection with the Epstein-Barr virus (EBV) can lead to a number of human diseases including Hodgkin's and Burkitt's lymphomas. The development of these EBV-linked diseases is associated with the presence of nine viral latent proteins, including the nuclear antigen 2 (EBNA2). The EBNA2 protein plays a crucial role in EBV infection through its ability to activate transcription of both host and viral genes. As part of this function, EBNA2 associates with several host transcriptional regulatory proteins, including the Tfb1/p62 (yeast/human) subunit of the general transcription factor IIH (TFIIH) and the histone acetyltransferase CBP(CREB-binding protein)/p300, through interactions with its C-terminal transactivation domain (TAD). In this manuscript, we examine the interaction of the acidic TAD of EBNA2 (residues 431-487) with the Tfb1/p62 subunit of TFIIH and CBP/p300 using nuclear magnetic resonance (NMR) spectroscopy, isothermal titration calorimeter (ITC) and transactivation studies in yeast. NMR studies show that the TAD of EBNA2 binds to the pleckstrin homology (PH) domain of Tfb1 (Tfb1PH) and that residues 448-471 (EBNA2₄₄₈₋₄₇₁) are necessary and sufficient for this interaction. NMR structural characterization of a Tfb1PH-EBNA2₄₄₈₋₄₇₁ complex demonstrates that the intrinsically disordered TAD of EBNA2 forms a 9-residue α-helix in complex with Tfb1PH. Within this helix, three hydrophobic amino acids (Trp458, Ile461 and Phe462) make a series of important interactions with Tfb1PH and their importance is validated in ITC and transactivation studies using mutants of EBNA2. In addition, NMR studies indicate that the same region of EBNA2 is also required for binding to the KIX domain of CBP/p300. This study provides an atomic level description of interactions involving the TAD of EBNA2 with target host proteins. In addition, comparison of the Tfb1PH-EBNA2₄₄₈₋₄₇₁ complex with structures of the TAD of p53 and VP16 bound to Tfb1PH highlights the versatility of intrinsically disordered acidic TADs in recognizing common target host proteins.
Collapse
Affiliation(s)
- Philippe R. Chabot
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, Succursale Centre-Ville, Montréal, Québec, Canada
| | - Luca Raiola
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, Succursale Centre-Ville, Montréal, Québec, Canada
| | - Mathieu Lussier-Price
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, Succursale Centre-Ville, Montréal, Québec, Canada
| | - Thomas Morse
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, Succursale Centre-Ville, Montréal, Québec, Canada
| | - Genevieve Arseneault
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, Succursale Centre-Ville, Montréal, Québec, Canada
| | - Jacques Archambault
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, Succursale Centre-Ville, Montréal, Québec, Canada
- Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
| | - James G. Omichinski
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, Succursale Centre-Ville, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
10
|
Parua PK, Ryan PM, Trang K, Young ET. Pichia pastoris 14-3-3 regulates transcriptional activity of the methanol inducible transcription factor Mxr1 by direct interaction. Mol Microbiol 2012; 85:282-98. [PMID: 22625429 DOI: 10.1111/j.1365-2958.2012.08112.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The zinc-finger transcription factor, Mxr1 activates methanol utilization and peroxisome biogenesis genes in the methylotrophic yeast, Pichia pastoris. Expression of Mxr1-dependent genes is regulated in response to various carbon sources by an unknown mechanism. We show here that this mechanism involves the highly conserved 14-3-3 proteins. 14-3-3 proteins participate in many biological processes in different eukaryotes. We have characterized a putative 14-3-3 binding region at Mxr1 residues 212-225 and mapped the major activation domain of Mxr1 to residues 246-280, and showed that phenylalanine residues in this region are critical for its function. Furthermore, we report that a unique and previously uncharacterized 14-3-3 family protein in P. pastoris complements Saccharomyces cerevisiae 14-3-3 functions and interacts with Mxr1 through its 14-3-3 binding region via phosphorylation of Ser215 in a carbon source-dependent manner. Indeed, our in vivo results suggest a carbon source-dependent regulation of expression of Mxr1-activated genes by 14-3-3 in P. pastoris. Interestingly, we observed 14-3-3-independent binding of Mxr1 to the promoters, suggesting a post-DNA binding function of 14-3-3 in regulating transcription. We provide the first molecular explanation of carbon source-mediated regulation of Mxr1 activity, whose mechanism involves a post-DNA binding role of 14-3-3.
Collapse
Affiliation(s)
- Pabitra K Parua
- Department of Biochemistry, University of Washington, 1705 NE Pacific Street, Seattle, Washington 98195-7350, USA
| | | | | | | |
Collapse
|
11
|
Jo C, Cho SJ, Jo SA. Mitogen-activated protein kinase kinase 1 (MEK1) stabilizes MyoD through direct phosphorylation at tyrosine 156 during myogenic differentiation. J Biol Chem 2011; 286:18903-13. [PMID: 21454680 DOI: 10.1074/jbc.m111.225128] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, we reported that mitogen-activated protein kinase kinase 1 (MEK1) activated in the mid-stage of skeletal muscle differentiation promotes myogenic differentiation. To elucidate the molecular mechanism, we investigated an activity of MEK1 for MyoD. Activated MEK1 associates with MyoD in the nucleus of differentiating myoblasts. In vitro kinase assay using active MEK1, a (32)P-labeled protein band corresponding to GST-MyoD was observed but not to mutant GST-MyoD-Y156F. Tyrosine phosphorylation of endogenous MyoD was detected with a specific anti-pMyoD-Y156 antibody; however, this response was blocked by PD184352, a MEK-specific inhibitor. These results indicate that activated MEK1 phosphorylates the MyoD-Y156 residue directly. Interestingly, the protein level of mutant MyoD-Y156F decreased compared with that of wild type but was recovered in the presence of lactacystin, a proteasome inhibitor. The protein level of MyoD-Y156E, which mimics phosphorylation at Tyr-156, was above that of wild type, indicating that the phosphorylation protects MyoD from the ubiquitin proteasome-mediated degradation. In addition, the low protein level of MyoD-Y156F was recovered over that of wild type by an additional mutation at Leu-164, a critical binding residue of MAFbx/AT-1, a Skp, Cullin, F-box (SCF) E3-ubiquitin ligase. The amount of MyoD co-precipitated with MAFbx/AT-1 also was reduced in the presence of active MEK1. Thus, these results suggested that the phosphorylation probably interrupts the binding of MAFbx/AT-1 to MyoD and thereby increases its stability. Collectively, our results suggest that MEK1 activated in differentiating myoblasts stimulates muscle differentiation by phosphorylating MyoD-Y156, which results in MyoD stabilization.
Collapse
Affiliation(s)
- Chulman Jo
- Division of Brain Disease, Center for Biomedical Science, National Institutes of Health, Korea Center for Disease Control and Prevention, 187 Osongsaengmyeong2-ro, Gangoe-myeon, Cheongwon-gun, Chungcheongbuk-do 363-951, South Korea
| | | | | |
Collapse
|
12
|
Regulation of IkappaBalpha function and NF-kappaB signaling: AEBP1 is a novel proinflammatory mediator in macrophages. Mediators Inflamm 2010; 2010:823821. [PMID: 20396415 PMCID: PMC2855089 DOI: 10.1155/2010/823821] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 01/12/2010] [Indexed: 02/08/2023] Open
Abstract
NF-κB comprises a family of transcription factors that are critically involved in various inflammatory processes. In this paper, the role of NF-κB in inflammation and atherosclerosis and the regulation of the NF-κB signaling pathway are summarized. The structure, function, and regulation of the NF-κB inhibitors, IκBα and IκBβ, are reviewed. The regulation of NF-κB activity by glucocorticoid receptor (GR) signaling and IκBα sumoylation is also discussed. This paper focuses on the recently reported regulatory function that adipocyte enhancer-binding protein 1 (AEBP1) exerts on NF-κB transcriptional activity in macrophages, in which AEBP1 manifests itself as a potent modulator of NF-κB via physical interaction with IκBα and a critical mediator of inflammation. Finally, we summarize the regulatory roles that recently identified IκBα-interacting proteins play in NF-κB signaling. Based on its proinflammatory roles in macrophages, AEBP1 is anticipated to serve as a therapeutic target towards the treatment of various inflammatory conditions and disorders.
Collapse
|
13
|
Transactivation, dimerization, and DNA-binding activity of white spot syndrome virus immediate-early protein IE1. J Virol 2008; 82:11362-73. [PMID: 18768963 DOI: 10.1128/jvi.01244-08] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immediate-early proteins from many viruses function as transcriptional regulators and exhibit transactivation activity, DNA binding activity, and dimerization. In this study, we investigated these characteristics in white spot syndrome virus (WSSV) immediate-early protein 1 (IE1) and attempted to map the corresponding functional domains. Transactivation was investigated by transiently expressing a protein consisting of the DNA binding domain of the yeast transactivator GAL4 fused to full-length IE1. This GAL4-IE1 fusion protein successfully activated the Autographa californica multicapsid nucleopolyhedrovirus p35 basal promoter when five copies of the GAL4 DNA binding site were inserted upstream of the TATA box. A deletion series of GAL4-IE1 fusion proteins suggested that the transactivation domain of WSSV IE1 was carried within its first 80 amino acids. A point mutation assay further showed that all 12 of the acidic residues in this highly acidic domain were important for IE1's transactivation activity. DNA binding activity was confirmed by an electrophoresis mobility shift assay using a probe with (32)P-labeled random oligonucleotides. The DNA binding region of WSSV IE1 was located in its C-terminal end (amino acids 81 to 224), but mutation of a putative zinc finger motif in this C-terminal region suggested that this motif was not directly involved in the DNA binding activity. A homotypic interaction between IE1 molecules was demonstrated by glutathione S-transferase pull-down assay and a coimmunoprecipitation analysis. A glutaraldehyde cross-linking experiment and gel filtration analysis showed that this self-interaction led to the formation of stable IE1 dimers.
Collapse
|
14
|
Deng W, Roberts SGE. TFIIB and the regulation of transcription by RNA polymerase II. Chromosoma 2007; 116:417-29. [PMID: 17593382 DOI: 10.1007/s00412-007-0113-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 05/21/2007] [Accepted: 05/21/2007] [Indexed: 02/01/2023]
Abstract
Accurate transcription of a gene by RNA polymerase II requires the assembly of a group of general transcription factors at the promoter. The general transcription factor TFIIB plays a central role in preinitiation complex assembly, providing a bridge between promoter-bound TFIID and RNA polymerase II. TFIIB makes extensive contact with the core promoter via two independent DNA-recognition modules. In addition to interacting with other general transcription factors, TFIIB directly modulates the catalytic center of RNA polymerase II in the transcription complex. Moreover, TFIIB has been proposed as a target of transcriptional activator proteins that act to stimulate preinitiation complex assembly. In this review, we will discuss our current understanding of these activities of TFIIB.
Collapse
Affiliation(s)
- Wensheng Deng
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | | |
Collapse
|
15
|
Kim JH, Yang CK, Stallcup MR. Downstream signaling mechanism of the C-terminal activation domain of transcriptional coactivator CoCoA. Nucleic Acids Res 2006; 34:2736-50. [PMID: 16717280 PMCID: PMC1464418 DOI: 10.1093/nar/gkl361] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 04/08/2006] [Accepted: 04/24/2006] [Indexed: 12/03/2022] Open
Abstract
The coiled-coil coactivator (CoCoA) is a transcriptional coactivator for nuclear receptors and enhances nuclear receptor function by the interaction with the bHLH-PAS domain (AD3) of p160 coactivators. The C-terminal activation domain (AD) of CoCoA possesses strong transactivation activity and is required for the coactivator function of CoCoA with nuclear receptors. To understand how CoCoA AD transmits its activating signal to the transcription machinery, we defined specific subregions, amino acid motifs and protein binding partners involved in the function of CoCoA AD. The minimal transcriptional AD was mapped to approximately 91 C-terminal amino acids and consists of acidic, serine/proline-rich and phenylalanine-rich subdomains. Transcriptional activation by the CoCoA AD was p300-dependent, and p300 interacted physically and functionally with CoCoA AD and was recruited to a promoter by the interaction with CoCoA AD. The FYDVASAF motif in the CoCoA AD was critical for the transcriptional activity of CoCoA AD, the interaction of CoCoA with p300, the coactivator function of CoCoA for estrogen receptor alpha and GRIP1 and the transcriptional synergy among coactivators GRIP1, CARM1, p300 and CoCoA. Taken together these data extend our understanding of the mechanism of downstream signaling by the essential C-terminal AD of the nuclear receptor coactivator CoCoA; they indicate that p300 is a functionally important interaction partner of CoCoA AD and that their interaction potentiates transcriptional activation by the p160 coactivator complex.
Collapse
Affiliation(s)
- Jeong Hoon Kim
- Department of Biochemistry and Molecular Biology, University of Southern California Los Angeles, CA 90089, USA.
| | | | | |
Collapse
|
16
|
Hori RT, Xu S, Hu X, Pyo S. TFIIB-facilitated recruitment of preinitiation complexes by a TAF-independent mechanism. Nucleic Acids Res 2004; 32:3856-63. [PMID: 15272087 PMCID: PMC506799 DOI: 10.1093/nar/gkh711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Gene activators contain activation domains that are thought to recruit limiting components of the transcription machinery to a core promoter. VP16, a viral gene activator, has served as a model for studying the mechanistic aspects of transcriptional activation from yeast to human. The VP16 activation domain can be divided into two modules--an N-terminal subdomain (VPN) and a C-terminal subdomain (VPC). This study demonstrates that VPC stimulates core promoters that are either independent or dependent on TAFs (TATA-box Binding Protein-Associated Factors). In contrast, VPN only activates the TAF-independent core promoter and this activity increases in a synergistic fashion when VPN is dimerized (VPN2). Compared to one copy of VPN (VPN1), VPN2 also displays a highly cooperative increase in binding hTFIIB. The increased TFIIB binding correlates with VPN2's increased ability to recruit a complex containing TFIID, TFIIA and TFIIB. However, VPN1 and VPN2 do not increase the assembly of a complex containing only TFIID and TFIIA. The VPN subdomain also facilitates assembly of a complex containing TBP:TFIIA:TFIIB, which lacks TAFs, and provides a mechanism that could function at TAF-independent promoters. Taken together, these results suggest the interaction between VPN and TFIIB potentially initiate a network of contacts allowing the activator to indirectly tether TFIID or TBP to DNA.
Collapse
Affiliation(s)
- Roderick T Hori
- Department of Molecular Sciences, University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, TN 38163, USA.
| | | | | | | |
Collapse
|
17
|
Chen LF, Mu Y, Greene WC. Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-kappaB. EMBO J 2002; 21:6539-48. [PMID: 12456660 PMCID: PMC136963 DOI: 10.1093/emboj/cdf660] [Citation(s) in RCA: 655] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The nuclear function of the heterodimeric NF-kappaB transcription factor is regulated in part through reversible acetylation of its RelA subunit. We now demonstrate that the p300 and CBP acetyltransferases play a major role in the in vivo acetylation of RelA, principally targeting lysines 218, 221 and 310 for modification. Analysis of the functional properties of hypoacetylated RelA mutants containing lysine-to-arginine substitutions at these sites and of wild-type RelA co-expressed in the presence of a dominantly interfering mutant of p300 reveals that acetylation at lysine 221 in RelA enhances DNA binding and impairs assembly with IkappaBalpha. Conversely, acetylation of lysine 310 is required for full transcriptional activity of RelA in the absence of effects on DNA binding and IkappaBalpha assembly. Together, these findings highlight how site-specific acetylation of RelA differentially regulates distinct biological activities of the NF-kappaB transcription factor complex.
Collapse
Affiliation(s)
- Lin-feng Chen
- Gladstone Institute of Virology and Immunology and Departments of Medicine and Microbiology and Immunology, University of California at San Francisco, San Francisco, CA 94141, USA Corresponding author e-mail:
| | - Yajun Mu
- Gladstone Institute of Virology and Immunology and Departments of Medicine and Microbiology and Immunology, University of California at San Francisco, San Francisco, CA 94141, USA Corresponding author e-mail:
| | - Warner C. Greene
- Gladstone Institute of Virology and Immunology and Departments of Medicine and Microbiology and Immunology, University of California at San Francisco, San Francisco, CA 94141, USA Corresponding author e-mail:
| |
Collapse
|
18
|
Jia S, Flores-Saaib RD, Courey AJ. The Dorsal Rel homology domain plays an active role in transcriptional regulation. Mol Cell Biol 2002; 22:5089-99. [PMID: 12077338 PMCID: PMC139791 DOI: 10.1128/mcb.22.14.5089-5099.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Dorsal morphogen directs formation of the Drosophila dorsoventral axis by both activating and repressing transcription. It contains an N-terminal Rel homology domain (RHD), which is responsible for DNA binding and regulated nuclear import, and a C-terminal domain (CTD) that contains activation and repression motifs. To determine if the RHD has a direct role in transcriptional control, we analyzed a series of RHD mutations in S2 cells and embryos. Two classes of mutations (termed class I and class II mutations) that alter activation without affecting DNA binding or nuclear import were identified. The two classes appear to define distinct protein interaction surfaces on opposite faces of the RHD. Class I mutations enhance an apparently inhibitory interaction between the RHD and the CTD and eliminate both activation and repression by Dorsal. In contrast, class II mutations result in increased activation in S2 cells but severely decreased activation in embryos and have little effect on repression. Analysis of the cuticles of class II mutant embryos suggests that, in the absence of Dorsal-mediated activation, Dorsal-mediated repression is not sufficient to pattern the embryo. These results provide some of the first evidence that the RHD plays an active role in transcriptional regulation in intact multicellular organisms.
Collapse
Affiliation(s)
- Songtao Jia
- Department of Chemistry and Biochemistry, University of California-Los Angeles, 405 Hilgard Street, Los Angeles, CA 90095-1569, USA
| | | | | |
Collapse
|
19
|
Blumental-Perry A, Li W, Simchen G, Mitchell AP. Repression and activation domains of RME1p structurally overlap, but differ in genetic requirements. Mol Biol Cell 2002; 13:1709-21. [PMID: 12006664 PMCID: PMC111138 DOI: 10.1091/mbc.01-09-0468] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Rme1p, a repressor of meiosis in the yeast Saccharomyces cerevisiae, acts as both a transcriptional repressor and activator. Rme1p is a zinc-finger protein with no other homology to any protein of known function. The C-terminal DNA binding domain of Rme1p is essential for function. We find that mutations and progressive deletions in all three zinc fingers can be rescued by fusion of RME1 to the DNA binding domain of another protein. Thus, structural integrity of the zinc fingers is not required for the Rme1p-mediated effects on transcription. Using a series of mutant Rme1 proteins, we have characterized domains responsible for repression and activation. We find that the minimal transcriptional repression and activation domains completely overlap and lie in an 88-amino-acid N-terminal segment (aa 61-148). An additional transcriptional effector determinant lies in the first 31 amino acids of the protein. Notwithstanding the complete overlap between repression and activation domains of Rme1p, we demonstrated a functional difference between repression and activation: Rgr1p and Sin4p are absolutely required for repression but dispensable for activation.
Collapse
|
20
|
Abedi M, Caponigro G, Shen J, Hansen S, Sandrock T, Kamb A. Transcriptional transactivation by selected short random peptides attached to lexA-GFP fusion proteins. BMC Mol Biol 2001; 2:10. [PMID: 11580863 PMCID: PMC56998 DOI: 10.1186/1471-2199-2-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2001] [Accepted: 08/31/2001] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Transcriptional transactivation is a process with remarkable tolerance for sequence diversity and structural geometry. In studies of the features that constitute transactivating functions, acidity has remained one of the most common characteristics observed among native activation domains and activator peptides. RESULTS We performed a deliberate search of random peptide libraries for peptides capable of conferring transcriptional transactivation on the lexA DNA binding domain. Two libraries, one composed of C-terminal fusions, the other of peptide insertions within the green fluorescent protein structure, were used. We show that (i) peptide sequences other than C-terminal fusions can confer transactivation; (ii) though acidic activator peptides are more common, charge neutral and basic peptides can function as activators; and (iii) peptides as short as 11 amino acids behave in a modular fashion. CONCLUSIONS These results support the recruitment model of transcriptional activation and, combined with other studies, suggest the possibility of using activator peptides in a variety of applications, including drug development work.
Collapse
Affiliation(s)
- Majid Abedi
- Arcaris, Inc. (current name: Deltagen Proteomics, Inc.), 615 Arapeen Drive Suite 300, Salt Lake City, UT 84108, USA
| | - Giordano Caponigro
- Arcaris, Inc. (current name: Deltagen Proteomics, Inc.), 615 Arapeen Drive Suite 300, Salt Lake City, UT 84108, USA
| | - Jiaxiang Shen
- Arcaris, Inc. (current name: Deltagen Proteomics, Inc.), 615 Arapeen Drive Suite 300, Salt Lake City, UT 84108, USA
| | - Steven Hansen
- Arcaris, Inc. (current name: Deltagen Proteomics, Inc.), 615 Arapeen Drive Suite 300, Salt Lake City, UT 84108, USA
| | - Tanya Sandrock
- Arcaris, Inc. (current name: Deltagen Proteomics, Inc.), 615 Arapeen Drive Suite 300, Salt Lake City, UT 84108, USA
| | - Alexander Kamb
- Arcaris, Inc. (current name: Deltagen Proteomics, Inc.), 615 Arapeen Drive Suite 300, Salt Lake City, UT 84108, USA
| |
Collapse
|
21
|
Kistanova E, Dell H, Tsantili P, Falvey E, Cladaras C, Hadzopoulou-Cladaras M. The activation function-1 of hepatocyte nuclear factor-4 is an acidic activator that mediates interactions through bulky hydrophobic residues. Biochem J 2001; 356:635-42. [PMID: 11368795 PMCID: PMC1221879 DOI: 10.1042/0264-6021:3560635] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The hepatocyte nuclear factor-4 (HNF-4) contains two transcription activation domains. One domain, activation function-1 (AF-1), consists of the extreme N-terminal 24 amino acids and functions as a constitutive autonomous activator of transcription. This short transactivator belongs to the class of acidic activators, and it is predicted to adopt an amphipathic alpha-helical structure. Transcriptional analysis of sequential point mutations of the negatively charged residues (Asp and Glu) revealed a stepwise decrease in activity, while mutation of all acidic residues resulted in complete loss of transcriptional activity. Mutations of aromatic and hydrophobic amino acids surrounding the negatively charged residues had a much more profound effect than mutations of acidic amino acids, since even a single mutation of these residues resulted in a dramatic decrease in transactivation, thus demonstrating the importance of hydrophobic residues in AF-1 activity. Like other acidic activators, the AF-1 of HNF-4 binds the transcription factor IIB and the TATA-binding protein directly in vitro. In addition, the cAMP-response-element-binding-protein, a transcriptional adapter involved in the transactivation of a plethora of transcription factors, interacts with the AF-1 of HNF-4 and co-operates in the process of transactivation by HNF-4. The different protein targets of AF-1 suggest that the AF-1 of HNF-4 may be involved in recruiting both general transcription factors and chromatin remodelling proteins during activation of gene expression.
Collapse
Affiliation(s)
- E Kistanova
- Department of Medicine, Section of Molecular Genetics, Cardiovascular Institute, Boston University School of Medicine, Center for Advanced Biomedical Research, 700 Albany Street, W-509 Boston, MA 02118-2394, USA
| | | | | | | | | | | |
Collapse
|
22
|
Feng L, Lee KA. A repetitive element containing a critical tyrosine residue is required for transcriptional activation by the EWS/ATF1 oncogene. Oncogene 2001; 20:4161-8. [PMID: 11464282 DOI: 10.1038/sj.onc.1204522] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2000] [Revised: 04/09/2001] [Accepted: 04/09/2001] [Indexed: 11/08/2022]
Abstract
Chromosomal fusion of the N-terminal region of the Ewings Sarcoma Oncogene (EWS-activation-domain, EAD) to the DNA-binding domains of a variety of cellular transcription factors produce oncogenic proteins (EWS-fusion proteins (EFPs)) that cause distinct malignancies. In EFPs, the EAD acts as a potent transcriptional activation domain and this ability is repressed in the context of normal, non-tumorigenic, EWS. Trans-activation by the EAD is therefore a specific characteristic of EFPs and it is thought that EFPs induce tumorigenesis via improper transcriptional activation of cellular genes. Functional elements required for transcriptional activation are dispersed throughout the EAD, as are thirty-one copies of a Degenerate Hexapeptide Repeat (DHR, consensus SYGQQS). This suggests that the EAD contains a highly reiterated functional element related to DHRs. Here we show that in the context of EWS/ATF1, the EFP that causes malignant melanoma of soft parts, trans-cooperation by small regions of the EAD ( approximately 30 residues) results in potent transcriptional activation dependent on the conserved tyrosine residues present in DHRs. These findings provide the first evidence for a role of DHRs in EAD-mediated trans-activation and demonstrate that the EAD represents a novel tyrosine-dependent transcriptional activation domain.
Collapse
Affiliation(s)
- L Feng
- Department of Biology, Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, S.A.R. China
| | | |
Collapse
|
23
|
Aratani S, Fujii R, Oishi T, Fujita H, Amano T, Ohshima T, Hagiwara M, Fukamizu A, Nakajima T. Dual roles of RNA helicase A in CREB-dependent transcription. Mol Cell Biol 2001; 21:4460-9. [PMID: 11416126 PMCID: PMC87106 DOI: 10.1128/mcb.21.14.4460-4469.2001] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA helicase A (RHA) is a member of an ATPase/DNA and RNA helicase family and is a homologue of Drosophila maleless protein (MLE), which regulates X-linked gene expression. RHA is also a component of holo-RNA polymerase II (Pol II) complexes and recruits Pol II to the CREB binding protein (CBP). The ATPase and/or helicase activity of RHA is required for CREB-dependent transcription. To further understand the role of RHA on gene expression, we have identified a 50-amino-acid transactivation domain that interacts with Pol II and termed it the minimal transactivation domain (MTAD). The protein sequence of this region contains six hydrophobic residues and is unique to RHA homologues and well conserved. A mutant with this region deleted from full-length RHA decreased transcriptional activity in CREB-dependent transcription. In addition, mutational analyses revealed that several tryptophan residues in MTAD are important for the interaction with Pol II and transactivation. These mutants had ATP binding and ATPase activities comparable to those of wild-type RHA. A mutant lacking ATP binding activity was still able to interact with Pol II. In CREB-dependent transcription, the transcriptional activity of each of these mutants was less than that of wild-type RHA. The activity of the double mutant lacking both functions was significantly lower than that of each mutant alone, and the double mutant had a dominant negative effect. These results suggest that RHA could independently regulate CREB-dependent transcription either through recruitment of Pol II or by ATP-dependent mechanisms.
Collapse
Affiliation(s)
- S Aratani
- Institute of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Natesan S, Molinari E, Rivera VM, Rickles RJ, Gilman M. A general strategy to enhance the potency of chimeric transcriptional activators. Proc Natl Acad Sci U S A 1999; 96:13898-903. [PMID: 10570170 PMCID: PMC24162 DOI: 10.1073/pnas.96.24.13898] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Efforts to increase the potency of transcriptional activators are generally unsuccessful because poor expression of activators in mammalian cells limits their delivery to target promoters. Here we report that the effectiveness of chimeric activators can be dramatically improved by expressing them as noncovalent tetrameric bundles. Bundled activation domains are much more effective at activating a reporter gene than simple monomeric activators, presumably because, at similar expression levels, up to 4 times as many the activation domains are delivered to the target promoter. These bundled activation domains are also more effective than proteins in which activation domains are tandemly reiterated in the same polypeptide chain, because such proteins are very poorly expressed and therefore not delivered effectively. These observations suggest that there is a threshold number of activation domains that must be bound to a promoter for activation, above which promoter activity is simply a function of the number of activators bound. We show that bundling can be exploited practically to enhance the sensitivity of mammalian two-hybrid assays, enabling detection of weak interactions or those between poorly expressed proteins. Bundling also dramatically improves the performance of a small-molecule-regulated gene expression system when the expression level of regulatory protein is limiting, a situation that may be encountered in gene therapy applications.
Collapse
Affiliation(s)
- S Natesan
- ARIAD Gene Therapeutics Incorporated, 26 Landsdowne Street, Cambridge, MA 02139, USA.
| | | | | | | | | |
Collapse
|
25
|
Sizemore N, Leung S, Stark GR. Activation of phosphatidylinositol 3-kinase in response to interleukin-1 leads to phosphorylation and activation of the NF-kappaB p65/RelA subunit. Mol Cell Biol 1999; 19:4798-805. [PMID: 10373529 PMCID: PMC84278 DOI: 10.1128/mcb.19.7.4798] [Citation(s) in RCA: 539] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The work of Reddy et al. (S. A. Reddy, J. A. Huang, and W. S. Liao, J. Biol. Chem. 272:29167-29173, 1997) reveals that phosphatidylinositol 3-kinase (PI3K) plays a role in transducing a signal from the occupied interleukin-1 (IL-1) receptor to nuclear factor kappaB (NF-kappaB), but the underlying mechanism remains to be determined. We have found that IL-1 stimulates interaction of the IL-1 receptor accessory protein with the p85 regulatory subunit of PI3K, leading to the activation of the p110 catalytic subunit. Specific PI3K inhibitors strongly inhibit both PI3K activation and NF-kappaB-dependent gene expression but have no effect on the IL-1-stimulated degradation of IkappaBalpha, the nuclear translocation of NF-kappaB, or the ability of NF-kappaB to bind to DNA. In contrast, PI3K inhibitors block the IL-1-stimulated phosphorylation of NF-kappaB itself, especially the p65/RelA subunit. Furthermore, by using a fusion protein containing the p65/RelA transactivation domain, we found that overexpression of the p110 catalytic subunit of PI3K induces p65/RelA-mediated transactivation and that the specific PI3K inhibitor LY294,002 represses this process. Additionally, the expression of a constitutively activated form of either p110 or the PI3K-activated protein kinase Akt also induces p65/RelA-mediated transactivation. Therefore, IL-1 stimulates the PI3K-dependent phosphorylation and transactivation of NF-kappaB, a process quite distinct from the liberation of NF-kappaB from its cytoplasmic inhibitor IkappaB.
Collapse
Affiliation(s)
- N Sizemore
- Department of Molecular Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
26
|
Ansari AZ, Reece RJ, Ptashne M. A transcriptional activating region with two contrasting modes of protein interaction. Proc Natl Acad Sci U S A 1998; 95:13543-8. [PMID: 9811836 PMCID: PMC24855 DOI: 10.1073/pnas.95.23.13543] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A C-terminal segment of the yeast activator Gal4 manifests two functions: When tethered to DNA, it elicits gene activation, and it binds the inhibitor Gal80. Here we examine the effects on these two functions of cysteine and proline substitutions. We find that, although certain cysteine substitutions diminish interaction with Gal80, those substitutions have little effect on the activating function in vivo and interaction with TATA box-binding protein (TBP) in vitro. Proline substitutions introduced near residues critical for Gal80 binding abolish that interaction but once again have no effect on the activating function. Crosslinking experiments show that a defined position in the activating peptide is in close proximity to TBP and Gal80 in the two separate reactions and show that binding of the inhibitor blocks binding to TBP. Thus, the same stretch of amino acids are involved in two quite different protein-protein interactions: binding to Gal80, which depends on a precise sequence and the formation of a defined secondary structure, or interactions with the transcriptional machinery in vivo, which are not impaired by perturbations of either sequence or structure.
Collapse
Affiliation(s)
- A Z Ansari
- Program in Molecular Biology, Memorial Sloan Kettering Cancer Center, Box 595, 1275 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
27
|
Guermah M, Malik S, Roeder RG. Involvement of TFIID and USA components in transcriptional activation of the human immunodeficiency virus promoter by NF-kappaB and Sp1. Mol Cell Biol 1998; 18:3234-44. [PMID: 9584164 PMCID: PMC108905 DOI: 10.1128/mcb.18.6.3234] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The purified Rel/NF-kappaB (p50/p65) complex and Sp1 markedly activate transcription from the human immunodeficiency virus type 1 (HIV-1) promoter in a highly purified HeLa reconstituted transcription system. Transcriptional activation by NF-kappaB and Sp1 requires both TFIID and the USA fraction. The USA-derived coactivators PC2 and PC4 fully reconstitute the USA coactivator activity, both by repressing the basal level of transcription and by potentiating activator function to yield large increases in the levels of transcription induction. Under limiting concentrations, PC2 and PC4 also show synergistic effects. The C-terminal portion (amino acids 416 to 550) of the p65 subunit of NF-kappaB is a potent activator when assayed as a Gal fusion in the reconstituted transcription system and interacts both with TATA-binding protein (TBP) and with several human TBP-associated factors (TAFs) that include TAFII250. The p65 activation domain mediates transcription activation in the presence of partially reconstituted TFIID species that include a minimal complex containing only TBP and TAFII250. These studies also show that, like USA components, TAFs can serve both to repress TBP-mediated transcription and, following activator interactions, to reverse the repression and effect a net increase in activity. Taken together, these data underscore the importance of both TAFs and specific USA-derived coactivators for optimal activation of the HIV-1 promoter, as well as certain parallels in their overall mechanisms of action.
Collapse
Affiliation(s)
- M Guermah
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
28
|
Drysdale CM, Jackson BM, McVeigh R, Klebanow ER, Bai Y, Kokubo T, Swanson M, Nakatani Y, Weil PA, Hinnebusch AG. The Gcn4p activation domain interacts specifically in vitro with RNA polymerase II holoenzyme, TFIID, and the Adap-Gcn5p coactivator complex. Mol Cell Biol 1998; 18:1711-24. [PMID: 9488488 PMCID: PMC108886 DOI: 10.1128/mcb.18.3.1711] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/1997] [Accepted: 12/17/1997] [Indexed: 02/06/2023] Open
Abstract
The Gcn4p activation domain contains seven clusters of hydrophobic residues that make additive contributions to transcriptional activation in vivo. We observed efficient binding of a glutathione S-transferase (GST)-Gcn4p fusion protein to components of three different coactivator complexes in Saccharomyces cerevisiae cell extracts, including subunits of transcription factor IID (TFIID) (yeast TAFII20 [yTAFII20], yTAFII60, and yTAFII90), the holoenzyme mediator (Srb2p, Srb4p, and Srb7p), and the Adap-Gcn5p complex (Ada2p and Ada3p). The binding to these coactivator subunits was completely dependent on the hydrophobic clusters in the Gcn4p activation domain. Alanine substitutions in single clusters led to moderate reductions in binding, double-cluster substitutions generally led to greater reductions in binding than the corresponding single-cluster mutations, and mutations in four or more clusters reduced binding to all of the coactivator proteins to background levels. The additive effects of these mutations on binding of coactivator proteins correlated with their cumulative effects on transcriptional activation by Gcn4p in vivo, particularly with Ada3p, suggesting that recruitment of these coactivator complexes to the promoter is a cardinal function of the Gcn4p activation domain. As judged by immunoprecipitation analysis, components of the mediator were not associated with constituents of TFIID and Adap-Gcn5p in the extracts, implying that GST-Gcn4p interacted with the mediator independently of these other coactivators. Unexpectedly, a proportion of Ada2p coimmunoprecipitated with yTAFII90, and the yTAFII20, -60, and -90 proteins were coimmunoprecipitated with Ada3p, revealing a stable interaction between components of TFIID and the Adap-Gcn5p complex. Because GST-Gcn4p did not bind specifically to highly purified TFIID, Gcn4p may interact with TFIID via the Adap-Gcn5p complex or some other adapter proteins. The ability of Gcn4p to interact with several distinct coactivator complexes that are physically and genetically linked to TATA box-binding protein can provide an explanation for the observation that yTAFII proteins are dispensable for activation by Gcn4p in vivo.
Collapse
Affiliation(s)
- C M Drysdale
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Rowland O, Segall J. A hydrophobic segment within the 81-amino-acid domain of TFIIIA from Saccharomyces cerevisiae is essential for its transcription factor activity. Mol Cell Biol 1998; 18:420-32. [PMID: 9418889 PMCID: PMC115877 DOI: 10.1128/mcb.18.1.420] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/1997] [Accepted: 10/28/1997] [Indexed: 02/05/2023] Open
Abstract
Transcription factor IIIA (TFIIIA) binds to the internal control region of the 5S RNA gene as the first step in the in vitro assembly of a TFIIIB-TFIIIC-TFIIIA-DNA transcription complex. An 81-amino-acid domain that is present between zinc fingers 8 and 9 of TFIIIA from Saccharomyces cerevisiae is essential for the transcription factor activity of this protein (C. A. Milne and J. Segall, J. Biol. Chem. 268:11364-11371, 1993). We have monitored the effect of mutations within this domain on the ability of TFIIIA to support transcription of the 5S RNA gene in vitro and to maintain cell viability. TFIIIA with internal deletions that removed residues 282 to 315, 316 to 334, 328 to 341, or 342 to 351 of the 81-amino-acid domain retained activity, whereas TFIIIA with a deletion of the short leucine-rich segment 352NGLNLLLN359 at the carboxyl-terminal end of this domain was devoid of activity. Analysis of the effects of double and quadruple mutations in the region extending from residue 336 to 364 confirmed that hydrophobic residues in this portion of the 81-amino-acid domain, particularly L343, L347, L354, L356, L357, and L358, and to a lesser extent F336 and L337, contributed to the ability of TFIIIA to promote transcription. We propose that these hydrophobic residues play a role in mediating an interaction between TFIIIA and another component of the transcriptional machinery. We also found that TFIIIA remained active if either zinc finger 8 or zinc finger 9 was disrupted by mutation but that TFIIIA containing a disruption of both zinc finger 8 and zinc finger 9 was inactive.
Collapse
Affiliation(s)
- O Rowland
- Department of Biochemistry, University of Toronto, Ontario, Canada
| | | |
Collapse
|
30
|
Affiliation(s)
- R Pollock
- ARIAD Pharmaceuticals, 26 Landsdowne Street, Cambridge, MA 02139, USA
| | | |
Collapse
|
31
|
Svetlov V, Cooper TG. The minimal transactivation region of Saccharomyces cerevisiae Gln3p is localized to 13 amino acids. J Bacteriol 1997; 179:7644-52. [PMID: 9401021 PMCID: PMC179725 DOI: 10.1128/jb.179.24.7644-7652.1997] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Regulated nitrogen catabolic gene transcription in Saccharomyces cerevisiae is mediated by four positive (Gln3p and Gat1p/Nil1p) and negative (Dal80p/Uga43p and Deh1p/Nil2p/GZF3p) regulators which function in opposition to one another. All four proteins contain GATA-type zinc finger domains, and three of them (Gln3p, Dal80p, and Deh1p) have been shown to bind to GATA sequences situated upstream of genes whose expression is sensitive to nitrogen catabolite repression (NCR). The positive regulators, Gln3p and Gat1p, are able to support transcriptional activation when tethered by LexAp to the promoter of a reporter gene whose upstream activation sequences have been replaced with one or more lexA operator sites. Existing data suggest that these four proteins regulate transcription by competing with one another for binding to the GATA sequences which mediate NCR-sensitive gene expression. We show that the minimal Gln3p domain mediating transcriptional activation consists of 13 amino acids with a predicted propensity to form an alpha-helix. Genetic analysis of this region (Gln3p residues 126 to 138, QQNGEIAQLWDFN) demonstrated that alanine may be substituted for the aromatic and acidic amino acids without destroying transcriptional activation potential. Similar substitution of alanine for the two hydrophobic amino acids, isoleucine and leucine, however, destroys activation, as does introduction of basic amino acids in place of the acidic residues or introduction of proline into the center of the sequence. A point mutation in the Gln3p activation region destroys its in vivo ability to support NCR-sensitive DAL5 expression. We find no convincing evidence that NCR regulates Gln3p function by modulating the functioning of its activation region.
Collapse
Affiliation(s)
- V Svetlov
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163, USA
| | | |
Collapse
|
32
|
Defossez PA, Baert JL, Monnot M, de Launoit Y. The ETS family member ERM contains an alpha-helical acidic activation domain that contacts TAFII60. Nucleic Acids Res 1997; 25:4455-63. [PMID: 9358152 PMCID: PMC147095 DOI: 10.1093/nar/25.22.4455] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transcription factors are modular entities built up of discrete domains, some devoted to DNA binding and others permitting transcriptional modulation. The structure of DNA binding domains has been thoroughly investigated and structural classes clearly defined. In sharp contrast, the structural constraints put on transactivating regions, if any, are mostly unknown. Our investigations focus on ERM, a eukaryotic transcription factor of the ETS family. We have previously shown that ERM harbours two transactivating domains (TADs) with distinct functional features: AD1 lies in the first 72 amino acids of ERM, while AD2 sits in the last 62. Here we show that AD1 is a bona fide acidic TAD, for it activated transcription in yeast cells, while AD2 did not. AD1 contains a 20 amino acid stretch predicted to form an alpha-helix that is found unchanged in the related PEA3 and ER81 transcription factors. Circular dichroism analysis revealed that a 32 amino acid peptide encompassing this region is unstructured in water but folds into a helix when the hydrophobic solvent trifluoroethanol is added. The isolated helix was sufficient to activate transcription and mutations predicted to disrupt it dramatically affected AD1-driven transactivation, whereas mutations decreasing its acidity had more gentle effects. A phenylalanine residue within the helix was particularly sensitive to mutations. Finally, we observed that ERM bound TAFII60 via AD1 and bound TBP and TAFII40, presumably via other activation domains.
Collapse
Affiliation(s)
- P A Defossez
- Mécanismes du Développement et de la Cancérisation, UMR 319 CNRS/Institut Pasteur de Lille, Institut de Biologie de Lille, 1 rue Calmette, BP 447, 59021 Lille Cedex, France
| | | | | | | |
Collapse
|
33
|
Fontes JD, Jiang B, Peterlin BM. The class II trans-activator CIITA interacts with the TBP-associated factor TAFII32. Nucleic Acids Res 1997; 25:2522-8. [PMID: 9171108 PMCID: PMC146770 DOI: 10.1093/nar/25.12.2522] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The class II trans- activator (CIITA) is the main transcriptional co-activator for the expression of MHC class II proteins. Its N-terminal 125 amino acids function as an independent transcriptional activation domain. Analyses of the primary amino acid sequence of the activation domain predict the presence of three alpha-helices, each with a high proportion of acidic residues. Using site-directed mutagenesis, we found that two of these predicted alpha-helices are required for full transcriptional activation by CIITA. Moreover, a CIITA protein in which both functional alpha-helices have been deleted displays a dominant negative phenotype. This activation domain of CIITA interacts with the 32 kDa subunit of the general transcription complex TFIID, TAFII32. Decreased transcriptional activation by N-terminal deletions of CIITA is correlated directly with their reduced binding to TAFII32. We conclude that interactions between TAFII32 and CIITA are responsible for activation of class II genes.
Collapse
Affiliation(s)
- J D Fontes
- Howard Hughes Medical Institute, Department of Medicine, University of California at San Francisco, San Francisco, CA 94143-0724, USA
| | | | | |
Collapse
|
34
|
Suzuki-Yagawa Y, Guermah M, Roeder RG. The ts13 mutation in the TAF(II)250 subunit (CCG1) of TFIID directly affects transcription of D-type cyclin genes in cells arrested in G1 at the nonpermissive temperature. Mol Cell Biol 1997; 17:3284-94. [PMID: 9154827 PMCID: PMC232181 DOI: 10.1128/mcb.17.6.3284] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The general transcription initiation factor TFIID contains the TATA-binding protein (TBP) and TBP-associated factors (TAFs) implicated in the function of gene-specific activators. Previous studies have indicated that a hamster cell line (ts13) with a point mutation in the TAF(II)250/CCG1 (TAF(II)250) gene shows temperature-sensitive expression of a subset of genes and arrests in late G1 at 39.5 degrees C. Here, we report the identification of cell cycle-specific (G1-specific) genes that appear to be regulated directly through TAF(II)250 both in vivo and in vitro. Transcription rates of several cell cycle-regulatory genes were determined by run-on assays in nuclei from ts13 cells grown at permissive (33 degrees C) and nonpermissive (39.5 degrees C) temperatures. Temperature-dependent differences in transcription rates were observed for cyclin A, D1, and D3 genes. In transient-transfection assays, the human cyclin D1 promoter fused to a luciferase reporter showed a temperature-dependent reduction in activity in ts13 cells but not in parental BHK cells. In in vitro assays, upstream sequence-dependent transcription from the human cyclin D1 promoter was significantly reduced in ts13 nuclear extracts preincubated at 30 degrees C but not in similarly treated BHK nuclear extracts, and transcription in the ts13 extract was restored by addition of an affinity-purified human TFIID. Preincubation of the ts13 nuclear extracts did not affect the function of several GAL4-activation domain fusion proteins (GAL4-VP16, GAL4-p65, and GAL4-p53) on either the adenovirus major late or cyclin D1 core promoter bearing GAL4 sites, further indicating that the effect of the TAF(II)250 mutation is both core promoter and activator specific.
Collapse
Affiliation(s)
- Y Suzuki-Yagawa
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
35
|
Blair WS, Cullen BR. A yeast TATA-binding protein mutant that selectively enhances gene expression from weak RNA polymerase II promoters. Mol Cell Biol 1997; 17:2888-96. [PMID: 9111361 PMCID: PMC232141 DOI: 10.1128/mcb.17.5.2888] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We describe a unique gain-of-function mutant of the TATA-binding protein (TBP) subunit of Saccharomyces cerevisiae TFIID that, at least in part, renders transcriptional transactivators dispensable for efficient mRNA expression. The yTBPN69S mutant enhances transcription from weaker yeast promoter elements by up to 50-fold yet does not significantly increase gene expression directed by highly active promoters. Therefore, this TBP mutant and transcriptional transactivators appear to affect a common rate-limiting step in transcription initiation. Consistent with the hypothesis that this step is TFIID recruitment, tethering of TBP to a target promoter via a heterologous DNA binding domain, which is known to bypass the need for transcriptional transactivators, also nullifies the enhancing effect exerted by the N69S mutation. These data provide genetic support for the hypothesis that TFIID recruitment represents a rate-limiting step in the initiation of mRNA transcription that is specifically enhanced by transcriptional transactivators.
Collapse
Affiliation(s)
- W S Blair
- Department of Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
36
|
Paal K, Baeuerle PA, Schmitz ML. Basal transcription factors TBP and TFIIB and the viral coactivator E1A 13S bind with distinct affinities and kinetics to the transactivation domain of NF-kappaB p65. Nucleic Acids Res 1997; 25:1050-5. [PMID: 9023117 PMCID: PMC146537 DOI: 10.1093/nar/25.5.1050] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Transactivation domains (TADs) are able to contact several components of the basal transcription apparatus and co-activator molecules. In order to study these interactions in biophysical detail, binding of the well-characterized TAD from the human transcription factor NF-kappaB p65 (RelA) to the basal transcription factors TBP and TFIIB and the viral co-activator protein E1A 13S was chosen as a model system to investigate the kinetics and affinities of such protein-protein interactions by surface plasmon resonance analysis. The TAD of NF-kappaB p65 showed remarkably different affinities and kinetics in binding to the various proteins. The real-time kinetic measurements revealed an association rate constant (kass) of 2.3 x 10(6)/M/s for the interaction between the p65 TAD and TBP. The association rate constants of the p65 TAD were much weaker for TFIIB (6.8 x 10(4)/M/s) and for the E1A 13S protein (4.9 x 10(4)/M/s). The dissociation rate constants (kdiss) were determined to be 7.9 x 10(-4)/s for TBP, 1.6 x 10(-3)/s for TFIIB and 1.3 x 10(-3)/s for the E1A protein. Accordingly, the calculated dissociation constants (Kd) differed between 3.4 x 10(-10)M for the strongly binding TBP protein and 2.3 x 10(-8)M and 2.6 x 10(-8)M for the weaker binding TFIIB and E1A 13S proteins respectively. Non-linear analysis of the appropriate part of the sensorgrams revealed monophasic association and dissociation kinetics for binding between the p65 TAD and all three interaction partners. The remarkable differences in protein affinities add another aspect to a more detailed understanding of formation of the transcription preinitiation complex. The co-transfection of TBP and E1A 13S stimulated NF-kappaB p65-dependent gene expression, showing the biological significance of these interactions.
Collapse
Affiliation(s)
- K Paal
- Institute of Biochemistry and Molecular Biology, Albert-Ludwigs University, Hermann-Herder Strasse 7, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
37
|
Almlöf T, Gustafsson JA, Wright AP. Role of hydrophobic amino acid clusters in the transactivation activity of the human glucocorticoid receptor. Mol Cell Biol 1997; 17:934-45. [PMID: 9001247 PMCID: PMC231819 DOI: 10.1128/mcb.17.2.934] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have performed a mutagenesis analysis of the 58-amino-acid tau1-core peptide, which represents the core transactivation activity of the tau1 transactivation domain from the glucocorticoid receptor. Mutants with altered activity were identified by phenotypic screening in the yeast Saccharomyces cerevisiae. Most mutants with reduced activity had substitutions of hydrophobic amino acids. Most single-substitution mutants with reduced activity were localized near the N terminus of the tau1-core within a segment that has been shown previously to have a propensity for alpha-helix conformation, suggesting that this helical region is of predominant importance. The particular importance of hydrophobic residues within this region was confirmed by comparing the activities of alanine substitutions of the hydrophobic residues in this and two other helical regions. The hydrophobic residues were shown to be important for the transactivation activity of both the isolated tau1-core and the intact glucocorticoid receptor in mammalian cells. Rare mutations in helical regions I and II gave rise to increased transcriptional activation activity. These mutations increase the hydrophobicity of hydrophobic patches on each of these helices, suggesting a relationship between the hydrophobicity of the patches and transactivation activity. However, certain nonhydrophobic residues are also important for activity. Interestingly, helical region I partially matches a consensus motif found in the retinoic acid receptor, VP16, and several other activator proteins.
Collapse
Affiliation(s)
- T Almlöf
- Center for Biotechnology, Department of Biosciences, Karolinska Institute, Novum, Huddinge, Sweden.
| | | | | |
Collapse
|
38
|
Jackson BM, Drysdale CM, Natarajan K, Hinnebusch AG. Identification of seven hydrophobic clusters in GCN4 making redundant contributions to transcriptional activation. Mol Cell Biol 1996; 16:5557-71. [PMID: 8816468 PMCID: PMC231555 DOI: 10.1128/mcb.16.10.5557] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
GCN4 is a transcriptional activator in the bZIP family that regulates amino acid biosynthetic genes in the yeast Saccharomyces cerevisiae. The N-terminal 100 amino acids of GCN4 contains a potent activation function that confers high-level transcription in the absence of the centrally located acidic activation domain (CAAD) delineated in previous studies. To identify specific amino acids important for activation by the N-terminal domain, we mutagenized a GCN4 allele lacking the CAAD and screened alleles in vivo for reduced expression of the HIS3 gene. We found four pairs of closely spaced phenylalanines and a leucine residue distributed throughout the N-terminal 100 residues of GCN4 that are required for high-level activation in the absence of the CAAD. Trp, Leu, and Tyr were highly functional substitutions for the Phe residue at position 45. Combined with our previous findings, these results indicate that GCN4 contains seven clusters of aromatic or bulky hydrophobic residues which make important contributions to transcriptional activation at HIS3. None of the seven hydrophobic clusters is essential for activation by full-length GCN4, and the critical residues in two or three clusters must be mutated simultaneously to observe a substantial reduction in GCN4 function. Numerous combinations of four or five intact clusters conferred high-level transcription of HIS3. We propose that many of the hydrophobic clusters in GCN4 act independently of one another to provide redundant means of stimulating transcription and that the functional contributions of these different segments are cumulative at the HIS3 promoter. On the basis of the primacy of bulky hydrophobic residues throughout the activation domain, we suggest that GCN4 contains multiple sites that mediate hydrophobic contacts with one or more components of the transcription initiation machinery.
Collapse
Affiliation(s)
- B M Jackson
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
39
|
DeFalco J, Childs G. The embryonic transcription factor stage specific activator protein contains a potent bipartite activation domain that interacts with several RNA polymerase II basal transcription factors. Proc Natl Acad Sci U S A 1996; 93:5802-7. [PMID: 8650173 PMCID: PMC39142 DOI: 10.1073/pnas.93.12.5802] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Stage specific activator protein (SSAP) is a member of a newly discovered class of transcription factors that contain motifs more commonly found in RNA-binding proteins. Previously, we have shown that SSAP specifically binds to its recognition sequence in both the double strand and the single strand form and that this DNA-binding activity is localized to the N-terminal RNA recognition motif domain. Three copies of this recognition sequence constitute an enhancer element that is directly responsible for directing the transcriptional activation of the sea urchin late histone H1 gene at the midblastula stage of embryogenesis. Here we show that the remainder of the SSAP polypeptide constitutes an extremely potent bipartite transcription activation domain that can function in a variety of mammalian cell lines. This activity is as much as 3 to 5 times stronger than VP16 at activating transcription and requires a large stretch of amino acids that contain glutamine-glycine rich and serine-threonine-basic amino acid rich regions. We present evidence that SSAP's activation domain shares targets that are also necessary for activation by E1a and VP16. Finally, SSAP's activation domain is found to participate in specific interactions in vitro with the basal transcription factors TATA-binding protein, TFIIB, TFIIF74, and dTAF(II) 110.
Collapse
Affiliation(s)
- J DeFalco
- Department of Molecular Genetics, Albert Einstein College of Medicine, NY 10461, USA
| | | |
Collapse
|
40
|
Candau R, Moore PA, Wang L, Barlev N, Ying CY, Rosen CA, Berger SL. Identification of human proteins functionally conserved with the yeast putative adaptors ADA2 and GCN5. Mol Cell Biol 1996; 16:593-602. [PMID: 8552087 PMCID: PMC231038 DOI: 10.1128/mcb.16.2.593] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Transcriptional adaptor proteins are required for full function of higher eukaryotic acidic activators in the yeast Saccharomyces cerevisiae, suggesting that this pathway of activation is evolutionarily conserved. Consistent with this view, we have identified possible human homologs of yeast ADA2 (yADA2) and yeast GCN5 (yGCN5), components of a putative adaptor complex. While there is overall sequence similarity between the yeast and human proteins, perhaps more significant is conservation of key sequence features with other known adaptors. We show several functional similarities between the human and yeast adaptors. First, as shown for yADA2 and yGCN5, human ADA2 (hADA2) and human GCN5 (hGCN5) interacted in vivo in a yeast two-hybrid assay. Moreover, hGCN5 interacted with yADA2 in this assay, suggesting that the human proteins form similar complexes. Second, both yADA2 and hADA2 contain cryptic activation domains. Third, hGCN5 and yGCN5 had similar stabilizing effects on yADA2 in vivo. Furthermore, the region of yADA2 that interacted with yGCN5 mapped to the amino terminus of yADA2, which is highly conserved in hADA2. Most striking, is the behavior of the human proteins in human cells. First, GAL4-hADA2 activated transcription in HeLa cells, and second, either hADA2 or hGCN5 augmented GAL4-VP16 activation. These data indicated that the human proteins correspond to functional homologs of the yeast adaptors, suggesting that these cofactors play a key role in transcriptional activation.
Collapse
Affiliation(s)
- R Candau
- Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Trieschmann L, Postnikov YV, Rickers A, Bustin M. Modular structure of chromosomal proteins HMG-14 and HMG-17: definition of a transcriptional enhancement domain distinct from the nucleosomal binding domain. Mol Cell Biol 1995; 15:6663-9. [PMID: 8524231 PMCID: PMC230919 DOI: 10.1128/mcb.15.12.6663] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Chromosomal proteins HMG-14 and HMG-17 are the only known nuclear proteins which specifically bind to the nucleosome core particle and are implicated in the generation and/or maintenance of structural features specific to active chromatin. The two proteins facilitate polymerase II and III transcription from in vitro- and in vivo-assembled circular chromatin templates. Here we used deletion mutants and specific peptides to identify the transcriptional enhancement domain and delineate the nucleosomal binding domain of the HMG-14 and -17 proteins. Deletion of the 22 C-terminal amino acids of HMG-17 or 26 C-terminal amino acids of HMG-14 reduces significantly the ability of the proteins to enhance transcription from chromatin templates. In contrast, N-terminal truncation mutants had the same transcriptional enhancement activity as the full-length proteins. We conclude that the negatively charged C-terminal region of the proteins is required for transcriptional enhancement. Chromatin transcription enhancement assays, which involve binding competition between the full-length proteins and peptides derived from their nucleosomal binding regions, indicate that the minimal nucleosomal binding domain of human HMG-17 is 24 amino acids long and spans residues 17 to 40. The results suggest that HMG-14 and -17 proteins have a modular structure and contain distinct functional domains.
Collapse
Affiliation(s)
- L Trieschmann
- Laboratory of Molecular Carcinogenesis, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|