1
|
Holderfield M, Deuker MM, McCormick F, McMahon M. Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat Rev Cancer 2014; 14:455-67. [PMID: 24957944 PMCID: PMC4250230 DOI: 10.1038/nrc3760] [Citation(s) in RCA: 619] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The identification of mutationally activated BRAF in many cancers altered our conception of the part played by the RAF family of protein kinases in oncogenesis. In this Review, we describe the development of BRAF inhibitors and the results that have emerged from their analysis in both the laboratory and the clinic. We discuss the spectrum of RAF mutations in human cancer and the complex interplay between the tissue of origin and the response to RAF inhibition. Finally, we enumerate mechanisms of resistance to BRAF inhibition that have been characterized and postulate how strategies of RAF pathway inhibition may be extended in scope to benefit not only the thousands of patients who are diagnosed annually with BRAF-mutated metastatic melanoma but also the larger patient population with malignancies harbouring mutationally activated RAF genes that are ineffectively treated with the current generation of BRAF kinase inhibitors.
Collapse
Affiliation(s)
| | | | - Frank McCormick
- Corresponding Authors: Frank McCormick & Martin McMahon, Diller Family Cancer Research Bldg., 1450 Third Street, University of California, San Francisco, CA 94158, USA, &
| | - Martin McMahon
- Corresponding Authors: Frank McCormick & Martin McMahon, Diller Family Cancer Research Bldg., 1450 Third Street, University of California, San Francisco, CA 94158, USA, &
| |
Collapse
|
2
|
Affiliation(s)
- P Lenormand
- Centre de Biochimie-CNRS UMR 134, Université de Nice, Parc Valrose, 06108 Nice Cedex 2, France
| |
Collapse
|
3
|
Su W, Chen Q, Frohman MA. Targeting phospholipase D with small-molecule inhibitors as a potential therapeutic approach for cancer metastasis. Future Oncol 2010; 5:1477-86. [PMID: 19903073 DOI: 10.2217/fon.09.110] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phospholipase D (PLD)1 and PLD2, the classic mammalian members of the PLD superfamily, have been linked over the past three decades to immune cell function and to cell biological processes required by cancer cells for metastasis. However, owing to the lack of effective small-molecule inhibitors, it has not been possible to validate these roles for the PLDs and to explore the possible utility of acute and chronic PLD inhibition in vivo. The first such inhibitors have recently been described and demonstrated to block neutrophil chemotaxis and invasion by breast cancer cells in culture, increasing the prospects for a new class of therapeutics for autoimmune disorders and several types of metastatic cancer.
Collapse
Affiliation(s)
- Wenjuan Su
- Center for Developmental Genetics, Program in Molecular & Cellular Pharmacology and, Department of Pharmacology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | |
Collapse
|
4
|
Foster DA. Phosphatidic acid signaling to mTOR: signals for the survival of human cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1791:949-55. [PMID: 19264150 PMCID: PMC2759177 DOI: 10.1016/j.bbalip.2009.02.009] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 02/17/2009] [Accepted: 02/18/2009] [Indexed: 12/31/2022]
Abstract
During the past decade elevated phospholipase D (PLD) activity has been reported in virtually all cancers where it has been examined. PLD catalyzes the hydrolysis of phosphatidylcholine to generate the lipid second messenger phosphatidic acid (PA). While many targets of PA signaling have been identified, the most critical target of PA in cancer cells is likely to be mTOR - the mammalian target of rapamycin. mTOR has been widely implicated in signals that suppress apoptotic programs in cancer cells - frequently referred to as survival signals. mTOR exists as two multi-component complexes known as mTORC1 and mTORC2. Recent data has revealed that PA is required for the stability of both mTORC1 and mTORC2 complexes - and therefore also required for the kinase activity of both mTORC1 and mTORC2. PA interacts with mTOR in a manner that is competitive with rapamycin, and as a consequence, elevated PLD activity confers rapamycin resistance - a point that has been largely overlooked in clinical trials involving rapamycin-based strategies. The earliest genetic changes occurring in an emerging tumor are generally ones that suppress default apoptotic programs that likely represent the first line of defense of cancer. Targeting survival signals in human cancers represents a rational anti-cancer therapeutic strategy. Therefore, understanding the signals that regulate PA levels and how PA impacts upon mTOR could be important for developing strategies to de-repress the survival signals that suppress apoptosis. This review summarizes the role of PA in regulating the mTOR-mediated signals that promote cancer cell survival.
Collapse
Affiliation(s)
- David A Foster
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, USA.
| |
Collapse
|
5
|
Abstract
Recent research has focused on effects of the estrogen receptor acting at the level of the cell membrane in breast cancer. In this review we describe 17beta-estradiol (E2)-initiated membrane signaling pathways involving the activation of several kinases that contribute to the regulation of cell proliferation and prevention of apoptosis. Although classical concepts had assigned priority to the nuclear actions of estrogen receptor, recent studies document the additional importance of estrogen receptor residing in or near the plasma membrane. A small fraction of estrogen receptor is associated with the cell membrane and mediates the rapid effects of E2. Unlike classical growth factor receptors, such as insulin-like growth factor 1 receptor (IGF1R) and epidermal growth factor receptor (EGFR), estrogen receptor has no transmembrane and kinase domains and is known to initiate E2 rapid signals by forming a protein complex with many signaling molecules. The formation of the protein complex is a critical step, leading to the activation of the MAPK1/3 (also known as MAP kinase) and AKT1 (also known as Akt) pathways. A full understanding of the mechanisms underlying these relationships, with the ultimate aim of abrogating specific steps, should lead to more-targeted strategies for treatment of hormone dependent-breast cancer.
Collapse
Affiliation(s)
- Robert X-D Song
- Department of Internal Medicine, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA.
| | | |
Collapse
|
6
|
Cagnol S, Van Obberghen-Schilling E, Chambard JC. Prolonged activation of ERK1,2 induces FADD-independent caspase 8 activation and cell death. Apoptosis 2006; 11:337-46. [PMID: 16538383 DOI: 10.1007/s10495-006-4065-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prolonged ERK/MAPK activation has been implicated in neuronal cell death in vitro and in vivo. We found that HEK293 cells, recently reported to express neuronal markers, are exquisitely sensitive to long term ERK stimulation. Activation of an inducible form of Raf-1 (Raf-1:ER) in HEK293 cells induced massive apoptosis characterized by DNA degradation, loss of plasma membrane integrity and PARP cleavage. Cell death required MEK activity and protein synthesis and occurred via the death receptor pathway independently of the mitochondrial pathway. Accordingly, prolonged ERK stimulation activated caspase 8 and strongly potentiated Fas signaling. The death receptor adaptator FADD was found to be rapidly induced upon ERK activation. However using RNA interference and ectopic expression, we demonstrated that neither FADD nor Fas were necessary for caspase 8 activation and cell death. These findings reveal that prolonged ERK/MAPK stimulation results in caspase 8 activation and cell death.
Collapse
Affiliation(s)
- S Cagnol
- Institute of Signaling, Developmental Biology and Cancer Research, CNRS UMR6543, Université de Nice Sophia-Antipolis, Centre Antoine Lacassagne, 33 Ave Valombrose, 06189, Nice, France
| | | | | |
Collapse
|
7
|
Song RXD, Zhang Z, Santen RJ. Estrogen rapid action via protein complex formation involving ERalpha and Src. Trends Endocrinol Metab 2005; 16:347-53. [PMID: 16126407 DOI: 10.1016/j.tem.2005.06.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 04/27/2005] [Accepted: 06/27/2005] [Indexed: 10/25/2022]
Abstract
This review provides insight into biomolecular knowledge regarding the non-genomic actions of estrogen in hormone-dependent breast cancer, particularly its role in the rapid stimulation of pathways that transmit signals to increase cell division or decrease programmed cell death. Until recently, attention to estrogenic effects focused primarily on events in the nucleus, where most estrogen receptors (ERalpha and beta) reside. However, a fraction of ERalpha associated with the cell membrane also participates in rapid estrogen-induced cell membrane-mediated events via formation of a protein complex with many signaling molecules, leading to activation of the mitogen-activated protein kinase and Akt signaling pathways. Understanding the mechanisms underlying these relationships, with the aim of abrogating specific steps, should lead to more targeted strategies to treat hormone-dependent breast cancer.
Collapse
Affiliation(s)
- Robert X-D Song
- Department of Internal Medicine, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA.
| | | | | |
Collapse
|
8
|
Kataoka T, Watanabe SI, Mori E, Kadomoto R, Tanimura S, Kohno M. Synthesis and structure–activity relationships of thioflavone derivatives as specific inhibitors of the ERK-MAP kinase signaling pathway. Bioorg Med Chem 2004; 12:2397-407. [PMID: 15080936 DOI: 10.1016/j.bmc.2004.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Revised: 02/02/2004] [Accepted: 02/02/2004] [Indexed: 11/30/2022]
Abstract
Condensation of nitrobenzaldehydes 3 and alpha-[o-(p-methoxybenzylthio)benzoyl] sulfoxide 4 gave alpha-sulfinyl enones 5. Treatment of 5 with formic acid caused cyclization followed by debenzylation to afford 3-(methylsulfinyl)thioflavanones 6. Double-bond formation with elimination of methanesulfenic acid was performed by refluxing 6 in benzene, and, finally, the nitro group of 2-phenyl-4H-1-benzothiopyran-4-one (thioflavones) 7 was reduced with tin in tetrafluoroboric acid. Various 2'-aminothioflavones 8 thus prepared were evaluated for their inhibitory effects on the ERK-MAP kinase pathway. In a cell-based assay, 2-(2'-amino-3'-methoxyphenyl)-4H-1-benzothiopyran-4-one (8b) showed a more potent inhibitory effect than the corresponding oxygen compound (PD98059, 1) on the Raf-induced activation of the ERK-MAP kinase pathway as well as cell proliferation. Furthermore, compound 8b selectively and potently inhibited the proliferation of tumor cells in which the ERK-MAP kinase pathway is constitutively activated.
Collapse
Affiliation(s)
- Tadashi Kataoka
- Laboratory of Pharmaceutical Chemistry, Gifu Pharmaceutical University, 6-1, Mitahora-higashi 5-chome, Gifu 502-8585, Japan.
| | | | | | | | | | | |
Collapse
|
9
|
Brummer T, Naegele H, Reth M, Misawa Y. Identification of novel ERK-mediated feedback phosphorylation sites at the C-terminus of B-Raf. Oncogene 2004; 22:8823-34. [PMID: 14654779 DOI: 10.1038/sj.onc.1207185] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The extracellular signal-regulated kinase (ERK) pathway plays an important role during the development and activation of B lymphocytes. We have recently shown that B-Raf is a dominant ERK activator in B-cell antigen receptor signalling. We now show that B-Raf is hyperphosphorylated upon BCR engagement and undergoes a prominent electrophoretic mobility shift. This shift correlates with ERK activation and is prevented by the MEK inhibitor U0126. Syk-deficient DT40 B cells display neither dual ERK phosphorylation nor a mobility shift of B-Raf upon BCR engagement. The inducible expression of a constitutively active B-Raf in this mutant line restores dual ERK phosphorylation and the mobility shift of endogenous B-Raf, indicating that these two events are connected to each other. By site-directed mutagenesis studies, we demonstrate that the shift is due to an ERK2-mediated feedback phosphorylation of serine/threonine residues within an evolutionary conserved SPKTP motif at the C-terminus of B-Raf. Replacement of these residues by negatively charged amino acids causes a constitutive mobility shift and a reduction of PC12 cell differentiation. We discuss a model in which ERK-mediated phosphorylation of the SPKTP motif is involved in negative feedback regulation of B-Raf.
Collapse
Affiliation(s)
- Tilman Brummer
- Department of Molecular Immunology, Biology III, University of Freiburg and Max-Planck Institute for Immunobiology, Stuebeweg 51, Freiburg 79108, Germany
| | | | | | | |
Collapse
|
10
|
Pursiheimo JP, Saari J, Jalkanen M, Salmivirta M. Cooperation of protein kinase A and Ras/ERK signaling pathways is required for AP-1-mediated activation of fibroblast growth factor-inducible response element (FiRE). J Biol Chem 2002; 277:25344-55. [PMID: 12004054 DOI: 10.1074/jbc.m112381200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies suggest a crucial role for protein kinase A (PKA) in the regulation of growth factor signaling. However, the effect of PKA on the transcription of growth factor-responsive genes has drawn far less attention. Here we have investigated the signaling mechanisms involved in the activation of an activator protein-1 (AP-1)-driven, growth factor-specific enhancer element, fibroblast growth factor-inducible response element (FiRE). The activation was found to be mediated by three phorbol 12-O-tetradecanoate-13-acetate-response element-related DNA elements of FiRE, including motif 4 and two distinct elements of motif 5 (referred to as M5-1 and M5-2). All three elements were required for full FiRE activity. Stimulation of cells with fibroblast growth factor-2 (FGF-2) induced the binding of AP-1 to motif 4 and M5-2, whereas M5-1 did not show detectable binding. The FGF-2-induced FiRE activation appeared to require cooperational function of the Ras/ERK and PKA pathways. Inhibition of either of the pathways abolished the binding of AP-1 complexes to motif 4 and motif 5 and the subsequent FiRE activation. By contrast, costimulation of cells with FGF-2 and the PKA activator 8-bromo-cyclic AMP increased the binding of AP-1 to FiRE and potentiated the level of transcriptional activity. The cooperational function of these two pathways was confirmed by experiments with cell lines stably expressing 4-hydroxytamoxifen-inducible oncogenic Raf-1 (DeltaRaf-1:ER[DD]). Noticeably, the induction systems showed variations with respect to regulation of AP-1-driven activation of FiRE. These differences were likely to originate from the ability of these two systems to induce the differential activation pattern of the Ras/ERK pathway.
Collapse
|
11
|
Hughes PE, Oertli B, Hansen M, Chou FL, Willumsen BM, Ginsberg MH. Suppression of integrin activation by activated Ras or Raf does not correlate with bulk activation of ERK MAP kinase. Mol Biol Cell 2002; 13:2256-65. [PMID: 12134066 PMCID: PMC117310 DOI: 10.1091/mbc.01-10-0480] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The rapid modulation of ligand-binding affinity ("activation") is a central property of the integrin family of cell adhesion receptors. The Ras family of small GTP-binding proteins and their downstream effectors are key players in regulating integrin activation. H-Ras can suppress integrin activation in fibroblasts via its downstream effector kinase, Raf-1. In contrast, to H-Ras, a closely related small GTP-binding protein R-Ras has the opposite activity, and promotes integrin activation. To gain insight into the regulation of integrin activation by Ras GTPases, we created a series of H-Ras/R-Ras chimeras. We found that a 35-amino acid stretch of H-Ras was required for full suppressive activity. Furthermore, the suppressive chimeras were weak activators of the ERK1/2 MAP kinase pathway, suggesting that the suppression of integrin activation may be independent of the activation of the bulk of ERK MAP kinase. Additional data demonstrating that the ability of H-Ras or Raf-1 to suppress integrin activation was unaffected by inhibition of bulk ERK1/2 MAP kinase activation supported this hypothesis. Thus, the suppression of integrin activation is a Raf kinase induced regulatory event that can be mediated independently of bulk activation of the ERK MAP-kinase pathway.
Collapse
Affiliation(s)
- Paul E Hughes
- The Division of Vascular Biology, Department of Cell Biology. The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
12
|
Pursiheimo JP, Kieksi A, Jalkanen M, Salmivirta M. Protein kinase A balances the growth factor-induced Ras/ERK signaling. FEBS Lett 2002; 521:157-64. [PMID: 12067709 DOI: 10.1016/s0014-5793(02)02864-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Protein kinase A (PKA) has been proposed to regulate the signal transduction through the Ras/extracellular-regulated kinase (ERK) pathway. Here we demonstrate that when the PKA activity was inhibited prior to growth factor stimulus the signal flow through the Ras/ERK pathway was significantly increased. Furthermore, the data indicated that this PKA-mediated regulation was simultaneously targeted to the upstream kinase Raf-1 and to the ERK-specific phosphatase mitogen-activated protein kinase phosphatase-1 (MKP-1). Moreover, our data suggested that the level of PKA activity determined the transcription rate of mkp-1 gene, whereas the Ras/ERK signal was required to protect the MKP-1 protein against degradation. These results point to a tight regulatory relationship between PKA and the growth factor signaling, and further suggest an important role for basal PKA activity in such regulation. We propose that PKA adjusts the activity of the Ras/ERK pathway and maintains it within a physiologically appropriate level.
Collapse
Affiliation(s)
- Juha-Pekka Pursiheimo
- Turku Centre for Biotechnology, University of Turku, and Abo Akademi University, Tykistökatu 6B, BioCity, 20520 Turku, Finland.
| | | | | | | |
Collapse
|
13
|
Milanini-Mongiat J, Pouysségur J, Pagès G. Identification of two Sp1 phosphorylation sites for p42/p44 mitogen-activated protein kinases: their implication in vascular endothelial growth factor gene transcription. J Biol Chem 2002; 277:20631-9. [PMID: 11904305 DOI: 10.1074/jbc.m201753200] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sp1 regulates activation of many genes implicated in tumor growth and cell cycle progression. We have previously demonstrated its implication in the up-regulation of vascular endothelial growth factor (VEGF) gene transcription following growth factor stimulation of quiescent cells, a situation where p42/p44 mitogen-activate protein kinase (MAPK) activity is dramatically increased. Here we show that p42/p44 MAPK directly phosphorylates Sp1 on threonines 453 and 739 both in vitro and in vivo. Mutation of these sites to alanines decreases by half the MAPK-dependent transcriptional activity of Sp1, in the context of the VEGF promoter, in SL2 Drosophila cells devoid of the endogenous Sp1 protein. Moreover, inducible overexpression of the (T453A,T739A) Sp1 double mutant compromises MAPK-driven VEGF mRNA transcription in fibroblasts. These results highlight Sp1 as a key molecular link between elevated activation of the Ras >> p42/p44MAPK signaling pathway and increased VEGF expression, two major steps deregulated in tumor cells.
Collapse
Affiliation(s)
- Julie Milanini-Mongiat
- Institute of Signalling, Developmental Biology and Cancer Research, Centre Antoine Lacassagne, 33 avenue de Valombrose, 06189 Nice cedex 2, France
| | | | | |
Collapse
|
14
|
Joseph T, Bryant A, Frankel P, Wooden R, Kerkhoff E, Rapp UR, Foster DA. Phospholipase D overcomes cell cycle arrest induced by high-intensity Raf signaling. Oncogene 2002; 21:3651-8. [PMID: 12032867 DOI: 10.1038/sj.onc.1205380] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2001] [Revised: 12/04/2001] [Accepted: 02/07/2002] [Indexed: 11/09/2022]
Abstract
Low level expression of an active Raf kinase results in a transformed phenotype; however, high intensity Raf signals block cell cycle progression. Phospholipase D (PLD) has been implicated in regulating cell cycle progression and PLD activity is elevated in Raf transformed cells. We report here that high intensity Raf signals reduce PLD activity and that elevated expression of either PLD1 or PLD2 prevents cell cycle arrest induced by high intensity Raf signals. Overexpression of either PLD1 or PLD2 also reversed increases in p21(Cip1) and protein kinase C delta (PKC delta) cleavage seen with high intensity Raf signals. These data indicate that PLD signaling provides a novel survival signal that overcomes cell cycle arrest induced by high intensity Raf signaling.
Collapse
Affiliation(s)
- Troy Joseph
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
A cell is a potentially dangerous thing. In unicellular organisms, cells divide and multiply in a manner that is chiefly determined by the availability of nutritional substrates. In a multicellular organism, each cell has a distinct growth potential that is designed to subsume a role in the function of the whole body. Departure from this path to one of uncontrolled cellular proliferation leads to cancer. For this reason, evolution has endowed cells with an elaborate set of systems that cause errant cells to self-destruct. This process of cell suicide is known as apoptosis or programmed cell death and it plays a crucial role in the growth of both normal and malignant cells. In this review, we describe the mechanisms whereby programmed cell death is induced and executed. In particular, we concentrate on how anti-apoptotic signals generated by cytokines promote cell survival and how these signal transduction pathways may be involved in the pathogenesis of neoplasia. Understanding how these processes contribute to tumorigenesis may suggest new therapeutic options.
Collapse
Affiliation(s)
- M K White
- Department of Pathology, Anatomy and Cell Biology, The Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | |
Collapse
|
16
|
McMahon M. Steroid receptor fusion proteins for conditional activation of Raf-MEK-ERK signaling pathway. Methods Enzymol 2001; 332:401-17. [PMID: 11305114 DOI: 10.1016/s0076-6879(01)32218-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- M McMahon
- Cancer Research Institute and Department of Cellular and Molecular Pharmacology, University of California San Francisco/Mt. Zion Comprehensive Cancer Center, San Francisco, California 94115, USA
| |
Collapse
|
17
|
Berra E, Richard DE, Gothié E, Pouysségur J. HIF-1-dependent transcriptional activity is required for oxygen-mediated HIF-1alpha degradation. FEBS Lett 2001; 491:85-90. [PMID: 11226425 DOI: 10.1016/s0014-5793(01)02159-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hypoxia-inducible factor-1alpha (HIF-1alpha) plays a central role in oxygen homeostasis. In normoxia, HIF-1alpha is a short lived protein, whereas hypoxia rapidly increases HIF-1alpha protein levels by relaxing its ubiquitin-proteasome-dependent degradation. In this study, we show that the p42/p44 MAP kinase cascade, known to phosphorylate HIF-1alpha, does not modulate the degradation/stabilization profile of HIF-1alpha. However, we present evidence that the rate of HIF-1alpha degradation depends on the duration of hypoxic stress. We demonstrate that degradation of HIF-1alpha is suppressed by: (i) inhibiting general transcription with actinomycin D or (ii) specifically blocking HIF-1-dependent transcriptional activity. In keeping with these findings, we postulate that HIF-1alpha is targetted to the proteasome via a HIF-1alpha proteasome targetting factor (HPTF) which expression is directly under the control of HIF-1-mediated transcriptional activity. Although HPTF is not yet molecularly identified, it is clearly distinct from the von Hippel-Lindau protein (pVHL).
Collapse
Affiliation(s)
- E Berra
- Institute of Signaling, Developmental Biology and Cancer Research, CNRS-UMR 6543, Centre Antoine Lacassagne, 33 Avenue Valombrose, 06189 Nice, France.
| | | | | | | |
Collapse
|
18
|
Berra E, Milanini J, Richard DE, Le Gall M, Viñals F, Gothié E, Roux D, Pagès G, Pouysségur J. Signaling angiogenesis via p42/p44 MAP kinase and hypoxia. Biochem Pharmacol 2000; 60:1171-8. [PMID: 11007955 DOI: 10.1016/s0006-2952(00)00423-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Angiogenesis is associated with a number of pathological situations. In this study, we have focused our attention on the role of p42/p44 MAP (mitogen-activated protein) kinases and hypoxia in the control of angiogenesis. We demonstrate that p42/p44 MAP kinases play a pivotal role in angiogenesis by exerting a determinant action at three levels: i) persistent activation of p42/p44 MAP kinases abrogates apoptosis; ii) p42/p44 MAP kinase activity is critical for controlling proliferation and growth arrest of confluent endothelial cells; and iii) p42/p44 MAP kinases promote VEGF (vascular endothelial growth factor) expression by activating its transcription via recruitment of the AP-2/Sp1 (activator protein-2) complex on the proximal region (-88/-66) of the VEGF promoter and by direct phosphorylation of hypoxia-inducible factor 1 alpha (HIF-1 alpha). HIF-1 alpha plays a crucial role in the control of HIF-1 activity, which mediates hypoxia-induced VEGF expression. We show that oxygen-regulated HIF-1 alpha protein levels are not affected by intracellular localization (nucleus versus cytoplasm). Finally, we propose a model which suggests an autoregulatory feedback mechanism controlling HIF-1 alpha and therefore HIF-1-dependent gene expression.
Collapse
Affiliation(s)
- E Berra
- Institute of Signaling, Developmental Biology, and Cancer Research, CNRS UMR 6543, Centre Antoine Lacassagne, 06189 Nice, France
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Pagès G, Milanini J, Richard DE, Berra E, Gothié E, Viñals F, Pouysségur J. Signaling angiogenesis via p42/p44 MAP kinase cascade. Ann N Y Acad Sci 2000; 902:187-200. [PMID: 10865838 DOI: 10.1111/j.1749-6632.2000.tb06313.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Vascular endothelial growth factor (VEGF), a potent agonist secreted by virtually all cells, controls migration and division of vascular endothelial cells. Disruption of one VEGF allele in mice has revealed a dramatic lethal effect in early embryogenesis, suggesting a key role in vasculogenesis. We analyzed the regulation of VEGF mRNA in normal and transformed CCL39 fibroblasts and then dissected the VEGF promoter to identify the signaling pathway(s) controlling the activation of this promoter in response to growth factors, oncogenes, and hypoxic stress. We demonstrated that the p42/p44 MAP kinase signaling cascade controls VEGF expression at least at two levels. In normoxic conditions, MAPKs activate the VEGF promoter at the proximal (-88/-66) region where Sp-1/AP-2 factors bind. Activation of p42/p44 MAPKs is sufficient to turn on VEGF mRNA. At low O2 tension, hypoxia inducible factor-1 alpha (HIF-1 alpha), a limiting factor rapidly stabilized and phosphorylated, plays a key role in the expression of several genes including VEGF. We demonstrated that p42/p44MAPKs stoichiometrically phosphorylate HIF-1 alpha in vitro and that HIF-1-dependent VEGF gene expression is strongly enhanced by the exclusive activation of p42/p44MAPKs. Finally, we demonstrated that the regulation of p42/p44MAPK activity is critical for controlling proliferation and growth arrest of vascular endothelial cells at confluency. These results point to at least three major targets of angiogenesis where p42/p44 MAP kinases exert a determinant action.
Collapse
Affiliation(s)
- G Pagès
- Centre de Biochimie, CNRS-UMR 6543, Université de Nice, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The ordered execution of the two main events of cellular reproduction, duplication of the genome and cell division, characterize progression through the cell cycle. Cultured cells can be switched between cycling and non-cycling states by alteration of extracellular conditions and the notion that a critical cellular control mechanism presides on this decision, whose temporal location is known as the restriction point, has become the focus for the study of how extracellular mitogenic signalling impinges upon the cell cycle to influence proliferation. This review attempts to cover the disparate pathways of Ras-mediated mitogenic signal transduction that impact upon restriction point control.
Collapse
Affiliation(s)
- M E Ewen
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
21
|
Richard DE, Berra E, Gothié E, Roux D, Pouysségur J. p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1alpha (HIF-1alpha) and enhance the transcriptional activity of HIF-1. J Biol Chem 1999; 274:32631-7. [PMID: 10551817 DOI: 10.1074/jbc.274.46.32631] [Citation(s) in RCA: 625] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) controls the expression of a number of genes such as vascular endothelial growth factor and erythropoietin in low oxygen conditions. However, the molecular mechanisms that underlie the activation of the limiting subunit, HIF-1alpha, are still poorly resolved. Results showing that endogenous HIF-1alpha migrated 12 kDa higher than in vitro translated protein led us to evaluate the possible role of phosphorylation on this phenomenon. We report here that HIF-1alpha is strongly phosphorylated in vivo and that phosphorylation is responsible for the marked differences in the migration pattern of HIF-1alpha. In vitro, HIF-1alpha is phosphorylated by p42 and p44 mitogen-activated protein kinases (MAPKs) and not by p38 MAPK or c-Jun N-terminal kinase. Interestingly, p42/p44 MAPK stoichiometrically phosphorylate HIF-1alpha in vitro, as judged by a complete upper shift of HIF-1alpha. More importantly, we demonstrate that activation of the p42/p44 MAPK pathway in quiescent cells induced the phosphorylation and shift of HIF-1alpha, which was abrogated in presence of the MEK inhibitor, PD 98059. Finally, we found that in a vascular endothelial growth factor promoter mutated at sites previously shown to be MAPK-sensitive (SP1/AP2-88-66 site), p42/p44 MAPK activation is sufficient to promote the transcriptional activity of HIF-1. This interaction between HIF-1alpha and p42/p44 MAPK suggests a cooperation between hypoxic and growth factor signals that ultimately leads to the increase in HIF-1-mediated gene expression.
Collapse
Affiliation(s)
- D E Richard
- Institute of Signaling, Developmental Biology and Cancer Research, UMR CNRS 6543, Centre Antoine Lacassagne, 33 Avenue Valombrose, 06189 Nice, France.
| | | | | | | | | |
Collapse
|
22
|
Norris JL, Baldwin AS. Oncogenic Ras enhances NF-kappaB transcriptional activity through Raf-dependent and Raf-independent mitogen-activated protein kinase signaling pathways. J Biol Chem 1999; 274:13841-6. [PMID: 10318790 DOI: 10.1074/jbc.274.20.13841] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumors frequently contain mutations in ras genes, resulting in constitutive activation of Ras-activated signaling pathways. The ultimate targets of these signal transduction cascades are transcription factors required for cellular proliferation. Understanding how constitutive activation of Ras contributes to tumorigenesis requires an understanding of both the signaling pathways that Ras activates and how these pathways in turn regulate gene expression. Gene expression from kappaB sites is enhanced in cells transformed with activated Ras and NF-kappaB activity is required for oncogenic Ras to transform NIH-3T3 and Rat-1 fibroblasts. Both dominant negative and constitutively active components of signaling pathways have been tested for their ability to regulate NF-kappaB. These experiments show that Ras utilizes Raf-dependent and Raf-independent pathways to activate NF-kappaB transcriptional activity, both of which require the stress-activated kinase p38 or a related kinase. In the case of Raf, activation of NF-kappaB by an autocrine factor stimulates kappaB-dependent transcriptional activity.
Collapse
Affiliation(s)
- J L Norris
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
23
|
Zentner MD, Lin HH, Wen X, Kim KJ, Ann DK. The amiloride-sensitive epithelial sodium channel alpha-subunit is transcriptionally down-regulated in rat parotid cells by the extracellular signal-regulated protein kinase pathway. J Biol Chem 1998; 273:30770-6. [PMID: 9804854 DOI: 10.1074/jbc.273.46.30770] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that an inducible Raf-1 kinase protein, DeltaRaf-1:ER, activates the mitogen-activated protein kinase/extracellular signal-regulated protein kinase (ERK)-signaling pathway, which is required for the transformation of the rat salivary epithelial cell line, Pa-4. Differential display polymerase chain reaction was employed to search for mRNAs repressed by DeltaRaf-1:ER activation. Through this approach, the gene encoding the alpha-subunit of the amiloride-sensitive epithelial sodium channel (alpha-ENaC) was identified as a target of activated Raf-1 kinases. alpha-ENaC down-regulation could also be seen in cells treated with 12-O-tetradecanoyl-1-phorbol-13-acetate (TPA), indicating that the repression of steady-state alpha-ENaC mRNA level was dependent upon the activity of protein kinase C, the target of TPA, as well. Pretreatment of cells with a specific inhibitor of the ERK kinase pathway, PD 98059, markedly abolished the down-regulation of alpha-ENaC expression, consistent with the hypothesis that the ERK kinase-signaling pathway is involved in TPA-mediated repression. Moreover, through the use of transient transfection assays with alpha-ENaC-reporter and activated Raf expression construct(s), we provide the first evidence that activation of the ERK pathway down-regulates alpha-ENaC expression at the transcriptional level. Elucidating the molecular programming that modulates the expression of the alpha-subunit may provide new insights into the modulation of sodium reabsorption across epithelia.
Collapse
Affiliation(s)
- M D Zentner
- Department of Molecular Pharmacology and Toxicology, Los Angeles, California 90033, USA
| | | | | | | | | |
Collapse
|
24
|
Lenormand P, Brondello JM, Brunet A, Pouysségur J. Growth factor-induced p42/p44 MAPK nuclear translocation and retention requires both MAPK activation and neosynthesis of nuclear anchoring proteins. J Cell Biol 1998; 142:625-33. [PMID: 9700154 PMCID: PMC2148158 DOI: 10.1083/jcb.142.3.625] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mitogen-activated protein kinases (p42/p44 MAPK, also called Erk2 and Erk1) are key mediators of signal transduction from the cell surface to the nucleus. We have previously shown that the activation of p42/p44 MAPK required for transduction of mitogenic signaling is associated with a rapid nuclear translocation of these kinases. However, the means by which p42 and p44 MAPK translocate into the nucleus after cytoplasmic activation is still not understood and cannot simply be deduced from their protein sequences. In this study, we have demonstrated that activation of the p42/ p44 MAPK pathway was necessary and sufficient for triggering nuclear translocation of p42 and p44 MAPK. First, addition of the MEK inhibitor PD 98059, which blocks activation of the p42/p44 MAPK pathway, impedes the nuclear accumulation, whereas direct activation of the p42/p44 MAPK pathway by the chimera DeltaRaf-1:ER is sufficient to promote nuclear accumulation of p42/p44 MAPK. In addition, we have shown that this nuclear accumulation of p42/p44 MAPK required the neosynthesis of short-lived proteins. Indeed, inhibitors of protein synthesis abrogate nuclear accumulation in response to serum and accelerate p42/p44 MAPK nuclear efflux under conditions of persistent p42/p44 MAPK activation. In contrast, inhibition of targeted proteolysis by the proteasome synergistically potentiated p42/p44 MAPK nuclear localization by nonmitogenic agonists and markedly prolonged nuclear localization of p42/p44 MAPK after mitogenic stimulation. We therefore conclude that the MAPK nuclear translocation requires both activation of the p42/p44 MAPK module and neosynthesis of short-lived proteins that we postulate to be nuclear anchors.
Collapse
Affiliation(s)
- P Lenormand
- Centre de Biochimie-Centre National de la Recherche Scientifique (CNRS) UMR 6543, Université de Nice, 06108 Nice, France.
| | | | | | | |
Collapse
|
25
|
Lovrić J, Dammeier S, Kieser A, Mischak H, Kolch W. Activated Raf Induces the Hyperphosphorylation of Stathmin and the Reorganization of the Microtubule Network. J Biol Chem 1998. [DOI: 10.1016/s0021-9258(18)48797-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
26
|
Milanini J, Viñals F, Pouysségur J, Pagès G. p42/p44 MAP kinase module plays a key role in the transcriptional regulation of the vascular endothelial growth factor gene in fibroblasts. J Biol Chem 1998; 273:18165-72. [PMID: 9660776 DOI: 10.1074/jbc.273.29.18165] [Citation(s) in RCA: 228] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vascular Endothelial Growth Factor (VEGF) is a potent mitogen for vascular endothelial cells that has been implicated in tumor neovascularization. We show that, in hamster fibroblasts (CCL39 cells), VEGF mRNAs are expressed at low levels in serum-deprived or exponentially growing cells, whereas it is rapidly induced after stimulation of quiescent cells with serum. CCL39 derivatives, transformed with Polyoma virus or with active members of the p42/p44 mitogen-activated protein (MAP) kinase pathway, Gly/Val point mutant of Ras at position 12 (Ras-Val12), MKK1 in which Ser218 and Ser222 were mutated to Asp (MKK1-SS/DD)), express very high levels of VEGF mRNA. To analyze the contribution of the p42/p44MAP kinase in this induction, we used the CCL39-derived cell line (Raf-1:ER) expressing an estradiol-activable Raf-1. We show a time and an estradiol dose-dependent up-regulation of VEGF mRNA clearly detectable after 2 h of stimulation. The induction of VEGF mRNA in response to conditioned activation of Raf-1 is reverted by an inhibitor of MKK1, PD 098059, highlighting a specific role for the p42/p44 MAP kinase pathway in VEGF expression. Interestingly, hypoxia has an additive effect on VEGF induction in CCL39 cells stimulated by serum or in Raf-1:ER cells stimulated by estradiol. In contrast to VEGF, the isoforms VEGF-B and VEGF-C are poorly regulated by growth and oncogenic factors. We have identified a GC-rich region of the VEGF promoter between -88 and -66 base pairs which contains all the elements responsible of its up-regulation by constitutive active Ras or MKK1-SS/DD. By mutation of the putative binding sites and electrophoretic mobility supershift experiments, we showed that the GC-rich region constitutively binds Sp1 and AP-2 transcription factors. Furthermore, following activation of the p42/p44 MAP kinase module, the binding of Sp1 and AP-2 is increased in the complexes formed in this region of the promoter. Altogether, these data suggest that hypoxia and p42/p44 MAP kinase independently play a key role in the regulation of the VEGF expression.
Collapse
Affiliation(s)
- J Milanini
- Centre de Biochimie, CNRS-UMR 6543, Université de Nice, Parc Valrose, 06108 Nice, France
| | | | | | | |
Collapse
|
27
|
Greulich H, Erikson RL. An analysis of Mek1 signaling in cell proliferation and transformation. J Biol Chem 1998; 273:13280-8. [PMID: 9582373 DOI: 10.1074/jbc.273.21.13280] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Mek1 dual specificity protein kinase phosphorylates and activates the mitogen-activated protein kinases Erk1 and Erk2 in response to mitogenic stimulation. The molecular events downstream of Mek and Erk necessary to promote cell cycle entry are largely undefined. In order to study signals emanating from Mek independent of upstream proteins capable of activating multiple signaling pathways, we fused the hormone-binding domain of the estrogen receptor (ER) to the C terminus of constitutively activated Mek1 phosphorylation site mutants. Although 4-OH-tamoxifen stimulation of NIH-3T3 cells expressing constitutively activated Mek-ER resulted in only a small increase in specific activity of the fusion protein, a 5-10 fold increase in total cellular Mek activity was observed over a period of 1-2 days due to an accumulation of fusion protein. Induction of constitutively activated Mek-ER in NIH-3T3 cells resulted in accelerated S phase entry, proliferation in low serum, morphological transformation, and anchorage independent growth. Endogenous Erk1 and Erk2 were phosphorylated with kinetics similar to the elevation of Mek-ER activity. However, elevated Mek-ER activity attenuated subsequent stimulation of Erk1 and Erk2 by serum. 4-OH-tamoxifen stimulation of Mek-ER-expressing fibroblasts also resulted in up-regulation of cyclin D1 expression and down-regulation of p27(Kip1) expression, establishing a direct link between Mek1 and the cell cycle machinery.
Collapse
Affiliation(s)
- H Greulich
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
28
|
Gopalbhai K, Meloche S. Repression of mitogen-activated protein kinases ERK1/ERK2 activity by a protein tyrosine phosphatase in rat fibroblasts transformed by upstream oncoproteins. J Cell Physiol 1998; 174:35-47. [PMID: 9397154 DOI: 10.1002/(sici)1097-4652(199801)174:1<35::aid-jcp5>3.0.co;2-h] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The observation that mitogen-activated protein (MAP) kinases ERK1 and ERK2 are constitutively activated in a number of oncogene-transformed cell lines has led to the hypothesis that prolonged activation of these enzymes is required for the transformation process. To investigate this question, we have examined the regulation of the ERK pathway in Rat1 fibroblasts transformed with activated c-Raf-1 (Raf22W), v-Ha-Ras, and v-Src. Expression of these oncoproteins had no effect on the enzymatic activity of ERK1 and ERK2 in either serum-starved or exponentially growing cells. Moreover, the stimulatory effect of serum on ERK1/ERK2 activity was substantially reduced or abrogated in these cells; this impairment was associated with a strong attenuation of c-fos gene induction. In contrast, expression of Raf22w, v-Ha-Ras, or v-Src resulted in the constitutive activation of the upstream kinases MEK1 and MEK2. Treatment of the cells with vanadate completely restored the activation of ERK1/ERK2 in oncogene-transformed cells, suggesting the involvement of a vanadate-sensitive tyrosine phosphatase. Northern blot analysis of VH1-like dual-specificity MAP kinase phosphatases did not reveal any significant difference in the mRNA expression pattern of these genes between parental and transformed Rat1 cells. Phosphoamino acid analysis indicated that ERK1 is phosphorylated on threonine, but not on tyrosine, in oncogene-transformed cells and that vanadate treatment restores tyrosine phosphorylation. We conclude from these results that ERK1/ERK2 activity is repressed by a single-specificity tyrosine phosphatase in oncogene-transformed rat fibroblasts.
Collapse
Affiliation(s)
- K Gopalbhai
- Centre de Recherche, Hôtel-Dieu de Montréal, Quebec, Canada
| | | |
Collapse
|
29
|
Li D, Lin HH, McMahon M, Ma H, Ann DK. Oncogenic raf-1 induces the expression of non-histone chromosomal architectural protein HMGI-C via a p44/p42 mitogen-activated protein kinase-dependent pathway in salivary epithelial cells. J Biol Chem 1997; 272:25062-70. [PMID: 9312114 DOI: 10.1074/jbc.272.40.25062] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The enzyme activity of mitogen-activated protein kinase (MAP kinase) increases in response to agents acting on a variety of cell surface receptors, including receptors linked to heterotrimeric G proteins. In this report, we demonstrated that Raf-1 protein kinase activity in the mouse parotid glands was induced by chronic isoproterenol administration in whole animals. To investigate the molecular nature underlying cellular responses to Raf-1 activation, we have stably transfected rat salivary epithelial Pa-4 cells with human Raf-1-estrogen receptor fusion gene (DeltaRaf-1:ER) and used mRNA differential display in search of messages induced by DeltaRaf-1:ER activation. Through this approach, the gene encoding non-histone chromosomal protein HMGI-C was identified as one of the target genes activated by oncogenic Raf-1 kinase. Activation of Raf-1 kinase resulted in a delayed and sustained increase of HMGI-C expression in the Pa-4 cells. The induction of HMGI-C mRNA level is sensitive to both the protein synthesis inhibitor cycloheximide and transcription inhibitor actinomycin D. The role of the extracellular signal-related kinase (ERK) signaling pathway in the HMGI-C induction was highlighted by the result that the MAP kinase kinase (MEK) inhibitor, PD 98059, blocked DeltaRaf-1:ER- and 12-O-tetradecanoylphorbol-13-acetate-stimulated HMGI-C induction. Altogether, these findings support the notion that the Raf/MEK/ERK signaling module, at least in part, regulates transcriptional activation of the chromosomal architectural protein HMGI-C.
Collapse
Affiliation(s)
- D Li
- Department of Molecular Pharmacology and Toxicology, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | |
Collapse
|
30
|
Healy JI, Dolmetsch RE, Timmerman LA, Cyster JG, Thomas ML, Crabtree GR, Lewis RS, Goodnow CC. Different nuclear signals are activated by the B cell receptor during positive versus negative signaling. Immunity 1997; 6:419-28. [PMID: 9133421 DOI: 10.1016/s1074-7613(00)80285-x] [Citation(s) in RCA: 313] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
It is not known how immunogenic versus tolerogenic cellular responses are signaled by receptors such as the B cell antigen receptor (BCR). Here we compare BCR signaling in naive cells that respond positively to foreign antigen and self-tolerant cells that respond negatively to self-antigen. In naive cells, foreign antigen triggered a large biphasic calcium response and activated nuclear signals through NF-AT, NF-kappa B, JNK, and ERK/pp90rsk. In tolerant B cells, self-antigen stimulated low calcium oscillations and activated NF-AT and ERK/pp90rsk but not NF-kappa B or JNK. Self-reactive B cells lacking the phosphatase CD45 did not exhibit calcium oscillations or ERK/pp90rsk activation, nor did they repond negatively to self-antigen. These data reveal striking biochemical differences in BCR signaling to the nucleus during positive selection by foreign antigens and negative selection by self-antigens.
Collapse
Affiliation(s)
- J I Healy
- Department of Microbiology and Immunology, Stanford University School of Medicine, California 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kumar G P, Laloraya M, Koide SS. Characterization of a uterine luminal fluid protein ULF-250 using N-terminal microsequencing and RT-PCR identifies a novel estrogen-regulated gene in the rat uterus. FEBS Lett 1996; 399:33-6. [PMID: 8980114 DOI: 10.1016/s0014-5793(96)01268-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We had previously identified an estrogen responsive protein ULF-250, synthesized and secreted by the estrous rat uterus, which is immunologically distinct from complement C3 and alpha2-macroglobulin. The N-terminal microsequencing of ULF-250 followed by sequence homology analysis showed that this protein is a new member of a class of estrogen responsive proteins in the uterus. Polymerase chain reaction with a ULF-250 specific primer yielded partial sequence information of its message. The observed pattern of ULF-250 message in the uterus during the various stages of the reproductive cycle in the rat suggested a possible regulation of ULF-250 message by 17beta-estradiol. Upstream sequencing of ULF-250 message and its promoter domains would provide insight into the mechanism of its regulation by estradiol.
Collapse
Affiliation(s)
- P Kumar G
- School of Life Sciences, Devi Ahilya University, Indore, Madhya Pradesh, India
| | | | | |
Collapse
|
32
|
Liao DF, Duff JL, Daum G, Pelech SL, Berk BC. Angiotensin II stimulates MAP kinase kinase kinase activity in vascular smooth muscle cells, Role of Raf. Circ Res 1996; 79:1007-14. [PMID: 8888693 DOI: 10.1161/01.res.79.5.1007] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Both angiotensin II (Ang II) and platelet-derived growth factor (PDGF) rapidly increase intracellular Ca2+ and activate protein kinase C (PKC) and MAP kinase in vascular smooth muscle cells (VSMCs). However, Ang II causes cell hypertrophy, whereas PDGF causes hyperplasia. These findings indicate that VSMCs are a good model for studying the relationship between cell growth and the MAP kinase pathway. In this study, we investigated the role of Raf in activation of 42- and 44-kD MAP kinases. Western blot analysis showed that c-Raf-1 was the predominant Raf isozyme in cultured rat aortic VSMCs. In response to Ang II, there was translocation of Raf to the membrane, which occurred significantly earlier than MAP kinase activation, suggesting that Raf activation precedes MAP kinase activation. Translocation of Raf to the membrane resulted in association with H-Ras as shown by c-Raf-1 coprecipitation with anti-Ras anti-bodies. Western blot analysis of H-Ras immunoprecipitates revealed c-Raf-1, but c-mos, MEK (MAP kinase/extracellular signal-regulated kinase) kinase-1 (MEKK-1), and Raf-B were not present. MAP kinase kinase kinase (MAPKKK) activity was assayed in c-Raf-1 and H-Ras immunoprecipitates by MAP kinase kinase-dependent phosphorylation of catalytically inactive 42-kD MAP kinase. In Ras immunoprecipitates, MAPKKK activity was stimulated approximately threefold by both Ang II and PDGF, with a peak at 5 minutes. Downregulation of PKC by 24-hour exposure to phorbol ester significantly inhibited Ang II-stimulated and PDGF-stimulated MAPKKK activity (approximately 80% decrease) and Raf translocation (approximately 90% decrease), suggesting that a phorbol-responsive PKC is upstream from MAPKKK and Raf. In contrast, Ang II (but not PDGF) stimulation of MAP kinase was unaffected by PKC downregulation or pharmacological PKC inhibition. These findings demonstrate for the first time that Ang II stimulation of MAP kinase may occur via a pathway independent of c-Raf-1 and of the phorbol-responsive PKC isozymes. The differing effects of Ang II and PDGF on VSMC growth may be a consequence of specific signal transduction events, as demonstrated here for activation of MAP kinase.
Collapse
Affiliation(s)
- D F Liao
- Department of Medicine, University of Washington, Seattle 98195-7710, USA
| | | | | | | | | |
Collapse
|
33
|
Klarlund JK, Cherniack AD, McMahon M, Czech MP. Role of the Raf/mitogen-activated protein kinase pathway in p21ras desensitization. J Biol Chem 1996; 271:16674-7. [PMID: 8663295 DOI: 10.1074/jbc.271.28.16674] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Desensitization of p21(ras) after stimulation of cells by growth factors and phorbol 12-myristate 13-acetate (PMA) correlates with hyperphosphorylation of the guanine nucleotide exchange factor Son-of-sevenless (Sos) and its dissociation from the adaptor protein Grb2 (Cherniack, A., Klarlund, J. K., Conway, B. R., and Czech, M. P. (1995) J. Biol. Chem. 270, 1485-1488). To test the role of the Raf/mitogen-activated protein (MAP) kinase pathway, we utilized cells expressing a chimera composed of the catalytic domain of p74Raf-1 and the hormone binding domain of the estradiol receptor (DeltaRaf-1:ER). Estradiol markedly stimulated DeltaRaf-1:ER and the downstream MEK and MAP kinases in these cells as well as Sos phosphorylation. However, the dissociation of Grb2 from Sos observed in response to PMA was not apparent upon DeltaRaf-1:ER activation. Furthermore, stimulation of DeltaRaf-1:ER did not impair GTP loading of p21(ras) in response to platelet-derived growth factor or epidermal growth factor. We conclude that activation of the Raf/MAP kinase pathway alone in these cells is insufficient to cause disassembly of Sos from Grb2 or to interrupt the ability of Sos to catalyze activation of p21(ras).
Collapse
Affiliation(s)
- J K Klarlund
- Program in Molecular Medicine, University of Massachusetts Medical Center, Worcester, Massachusetts 01605, USA
| | | | | | | |
Collapse
|
34
|
Lenormand P, McMahon M, Pouysségur J. Oncogenic Raf-1 activates p70 S6 kinase via a mitogen-activated protein kinase-independent pathway. J Biol Chem 1996; 271:15762-8. [PMID: 8663120 DOI: 10.1074/jbc.271.26.15762] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cell proliferation requires the co-ordinate triggering of several protein kinases of Ser/Thr specificity such as p70 S6 kinase (S6K), which phosphorylates the ribosomal S6 protein and thus increases translation of mRNAs with polypyrimidine tracts. The multiplicity of signaling pathways leading to p70 S6K activation are not fully elucidated. However, several reports have indicated that the activation of p70 S6K is independent of mitogen-activated protein kinase (MAPK) activation. Interestingly, we and others have shown that constitutive activation of the MAPK pathway promotes cell proliferation, suggesting that this cascade is able to activate p70 S6K, a key step to trigger cell cycle entry. In this report we demonstrate that transfection of constitutively active mitogen-activated protein kinase kinase 1 in CCL 39 cells leads to activation of p70 S6K. Furthermore, we have established a cell line that stably expresses DeltaRaf-1:ER, an estradiol-regulated form of oncogenic Raf-1. The addition of estradiol to these cells was sufficient to elicit rapid activation of mitogen-activated protein kinase kinase 1, MAPK, and p70 S6K. Surprisingly, the activation of p70 S6K is not mediated by MAPK because blocking MAPK activation by expression of the phosphatase MKP-1 did not prevent p70 S6K activation by DeltaRaf-1:ER. In conclusion, we have demonstrated that activation of p70 S6K by DeltaRaf-1:ER is mediated by a new MAPK-independent pathway. This pathway is resistant to low nanomolar concentrations of wortmannin, indicating that it does not involve membrane-bound phosphatidylinositol-trisphosphate kinase activation.
Collapse
Affiliation(s)
- P Lenormand
- Centre de Biochimie, CNRS., Université de Nice, Parc Valrose, 06108 Nice, Cedex 2 France
| | | | | |
Collapse
|
35
|
Montgomery RB, Moscatello DK, Wong AJ, Cooper JA, Stahl WL. Differential modulation of mitogen-activated protein (MAP) kinase/extracellular signal-related kinase kinase and MAP kinase activities by a mutant epidermal growth factor receptor. J Biol Chem 1995; 270:30562-6. [PMID: 8530489 DOI: 10.1074/jbc.270.51.30562] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A paradigm has been established whereby mutant tyrosine kinase receptors such as the v-erbB and v-fms gene products function as oncoproteins in the absence of ligand. A spontaneously occurring deletional mutant of the human epidermal growth factor receptor (EGFR-vIII) has been isolated from astrocytic neoplasms and transforms NIH3T3 cells in the absence of ligand. The EGFRvIII is constitutively complexed with the majority of cellular GRB2, suggesting a link to the Ras-Mitogen-activated protein (MAP) kinase pathway (D. Moscatello, R. B. Montgomery, P. Sundareshan, H. McDanel, M. Y. Wong, and A. J. Wong, submitted for publication). In this report, we document that expression of EGFRvIII in fibroblasts is associated with downstream activation of mitogen-activated protein (MAP) kinase/extracellular signal-regulated kinase (MEK) and modest activation of p42 and p44 MAP kinases. The presence of EGFRvIII suppresses activation of p42 and p44 MAP kinases by phorbol 12-myristate 13-acetate (PMA) and serum; however, MEK activation by PMA is not suppressed by EGFRvIII. Basal and PMA-stimulated MAP kinase activity in EGFRvIII-transfected cells is augmented by the tyrosine phosphatase inhibitor sodium vanadate. EGFR-vIII is capable of transducing downstream signals through MAP kinase as evidenced by activation of cytoplasmic phospholipase A2 at levels similar to that induced by intact EGFR. Our results suggest that EGFR-vIII constitutively activates downstream signal transduction through MAP kinase, and this chronic stimulation of the MAP kinase pathway may represent one means by which mutant EGFR transduces an oncogenic signal.
Collapse
Affiliation(s)
- R B Montgomery
- Seattle Veterans Affairs Medical Center, University of Washington School of Medicine, Washington 98108, USA
| | | | | | | | | |
Collapse
|