1
|
Moderately increased maternal dietary energy intake delays foetal skeletal muscle differentiation and maturity in pigs. Eur J Nutr 2015; 55:1777-87. [PMID: 26179476 DOI: 10.1007/s00394-015-0996-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 07/07/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVES This study aimed to evaluate the effects of moderately increased maternal dietary energy intake during gestation on foetal skeletal muscle development and metabolism with pig as a model. METHODS Twelve primiparous purebred Large White sows (initial body weight 135.5 ± 1.6 kg) were allocated to one of two energy intake treatments: normal-energy-intake group (Con, 30.96 MJ DE/day) as recommended by the National Research Council (NRC; 2012) and high-energy-intake group (HE, 34.15 MJ DE/day). The nutritional treatments were introduced from mating to day 90 of gestation. On day 90 of gestation, foetuses were examined by morphological, biochemical and molecular analysis of the longissimus muscle. Umbilical vein serum hormones were measured. RESULTS Sow body weight was increased in HE group compared with Con group (P < 0.05), whereas foetal myofibre density was decreased (P < 0.05). Meanwhile, protein concentration, creatine kinase and lactate dehydrogenase activities and umbilical vein serum triiodothyronine (T3) concentration were decreased in HE foetuses (P < 0.05). Maternal HE diets decreased the mRNA abundance of muscle growth-related genes, myosin heavy-chain (MYH/MyHC) genes (MYH2 and MYH1) and insulin-like growth factor 1 and insulin growth factor-binding protein 5 (P < 0.05). Furthermore, the protein expressions of myogenic differentiation factor 1, myogenin and fast-MyHC isoforms were reduced in HE foetuses (P < 0.05). CONCLUSION Our results suggest that moderately increased maternal dietary energy intake delays the differentiation and maturation in skeletal muscle of the foetus on day 90 of gestation.
Collapse
|
2
|
Reijnders CMA, van Essen HW, van Rens BTTM, van Beek JHGM, Ylstra B, Blankenstein MA, Lips P, Bravenboer N. Increased expression of matrix extracellular phosphoglycoprotein (MEPE) in cortical bone of the rat tibia after mechanical loading: identification by oligonucleotide microarray. PLoS One 2013; 8:e79672. [PMID: 24255709 PMCID: PMC3821845 DOI: 10.1371/journal.pone.0079672] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/24/2013] [Indexed: 11/18/2022] Open
Abstract
Skeletal integrity in humans and animals is maintained by daily mechanical loading. It has been widely accepted that osteocytes function as mechanosensors. Many biochemical signaling molecules are involved in the response of osteocytes to mechanical stimulation. The aim of this study was to identify genes involved in the translation of mechanical stimuli into bone formation. The four-point bending model was used to induce a single period of mechanical loading on the right tibia, while the contra lateral left tibia served as control. Six hours after loading, the effects of mechanical loading on gene-expression were determined with microarray analysis. Protein expression of differentially regulated genes was evaluated with immunohistochemistry. Nine genes were found to exhibit a significant differential gene expression in LOAD compared to control. MEPE, Garnl1, V2R2B, and QFG-TN1 olfactory receptor were up-regulated, and creatine kinase (muscle form), fibrinogen-B beta-polypeptide, monoamine oxidase A, troponin-C and kinesin light chain-C were down-regulated. Validation with real-time RT-PCR analysis confirmed the up-regulation of MEPE and the down-regulation of creatine kinase (muscle form) and troponin-C in the loaded tibia. Immunohistochemistry showed that the increase of MEPE protein expression was already detectable six hours after mechanical loading. In conclusion, these genes probably play a role during translation of mechanical stimuli six hours after mechanical loading. The modulation of MEPE expression may indicate a connection between bone mineralization and bone formation after mechanical stimulation.
Collapse
Affiliation(s)
- Christianne M. A. Reijnders
- Department of Internal Medicine, Endocrine Section, VU University Medical Center, Amsterdam, The Netherlands
| | - Huib W. van Essen
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Birgitte T. T. M. van Rens
- Department of Internal Medicine, Endocrine Section, VU University Medical Center, Amsterdam, The Netherlands
- Faculty of Human Movement Sciences, VU University, Amsterdam, The Netherlands
| | - Johannes H. G. M. van Beek
- Department of Clinical Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | - Bauke Ylstra
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
- Research Institute MOVE, Amsterdam, The Netherlands
| | | | - Paul Lips
- Department of Internal Medicine, Endocrine Section, VU University Medical Center, Amsterdam, The Netherlands
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
3
|
Kwon S, Kim D, Rhee JW, Park JA, Kim DW, Kim DS, Lee Y, Kwon HJ. ASB9 interacts with ubiquitous mitochondrial creatine kinase and inhibits mitochondrial function. BMC Biol 2010; 8:23. [PMID: 20302626 PMCID: PMC2852384 DOI: 10.1186/1741-7007-8-23] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 03/19/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ankyrin repeat and suppressor of cytokine signalling (SOCS) box proteins (Asbs) are a large protein family implicated in diverse biological processes including regulation of proliferation and differentiation. The SOCS box of Asb proteins is important in a ubiquitination-mediated proteolysis pathway. Here, we aimed to evaluate expression and function of human Asb-9 (ASB9). RESULTS We found that a variant of ASB9 that lacks the SOCS box (ASB9DeltaSOCS) was naturally detected in human cell lines but not in peripheral blood mononuclear cells or normal hepatocytes. We also identified ubiquitous mitochondrial creatine kinase (uMtCK) as a new target of ASB9 in human embryonic kidney 293 (HEK293) cells. The ankyrin repeat domains of ASB9 can associate with the substrate binding site of uMtCK in a SOCS box-independent manner. The overexpression of ASB9, but not ASB9DeltaSOCS, induces ubiquitination of uMtCK. ASB9 and ASB9DeltaSOCS can interact and colocalise with uMtCK in the mitochondria. However, only expression of ASB9 induced abnormal mitochondrial structure and a decrease of mitochondrial membrane potential. Furthermore, the creatine kinase activities and cell growth were significantly reduced by ASB9 but not by ASB9DeltaSOCS. CONCLUSIONS ASB9 interacts with the creatine kinase system and negatively regulates cell growth. The differential expression and function of ASB9 and ASB9DeltaSOCS may be a key factor in the growth of human cell lines and primary cells.
Collapse
Affiliation(s)
- Sanghoon Kwon
- Department of Microbiology, College of Medicine, Hallym University, Gangwon-do, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Ide T, Brown-Endres L, Chu K, Ongusaha PP, Ohtsuka T, El-Deiry WS, Aaronson SA, Lee SW. GAMT, a p53-inducible modulator of apoptosis, is critical for the adaptive response to nutrient stress. Mol Cell 2009; 36:379-92. [PMID: 19917247 PMCID: PMC2779531 DOI: 10.1016/j.molcel.2009.09.031] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 07/11/2009] [Accepted: 09/02/2009] [Indexed: 01/25/2023]
Abstract
The p53 tumor suppressor protein has a well-established role in cell-fate decision-making processes. However, recent discoveries indicate that p53 has a non-tumor-suppressive role. Here we identify guanidinoacetate methyltransferase (GAMT), an enzyme involved in creatine synthesis, as a p53 target gene and a key downstream effector of adaptive response to nutrient stress. We show that GAMT is not only involved in p53-dependent apoptosis in response to genotoxic stress but is important for apoptosis induced by glucose deprivation. Additionally, p53-->GAMT upregulates fatty acid oxidation (FAO) induced by glucose starvation, utilizing this pathway as an alternate ATP-generating energy source. These results highlight that p53-dependent regulation of GAMT allows cells to maintain energy levels sufficient to undergo apoptosis or survival under conditions of nutrient stress. The p53-->GAMT pathway represents a new link between cellular stress responses and processes of creatine synthesis and FAO, demonstrating a further role of p53 in cellular metabolism.
Collapse
Affiliation(s)
- Takao Ide
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Lauren Brown-Endres
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Kiki Chu
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Pat P. Ongusaha
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Takao Ohtsuka
- Department of Surgery, Saga University Faculty of Medicine, Saga, Japan
| | - Wafik S. El-Deiry
- Department of Medicine, The Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Stuart A. Aaronson
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | - Sam W. Lee
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
5
|
Discovering multiple realistic TFBS motifs based on a generalized model. BMC Bioinformatics 2009; 10:321. [PMID: 19811641 PMCID: PMC2770069 DOI: 10.1186/1471-2105-10-321] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 10/07/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Identification of transcription factor binding sites (TFBSs) is a central problem in Bioinformatics on gene regulation. de novo motif discovery serves as a promising way to predict and better understand TFBSs for biological verifications. Real TFBSs of a motif may vary in their widths and their conservation degrees within a certain range. Deciding a single motif width by existing models may be biased and misleading. Additionally, multiple, possibly overlapping, candidate motifs are desired and necessary for biological verification in practice. However, current techniques either prohibit overlapping TFBSs or lack explicit control of different motifs. RESULTS We propose a new generalized model to tackle the motif widths by considering and evaluating a width range of interest simultaneously, which should better address the width uncertainty. Moreover, a meta-convergence framework for genetic algorithms (GAs), is proposed to provide multiple overlapping optimal motifs simultaneously in an effective and flexible way. Users can easily specify the difference amongst expected motif kinds via similarity test. Incorporating Genetic Algorithm with Local Filtering (GALF) for searching, the new GALF-G (G for generalized) algorithm is proposed based on the generalized model and meta-convergence framework. CONCLUSION GALF-G was tested extensively on over 970 synthetic, real and benchmark datasets, and is usually better than the state-of-the-art methods. The range model shows an increase in sensitivity compared with the single-width ones, while providing competitive precisions on the E. coli benchmark. Effectiveness can be maintained even using a very small population, exhibiting very competitive efficiency. In discovering multiple overlapping motifs in a real liver-specific dataset, GALF-G outperforms MEME by up to 73% in overall F-scores. GALF-G also helps to discover an additional motif which has probably not been annotated in the dataset. http://www.cse.cuhk.edu.hk/%7Etmchan/GALFG/
Collapse
|
6
|
Arnouk H, Merkley MA, Podolsky RH, Stöppler H, Santos C, Alvarez M, Mariategui J, Ferris D, Lee JR, Dynan WS. Characterization of Molecular Markers Indicative of Cervical Cancer Progression. Proteomics Clin Appl 2009; 3:516-527. [PMID: 19834583 DOI: 10.1002/prca.200800068] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cervical cancer originates with human papillomavirus (HPV) infection and progresses via histologically-defined premalignant stages. Here we compare normal cervical epithelium and patient-matched high grade squamous intraepithelial lesions (HSIL) with cervical carcinoma tissue from the same patient population (n=10 per group). Specimens were analyzed by combined laser capture microdissection and 2D-DIGE. Significant expression changes were seen with 53 spots resulting in identification of 23 unique proteins at the molecular level. These include eight that uniquely distinguish normal epithelium and HSIL and four that uniquely distinguish HSIL and carcinoma. In addition, one protein, cornulin, distinguishes all three states. Other identified proteins included differentiation markers, oncogene DJ-1, serpins, stress and interferon-responsive proteins, detoxifying enzymes, and serum transporters. A literature review, performed for all identified proteins, allowed most changes to be assigned to one of three causes: direct or indirect HPV oncoprotein interactions, growth selection during latency, or interactions in the lesion microenvironment. Selected findings were confirmed by immunohistochemistry using either frozen sections from the same cohort or formalin fixed paraffin embedded samples from a tissue microarray. Novel markers described here have potential applications for increasing the predictive value of current screening methods.
Collapse
Affiliation(s)
- Hilal Arnouk
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Elevated creatine kinase activity in primary hepatocellular carcinoma. BMC Gastroenterol 2005; 5:9. [PMID: 15748292 PMCID: PMC555552 DOI: 10.1186/1471-230x-5-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Accepted: 03/05/2005] [Indexed: 11/21/2022] Open
Abstract
Background Inconsistent findings have been reported on the occurrence and relevance of creatine kinase (CK) isoenzymes in mammalian liver cells. Part of this confusion might be due to induction of CK expression during metabolic and energetic stress. Methods The specific activities and isoenzyme patterns of CK and adenylate kinase (AdK) were analysed in pathological liver tissue of patients undergoing orthotopic liver transplantation. Results The brain-type, cytosolic BB-CK isoenzyme was detected in all liver specimens analysed. Conversely, CK activity was strongly increased and a mitochondrial CK (Mi-CK) isoenzyme was detected only in tissue samples of two primary hepatocellular carcinomas (HCCs). Conclusion The findings do not support significant expression of CK in normal liver and most liver pathologies. Instead, many of the previous misconceptions in this field can be explained by interference from AdK isoenzymes. Moreover, the data suggest a possible interplay between p53 mutations, HCC, CK expression, and the growth-inhibitory effects of cyclocreatine in HCC. These results, if confirmed, could provide important hints at improved therapies and cures for HCC.
Collapse
|
8
|
Eder M, Schlattner U, Becker A, Wallimann T, Kabsch W, Fritz-Wolf K. Crystal structure of brain-type creatine kinase at 1.41 A resolution. Protein Sci 1999; 8:2258-69. [PMID: 10595529 PMCID: PMC2144193 DOI: 10.1110/ps.8.11.2258] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Excitable cells and tissues like muscle or brain show a highly fluctuating consumption of ATP, which is efficiently regenerated from a large pool of phosphocreatine by the enzyme creatine kinase (CK). The enzyme exists in tissue--as well as compartment-specific isoforms. Numerous pathologies are related to the CK system: CK is found to be overexpressed in a wide range of solid tumors, whereas functional impairment of CK leads to a deterioration in energy metabolism, which is phenotypic for many neurodegenerative and age-related diseases. The crystal structure of chicken cytosolic brain-type creatine kinase (BB-CK) has been solved to 1.41 A resolution by molecular replacement. It represents the most accurately determined structure in the family of guanidino kinases. Except for the N-terminal region (2-12), the structures of both monomers in the biological dimer are very similar and closely resemble those of the other known structures in the family. Specific Ca2+-mediated interactions, found between two dimers in the asymmetric unit, result in structurally independent heterodimers differing in their N-terminal conformation and secondary structure. The high-resolution structure of BB-CK presented in this work will assist in designing new experiments to reveal the molecular basis of the multiple isoform-specific properties of CK, especially regarding different subcellular locations and functional interactions with other proteins. The rather similar fold shared by all known guanidino kinase structures suggests a model for the transition state complex of BB-CK analogous to the one of arginine kinase (AK). Accordingly, we have modeled a putative conformation of CK in the transition state that requires a rigid body movement of the entire N-terminal domain by rms 4 A from the structure without substrates.
Collapse
Affiliation(s)
- M Eder
- Institute of Cell Biology, Swiss Federal Institute of Technology, ETH Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
9
|
Kristensen CA, Askenasy N, Jain RK, Koretsky AP. Creatine and cyclocreatine treatment of human colon adenocarcinoma xenografts: 31P and 1H magnetic resonance spectroscopic studies. Br J Cancer 1999; 79:278-85. [PMID: 9888469 PMCID: PMC2362210 DOI: 10.1038/sj.bjc.6690045] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Creatine (Cr) and cyclocreatine (cyCr) have been shown to inhibit the growth of a variety of human and murine tumours. The purpose of this study was to evaluate the anti-tumour effect of these molecules in relation to drug accumulation, energy metabolism, tumour water accumulation and toxicity. Nude mice carrying a human colon adenocarcinoma (LS174T) with a creatine kinase (CK) activity of 2.12 units mg(-1) protein were fed Cr (2.5% or 5%) or cyCr (0.025%, 0.1% or 0.5%) for 2 weeks and compared with controls fed standard diet. Cr concentrations of 2.5% and 5% significantly inhibited tumour growth, as did 0.1% and 0.5% cyCr. In vivo 31P magnetic resonance spectroscopy (MRS) after 2 weeks of treatment showed an increase in [phosphocreatine (PCr)+phosphocyclocreatine (PcyCr)]/nucleoside triphosphate (NTP) with increasing concentrations of dietary Cr and cyCr, without changes in absolute NTP contents. The antiproliferative effect of the substrates of CK was not related to energy deficiency but was associated with acidosis. Intratumoral substrate concentrations (measured by 1H-MRS) of 4.8 micromol g(-1) wet weight Cr (mice fed 2.5% Cr) and 6.2 micromol g(-1) cyCr (mice fed 0.1% cyCr) induced a similar decrease in growth rate, indicating that both substrates were equally potent in tumour growth inhibition. The best correlant of growth inhibition was the total Cr or (cyCr+Cr) concentrations in the tissue. In vivo, these agents did not induce excessive water accumulation and had no systemic effects on the mice (weight loss, hypoglycaemia) that may have caused growth inhibition.
Collapse
Affiliation(s)
- C A Kristensen
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | | | | | | |
Collapse
|
10
|
Xiao X, Li J, Samulski RJ. Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 1998; 72:2224-32. [PMID: 9499080 PMCID: PMC109519 DOI: 10.1128/jvi.72.3.2224-2232.1998] [Citation(s) in RCA: 1083] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/1997] [Accepted: 11/24/1997] [Indexed: 02/06/2023] Open
Abstract
Recently, efficient and long-term in vivo gene transfer by recombinant adeno-associated virus type 2 (rAAV) vectors has been demonstrated in a variety of tissues. Further improvement in vector titer and purity will expedite this in vivo exploration and provide preclinical information required for use in human gene therapy. In an effort to obtain higher titers, we constructed a novel AAV helper plasmid which utilizes translational control of AAV Rep genes (J. Li et al., J. Virol. 71:5236-5243, 1997). To address the issue of purity, in this study we report the first rAAV production method which is completely free of adenovirus (Ad) helper virus. The new production system uses a plasmid construct which contains a mini-Ad genome capable of propagating rAAV in the presence of AAV Rep and Cap genes. This construct is missing some of the early and most of the late Ad genes and is incapable of producing infectious Ad. Transfection of 293 cells with the new mini-Ad helper and AAV packaging plasmids results in high-titer rAAV vectors with yields greater than 1,000 transducing units, or 10(5) viral particles per cell. When rAAV vectors were produced by using this production scheme and compared to traditional heat-inactivated rAAV preparations in vitro and in vivo, we observed transduction equivalent to or better than normal levels. The complete removal of infectious Ad from AAV production should facilitate a better understanding of immune response to AAV vectors in vivo, eliminate the need for developing replication-competent Ad assays, and provide a more defined reagent for clinical use.
Collapse
Affiliation(s)
- X Xiao
- Gene Therapy Center, Division of Pharmaceutics, University of North Carolina at Chapel Hill, 27599, USA.
| | | | | |
Collapse
|
11
|
Farmer G, Friedlander P, Colgan J, Manley JL, Prives C. Transcriptional repression by p53 involves molecular interactions distinct from those with the TATA box binding protein. Nucleic Acids Res 1996; 24:4281-8. [PMID: 8932384 PMCID: PMC146238 DOI: 10.1093/nar/24.21.4281] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In addition to serving a role as a DNA binding-dependent transcriptional activator, p53 has been reported to repress a variety of promoters that lack p53 binding sites. Data from recent studies have suggested that this activity is mediated via an interaction between p53 and the TATA box binding protein (TBP). To investigate the functional relevance of this interaction in vivo, we have performed transient transfection assays in Drosophila Schneider cells. Wild-type p53 was found to repress expression from TATA box- but not initiator (Inr)-containing promoters activated by GAL4-VP16, GAL4-ftzQ or Sp1. A mutant p53(His175), defective in DNA binding and transcriptional activation, also inhibited TATA-dependent transcription activated by Sp1. However, p53 was unable to repress a basal TATA promoter stimulated by overexpression of TBP. Furthermore, overexpression of TBP failed to rescue the p53-mediated repression of activated transcription and a p53 mutant with its N-terminal TBP interaction domain intact, but defective in transcriptional activation and binding to TBP-associated factors (TAFs), was similarly defective in transcriptional repression. These data suggest that a p53-TBP interaction is not sufficient for transcriptional repression by p53 and that repression involves an interaction between p53 and other factors, such as TAFs, that are required for activated but not basal transcription. We suggest that p53-mediated repression results from squelching of a factor limiting for activated transcription from TATA- but not Inr-containing promoters.
Collapse
Affiliation(s)
- G Farmer
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | | | |
Collapse
|
12
|
Shield MA, Haugen HS, Clegg CH, Hauschka SD. E-box sites and a proximal regulatory region of the muscle creatine kinase gene differentially regulate expression in diverse skeletal muscles and cardiac muscle of transgenic mice. Mol Cell Biol 1996; 16:5058-68. [PMID: 8756664 PMCID: PMC231507 DOI: 10.1128/mcb.16.9.5058] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Previous analysis of the muscle creatine kinase (MCK) gene indicated that control elements required for transcription in adult mouse muscle differed from those required in cell culture, suggesting that distinct modes of muscle gene regulation occur in vivo. To examine this further, we measured the activity of MCK transgenes containing E-box and promoter deletions in a variety of striated muscles. Simultaneous mutation of three E boxes in the 1,256-bp MCK 5' region, which abolished transcription in muscle cultures, had strikingly different effects in mice. The mutations abolished transgene expression in cardiac and tongue muscle and caused a reduction in expression in the soleus muscle (a muscle with many slow fibers) but did not affect expression in predominantly fast muscles: quadriceps, abdominals, and extensor digitorum longus. Other regulatory sequences with muscle-type-specific activities were found within the 358-bp 5'-flanking region. This proximal region conferred relatively strong expression in limb and abdominal skeletal muscles but was inactive in cardiac and tongue muscles. However, when the 206-bp 5' enhancer was ligated to the 358-bp region, high levels of tissue-specific expression were restored in all muscle types. These results indicate that E boxes and a proximal regulatory region are differentially required for maximal MCK transgene expression in different striated muscles. The overall results also imply that within skeletal muscles, the steady-state expression of the MCK gene and possibly other muscle genes depends on transcriptional mechanisms that differ between fast and slow fibers as well as between the anatomical and physiological attributes of each specific muscle.
Collapse
Affiliation(s)
- M A Shield
- Department of Biochemistry, University of Washington, Seattle 98195-7350, USA
| | | | | | | |
Collapse
|
13
|
Hall SR, Campbell LE, Meek DW. Phosphorylation of p53 at the casein kinase II site selectively regulates p53-dependent transcriptional repression but not transactivation. Nucleic Acids Res 1996; 24:1119-26. [PMID: 8604347 PMCID: PMC145737 DOI: 10.1093/nar/24.6.1119] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The p53 tumour suppressor protein is a potent transcription factor which plays a central role in the defence of cells against DNA damage and the propagation of malignant clones. We have previously shown that phosphorylation of serine 386 in mouse p53 by the growth- associated protein kinase, casein kinase II (CKII), plays an important role in the ability of p53 to block the proliferation of drug-resistant colonies. In this paper we show that blocking phosphorylation of serine 386 through an alanine substitution, or placing a constitutive negative charge at this position in the form of aspartate, had no significant influence on p53-dependent transcriptional activation of a promoter containing 13 copies of a p53 consensus binding sequence, or of the p21WAF1 promoter which is a natural target for p53. In contrast, the alanine mutant showed a weak reduction in the ability of p53 to repress expression from the c-fos promoter, which is a target for p53-dependent repression in vivo. Strikingly, when the repression of the SV40 early promoter was examined, a reduction in the repression capacity of up to 5-fold was observed. Moreover, repression of the SV40 promoter could be partially restored by aspartic acid substitution at the phosphorylation site. These data indicate that phosphorylation at a specific C-terminal site can selectively regulate p53-dependent repression, but not transactivation.
Collapse
Affiliation(s)
- S R Hall
- Biomedical Research Centre, University of Dundee, United Kingdom
| | | | | |
Collapse
|