1
|
Abdullah M, Greco BM, Laurent JM, Garge RK, Boutz DR, Vandeloo M, Marcotte EM, Kachroo AH. Rapid, scalable, combinatorial genome engineering by marker-less enrichment and recombination of genetically engineered loci in yeast. CELL REPORTS METHODS 2023; 3:100464. [PMID: 37323580 PMCID: PMC10261898 DOI: 10.1016/j.crmeth.2023.100464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/30/2023] [Accepted: 04/12/2023] [Indexed: 06/17/2023]
Abstract
A major challenge to rationally building multi-gene processes in yeast arises due to the combinatorics of combining all of the individual edits into the same strain. Here, we present a precise and multi-site genome editing approach that combines all edits without selection markers using CRISPR-Cas9. We demonstrate a highly efficient gene drive that selectively eliminates specific loci by integrating CRISPR-Cas9-mediated double-strand break (DSB) generation and homology-directed recombination with yeast sexual assortment. The method enables marker-less enrichment and recombination of genetically engineered loci (MERGE). We show that MERGE converts single heterologous loci to homozygous loci at ∼100% efficiency, independent of chromosomal location. Furthermore, MERGE is equally efficient at converting and combining multiple loci, thus identifying compatible genotypes. Finally, we establish MERGE proficiency by engineering a fungal carotenoid biosynthesis pathway and most of the human α-proteasome core into yeast. Therefore, MERGE lays the foundation for scalable, combinatorial genome editing in yeast.
Collapse
Affiliation(s)
- Mudabir Abdullah
- Centre for Applied Synthetic Biology, Department of Biology, Concordia University, 7141 Sherbrooke St. W, Montreal, QC, Canada
| | - Brittany M. Greco
- Centre for Applied Synthetic Biology, Department of Biology, Concordia University, 7141 Sherbrooke St. W, Montreal, QC, Canada
| | - Jon M. Laurent
- Institute of Systems Genetics, NYU Langone Health, New York, NY, USA
| | - Riddhiman K. Garge
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Daniel R. Boutz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Michelle Vandeloo
- Centre for Applied Synthetic Biology, Department of Biology, Concordia University, 7141 Sherbrooke St. W, Montreal, QC, Canada
| | - Edward M. Marcotte
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Aashiq H. Kachroo
- Centre for Applied Synthetic Biology, Department of Biology, Concordia University, 7141 Sherbrooke St. W, Montreal, QC, Canada
| |
Collapse
|
2
|
Cook D, Long S, Stanton J, Cusick P, Lawrimore C, Yeh E, Grant S, Bloom K. Behavior of dicentric chromosomes in budding yeast. PLoS Genet 2021; 17:e1009442. [PMID: 33735169 PMCID: PMC8009378 DOI: 10.1371/journal.pgen.1009442] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 03/30/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
DNA double-strand breaks arise in vivo when a dicentric chromosome (two centromeres on one chromosome) goes through mitosis with the two centromeres attached to opposite spindle pole bodies. Repair of the DSBs generates phenotypic diversity due to the range of monocentric derivative chromosomes that arise. To explore whether DSBs may be differentially repaired as a function of their spatial position in the chromosome, we have examined the structure of monocentric derivative chromosomes from cells containing a suite of dicentric chromosomes in which the distance between the two centromeres ranges from 6.5 kb to 57.7 kb. Two major classes of repair products, homology-based (homologous recombination (HR) and single-strand annealing (SSA)) and end-joining (non-homologous (NHEJ) and micro-homology mediated (MMEJ)) were identified. The distribution of repair products varies as a function of distance between the two centromeres. Genetic dependencies on double strand break repair (Rad52), DNA ligase (Lif1), and S phase checkpoint (Mrc1) are indicative of distinct repair pathway choices for DNA breaks in the pericentromeric chromatin versus the arms. A challenge in chromosome biology is to integrate the linear code with spatial organization and chromosome dynamics within the nucleus. The major sub-division of function in the nucleus is the nucleolus, the site of ribosomal RNA synthesis. We report that the pericentromere DNA surrounding the centromere is another region of confined biochemistry. We have found that chromosome breaks between two centromeres that both lie within the pericentromeric region of the chromosomes are repaired via pathways that do not rely on sequence homology (MMEJ or NHEJ). Chromosome breaks in dicentric chromosomes whose centromeres are separated by > 20 kb are repaired via pathways that rely mainly on sequence homology (HR, SSA). The repair of breaks in the pericentromere versus breaks in the arms are differentially dependent on Rad52, Lif1, and Mrc1, further indicative of spatial control over DNA repair pathways.
Collapse
Affiliation(s)
- Diana Cook
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sarah Long
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - John Stanton
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Patrick Cusick
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Colleen Lawrimore
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Elaine Yeh
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sarah Grant
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kerry Bloom
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
3
|
Li BZ, Putnam CD, Kolodner RD. Mechanisms underlying genome instability mediated by formation of foldback inversions in Saccharomyces cerevisiae. eLife 2020; 9:58223. [PMID: 32762846 PMCID: PMC7467729 DOI: 10.7554/elife.58223] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/04/2020] [Indexed: 01/09/2023] Open
Abstract
Foldback inversions, also called inverted duplications, have been observed in human genetic diseases and cancers. Here, we used a Saccharomyces cerevisiae genetic system that generates gross chromosomal rearrangements (GCRs) mediated by foldback inversions combined with whole-genome sequencing to study their formation. Foldback inversions were mediated by formation of single-stranded DNA hairpins. Two types of hairpins were identified: small-loop hairpins that were suppressed by MRE11, SAE2, SLX1, and YKU80 and large-loop hairpins that were suppressed by YEN1, TEL1, SWR1, and MRC1. Analysis of CRISPR/Cas9-induced double strand breaks (DSBs) revealed that long-stem hairpin-forming sequences could form foldback inversions when proximal or distal to the DSB, whereas short-stem hairpin-forming sequences formed foldback inversions when proximal to the DSB. Finally, we found that foldback inversion GCRs were stabilized by secondary rearrangements, mostly mediated by different homologous recombination mechanisms including single-strand annealing; however, POL32-dependent break-induced replication did not appear to be involved forming secondary rearrangements.
Collapse
Affiliation(s)
- Bin-Zhong Li
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, San Diego, United States
| | - Christopher D Putnam
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, San Diego, United States.,Departments of Medicine, University of California School of Medicine, San Diego, San Diego, United States
| | - Richard David Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, San Diego, United States.,Cellular and Molecular Medicine, University of California School of Medicine, San Diego, San Diego, United States.,Moores-UCSD Cancer Center, University of California School of Medicine, San Diego, San Diego, United States.,Institute of Genomic Medicine, University of California School of Medicine, San Diego, San Diego, United States
| |
Collapse
|
4
|
Abstract
Cells confront DNA damage in every cell cycle. Among the most deleterious types of DNA damage are DNA double-strand breaks (DSBs), which can cause cell lethality if unrepaired or cancers if improperly repaired. In response to DNA DSBs, cells activate a complex DNA damage checkpoint (DDC) response that arrests the cell cycle, reprograms gene expression, and mobilizes DNA repair factors to prevent the inheritance of unrepaired and broken chromosomes. Here we examine the DDC, induced by DNA DSBs, in the budding yeast model system and in mammals.
Collapse
Affiliation(s)
- David P Waterman
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA;
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA;
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA;
| |
Collapse
|
5
|
Ayra-Plasencia J, Machín F. DNA double-strand breaks in telophase lead to coalescence between segregated sister chromatid loci. Nat Commun 2019; 10:2862. [PMID: 31253793 PMCID: PMC6598993 DOI: 10.1038/s41467-019-10742-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 05/30/2019] [Indexed: 12/24/2022] Open
Abstract
DNA double strand breaks (DSBs) pose a high risk for genome integrity. Cells repair DSBs through homologous recombination (HR) when a sister chromatid is available. HR is upregulated by the cycling dependent kinase (CDK) despite the paradox of telophase, where CDK is high but a sister chromatid is not nearby. Here we study in the budding yeast the response to DSBs in telophase, and find they activate the DNA damage checkpoint (DDC), leading to a telophase-to-G1 delay. Outstandingly, we observe a partial reversion of sister chromatid segregation, which includes approximation of segregated material, de novo formation of anaphase bridges, and coalescence between sister loci. We finally show that DSBs promote a massive change in the dynamics of telophase microtubules (MTs), together with dephosphorylation and relocalization of kinesin-5 Cin8. We propose that chromosome segregation is not irreversible and that DSB repair using the sister chromatid is possible in telophase.
Collapse
Affiliation(s)
- Jessel Ayra-Plasencia
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Félix Machín
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.
| |
Collapse
|
6
|
Cook DM, Bennett M, Friedman B, Lawrimore J, Yeh E, Bloom K. Fork pausing allows centromere DNA loop formation and kinetochore assembly. Proc Natl Acad Sci U S A 2018; 115:11784-11789. [PMID: 30373818 PMCID: PMC6243264 DOI: 10.1073/pnas.1806791115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
De novo kinetochore assembly, but not template-directed assembly, is dependent on COMA, the kinetochore complex engaged in cohesin recruitment. The slowing of replication fork progression by treatment with phleomycin (PHL), hydroxyurea, or deletion of the replication fork protection protein Csm3 can activate de novo kinetochore assembly in COMA mutants. Centromere DNA looping at the site of de novo kinetochore assembly can be detected shortly after exposure to PHL. Using simulations to explore the thermodynamics of DNA loops, we propose that loop formation is disfavored during bidirectional replication fork migration. One function of replication fork stalling upon encounters with DNA damage or other blockades may be to allow time for thermal fluctuations of the DNA chain to explore numerous configurations. Biasing thermodynamics provides a mechanism to facilitate macromolecular assembly, DNA repair, and other nucleic acid transactions at the replication fork. These loop configurations are essential for sister centromere separation and kinetochore assembly in the absence of the COMA complex.
Collapse
Affiliation(s)
- Diana M Cook
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Maggie Bennett
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Brandon Friedman
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Josh Lawrimore
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Elaine Yeh
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| |
Collapse
|
7
|
Leshets M, Silas YBH, Lehming N, Pines O. Fumarase: From the TCA Cycle to DNA Damage Response and Tumor Suppression. Front Mol Biosci 2018; 5:68. [PMID: 30090811 PMCID: PMC6068284 DOI: 10.3389/fmolb.2018.00068] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/02/2018] [Indexed: 12/22/2022] Open
Abstract
Fumarase is an enzyme of the tricarboxylic acid (TCA) cycle in mitochondria, but in recent years, it has emerged as a participant in the response to DNA double strand breaks (DSBs) in the nucleus. In fact, this enzyme is dual-targeted and can be also readily detected in the mitochondrial and cytosolic/nuclear compartments of all the eukaryotic organisms examined. Intriguingly, this evolutionary conserved cytosolic population of fumarase, its enzymatic activity and the associated metabolite fumarate, are required for the cellular DNA damage response (DDR) to double-strand breaks. Here we review findings from yeast and human cells regarding how fumarase and fumarate may precisely participate in the DNA damage response. In yeast, cytosolic fumarase is involved in the homologous recombination (HR) repair pathway, through its function in the DSB resection process. One target of this regulation is the resection enzyme Sae2. In human cells, fumarase is involved in the non-homologous end joining (NHEJ) repair pathway. Fumarase is phosphorylated by the DNA-dependent protein kinase (DNA-PK) complex, which induces the recruitment of fumarase to the DSB and local generation of fumarate. Fumarate inhibits the lysine demethylase 2B (KDM2B), thereby facilitating the dimethylation of histone H3, which leads to the repair of the break by the NHEJ pathway. Finally, we discuss the question how fumarase may function as a tumor suppressor via its metabolite substrate fumarate. We offer a number of models which can explain an apparent contradiction regarding how fumarate absence/accumulation, as a function of subcellular location and stage can determine tumorigenesis. Fumarate, on the one hand, a positive regulator of genome stability (its absence supports genome instability and tumorigenesis) and, on the other hand, its accumulation drives angiogenesis and proliferation (thereby supporting tumor establishment).
Collapse
Affiliation(s)
- Michael Leshets
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yardena B H Silas
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Norbert Lehming
- NUS-HUJ-CREATE Program and the Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ophry Pines
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,NUS-HUJ-CREATE Program and the Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
8
|
Independent Mechanisms Lead to Genomic Instability in Hodgkin Lymphoma: Microsatellite or Chromosomal Instability †. Cancers (Basel) 2018; 10:cancers10070233. [PMID: 30011886 PMCID: PMC6071189 DOI: 10.3390/cancers10070233] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 12/19/2022] Open
Abstract
Background: Microsatellite and chromosomal instability have been investigated in Hodgkin lymphoma (HL). Materials and Methods: We studied seven HL cell lines (five Nodular Sclerosis (NS) and two Mixed Cellularity (MC)) and patient peripheral blood lymphocytes (100 NS-HL and 23 MC-HL). Microsatellite instability (MSI) was assessed by PCR. Chromosomal instability and telomere dysfunction were investigated by FISH. DNA repair mechanisms were studied by transcriptomic and molecular approaches. Results: In the cell lines, we observed high MSI in L428 (4/5), KMH2, and HDLM2 (3/5), low MSI in L540, L591, and SUP-HD1, and none in L1236. NS-HL cell lines showed telomere shortening, associated with alterations of nuclear shape. Small cells were characterized by telomere loss and deletion, leading to chromosomal fusion, large nucleoplasmic bridges, and breakage/fusion/bridge (B/F/B) cycles, leading to chromosomal instability. The MC-HL cell lines showed substantial heterogeneity of telomere length. Intrachromosmal double strand breaks induced dicentric chromosome formation, high levels of micronucleus formation, and small nucleoplasmic bridges. B/F/B cycles induced complex chromosomal rearrangements. We observed a similar pattern in circulating lymphocytes of NS-HL and MC-HL patients. Transcriptome analysis confirmed the differences in the DNA repair pathways between the NS and MC cell lines. In addition, the NS-HL cell lines were radiosensitive and the MC-cell lines resistant to apoptosis after radiation exposure. Conclusions: In mononuclear NS-HL cells, loss of telomere integrity may present the first step in the ongoing process of chromosomal instability. Here, we identified, MSI as an additional mechanism for genomic instability in HL.
Collapse
|
9
|
Andriuskevicius T, Kotenko O, Makovets S. Putting together and taking apart: assembly and disassembly of the Rad51 nucleoprotein filament in DNA repair and genome stability. Cell Stress 2018; 2:96-112. [PMID: 31225474 PMCID: PMC6551702 DOI: 10.15698/cst2018.05.134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Homologous recombination is a key mechanism providing both genome stability and genetic diversity in all living organisms. Recombinases play a central role in this pathway: multiple protein subunits of Rad51 or its orthologues bind single-stranded DNA to form a nucleoprotein filament which is essential for initiating recombination events. Multiple factors are involved in the regulation of this step, both positively and negatively. In this review, we discuss Rad51 nucleoprotein assembly and disassembly, how it is regulated and what functional significance it has in genome maintenance.
Collapse
Affiliation(s)
| | - Oleksii Kotenko
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh
| | - Svetlana Makovets
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh
| |
Collapse
|
10
|
Sieverman KJ, Rine J. Impact of Homologous Recombination on Silent Chromatin in Saccharomyces cerevisiae. Genetics 2018; 208:1099-1113. [PMID: 29339409 PMCID: PMC5844325 DOI: 10.1534/genetics.118.300704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/08/2018] [Indexed: 11/18/2022] Open
Abstract
Specialized chromatin domains repress transcription of genes within them and present a barrier to many DNA-protein interactions. Silent chromatin in the budding yeast Saccharomyces cerevisiae, akin to heterochromatin of metazoans and plants, inhibits transcription of PolII- and PolIII-transcribed genes, yet somehow grants access to proteins necessary for DNA transactions like replication and homologous recombination. In this study, we adapted a novel assay to detect even transient changes in the dynamics of transcriptional silencing at HML after it served as a template for homologous recombination. Homologous recombination specifically targeted to HML via double-strand-break formation at a homologous locus often led to transient loss of transcriptional silencing at HML Interestingly, many cells could template homology-directed repair at HML without an obligate loss of silencing, even in recombination events with extensive gene conversion tracts. In a population of cells that experienced silencing loss following recombination, transcription persisted for 2-3 hr after all double-strand breaks were repaired. mRNA levels from cells that experienced recombination-induced silencing loss did not approach the amount of mRNA seen in cells lacking transcriptional silencing. Thus, silencing loss at HML after homologous recombination was short-lived and limited.
Collapse
Affiliation(s)
- Kathryn J Sieverman
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California at Berkeley, California 94720
| | - Jasper Rine
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California at Berkeley, California 94720
| |
Collapse
|
11
|
Gallagher DN, Haber JE. Repair of a Site-Specific DNA Cleavage: Old-School Lessons for Cas9-Mediated Gene Editing. ACS Chem Biol 2018; 13:397-405. [PMID: 29083855 DOI: 10.1021/acschembio.7b00760] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CRISPR/Cas9-mediated gene editing may involve nonhomologous end-joining to create various insertion/deletions (indels) or may employ homologous recombination to modify precisely the target DNA sequence. Our understanding of these processes has been guided by earlier studies using other site-specific endonucleases, both in model organisms such as budding yeast and in mammalian cells. We briefly review what has been gleaned from such studies using the HO and I-SceI endonucleases and how these findings guide current gene editing strategies.
Collapse
Affiliation(s)
- Danielle N. Gallagher
- Rosenstiel Basic Medical
Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 22454-9110, United States
| | - James E. Haber
- Rosenstiel Basic Medical
Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 22454-9110, United States
| |
Collapse
|
12
|
Chiatante G, Giannuzzi G, Calabrese FM, Eichler EE, Ventura M. Centromere Destiny in Dicentric Chromosomes: New Insights from the Evolution of Human Chromosome 2 Ancestral Centromeric Region. Mol Biol Evol 2017; 34:1669-1681. [PMID: 28333343 DOI: 10.1093/molbev/msx108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Dicentric chromosomes are products of genomic rearrangements that place two centromeres on the same chromosome. Due to the presence of two primary constrictions, they are inherently unstable and overcome their instability by epigenetically inactivating and/or deleting one of the two centromeres, thus resulting in functionally monocentric chromosomes that segregate normally during cell division. Our understanding to date of dicentric chromosome formation, behavior and fate has been largely inferred from observational studies in plants and humans as well as artificially produced de novo dicentrics in yeast and in human cells. We investigate the most recent product of a chromosome fusion event fixed in the human lineage, human chromosome 2, whose stability was acquired by the suppression of one centromere, resulting in a unique difference in chromosome number between humans (46 chromosomes) and our most closely related ape relatives (48 chromosomes). Using molecular cytogenetics, sequencing, and comparative sequence data, we deeply characterize the relicts of the chromosome 2q ancestral centromere and its flanking regions, gaining insight into the ancestral organization that can be easily broadened to all acrocentric chromosome centromeres. Moreover, our analyses offered the opportunity to trace the evolutionary history of rDNA and satellite III sequences among great apes, thus suggesting a new hypothesis for the preferential inactivation of some human centromeres, including IIq. Our results suggest two possible centromere inactivation models to explain the evolutionarily stabilization of human chromosome 2 over the last 5-6 million years. Our results strongly favor centromere excision through a one-step process.
Collapse
Affiliation(s)
- Giorgia Chiatante
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy.,Department of Biology, Anthropology Laboratories University of Florence, Florence, Italy
| | - Giuliana Giannuzzi
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA
| | - Mario Ventura
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
13
|
Pathways and Mechanisms that Prevent Genome Instability in Saccharomyces cerevisiae. Genetics 2017; 206:1187-1225. [PMID: 28684602 PMCID: PMC5500125 DOI: 10.1534/genetics.112.145805] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
Genome rearrangements result in mutations that underlie many human diseases, and ongoing genome instability likely contributes to the development of many cancers. The tools for studying genome instability in mammalian cells are limited, whereas model organisms such as Saccharomyces cerevisiae are more amenable to these studies. Here, we discuss the many genetic assays developed to measure the rate of occurrence of Gross Chromosomal Rearrangements (called GCRs) in S. cerevisiae. These genetic assays have been used to identify many types of GCRs, including translocations, interstitial deletions, and broken chromosomes healed by de novo telomere addition, and have identified genes that act in the suppression and formation of GCRs. Insights from these studies have contributed to the understanding of pathways and mechanisms that suppress genome instability and how these pathways cooperate with each other. Integrated models for the formation and suppression of GCRs are discussed.
Collapse
|
14
|
Kaddour A, Colicchio B, Buron D, El Maalouf E, Laplagne E, Borie C, Ricoul M, Lenain A, Hempel WM, Morat L, Al Jawhari M, Cuceu C, Heidingsfelder L, Jeandidier E, Deschênes G, Dieterlen A, El May M, Girinsky T, Bennaceur-Griscelli A, Carde P, Sabatier L, M'kacher R. Transmission of Induced Chromosomal Aberrations through Successive Mitotic Divisions in Human Lymphocytes after In Vitro and In Vivo Radiation. Sci Rep 2017; 7:3291. [PMID: 28607452 PMCID: PMC5468351 DOI: 10.1038/s41598-017-03198-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/24/2017] [Indexed: 11/10/2022] Open
Abstract
The mechanisms behind the transmission of chromosomal aberrations (CA) remain unclear, despite a large body of work and major technological advances in chromosome identification. We reevaluated the transmission of CA to second- and third-division cells by telomere and centromere (TC) staining followed by M-FISH. We scored CA in lymphocytes of healthy donors after in vitro irradiation and those of cancer patients treated by radiation therapy more than 12 years before. Our data demonstrate, for the first time, that dicentric chromosomes (DCs) decreased by approximately 50% per division. DCs with two centromeres in close proximity were more efficiently transmitted, representing 70% of persistent DCs in ≥M3 cells. Only 1/3 of acentric chromosomes (ACs), ACs with four telomeres, and interstitial ACs, were paired in M2 cells and associated with specific DCs configurations. In lymphocytes of cancer patients, 82% of detected DCs were characterized by these specific configurations. Our findings demonstrate the high stability of DCs with two centromeres in close proximity during cell division. The frequency of telomere deletion increased during cell cycle progression playing an important role in chromosomal instability. These findings could be exploited in the follow-up of exposed populations.
Collapse
Affiliation(s)
- Akram Kaddour
- Laboratory of Radiobiology and Oncology and PROCyTOX, DRF, CEA, Paris-Saclay, France.,Tunis El Manar University, School of Medicine, Tunis, Tunisia
| | - Bruno Colicchio
- Laboratoire MIPS Groupe IMTI Université de Haute-Alsace, Mulhouse, France
| | - Diane Buron
- Laboratory of Radiobiology and Oncology and PROCyTOX, DRF, CEA, Paris-Saclay, France
| | - Elie El Maalouf
- Laboratoire MIPS Groupe IMTI Université de Haute-Alsace, Mulhouse, France
| | | | - Claire Borie
- APHP-Hopital Paul Brousse Université Paris Sud/ESteam Paris Inserm UMR 935, Villejuif, France
| | - Michelle Ricoul
- Laboratory of Radiobiology and Oncology and PROCyTOX, DRF, CEA, Paris-Saclay, France
| | - Aude Lenain
- Laboratory of Radiobiology and Oncology and PROCyTOX, DRF, CEA, Paris-Saclay, France
| | - William M Hempel
- Laboratory of Radiobiology and Oncology and PROCyTOX, DRF, CEA, Paris-Saclay, France
| | - Luc Morat
- Laboratory of Radiobiology and Oncology and PROCyTOX, DRF, CEA, Paris-Saclay, France
| | - Mustafa Al Jawhari
- Laboratory of Radiobiology and Oncology and PROCyTOX, DRF, CEA, Paris-Saclay, France
| | - Corina Cuceu
- Laboratory of Radiobiology and Oncology and PROCyTOX, DRF, CEA, Paris-Saclay, France
| | | | - Eric Jeandidier
- Service de Génétique Groupe Hospitalier de la Région de Mulhouse et Sud Alsace, 68070, Mulhouse, France
| | | | - Alain Dieterlen
- Laboratoire MIPS Groupe IMTI Université de Haute-Alsace, Mulhouse, France
| | - Michèle El May
- Tunis El Manar University, School of Medicine, Tunis, Tunisia
| | - Theodore Girinsky
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Patrice Carde
- Department of Hematology, Gustave Roussy cancer Campus, Villejuif, France
| | - Laure Sabatier
- Laboratory of Radiobiology and Oncology and PROCyTOX, DRF, CEA, Paris-Saclay, France
| | - Radhia M'kacher
- Laboratory of Radiobiology and Oncology and PROCyTOX, DRF, CEA, Paris-Saclay, France. .,Cell Environment, Paris, France.
| |
Collapse
|
15
|
Jasin M, Haber JE. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair. DNA Repair (Amst) 2016; 44:6-16. [PMID: 27261202 DOI: 10.1016/j.dnarep.2016.05.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
DNA double-strand breaks (DSBs) are dangerous lesions that if not properly repaired can lead to genomic change or cell death. Organisms have developed several pathways and have many factors devoted to repairing DSBs, which broadly occurs by homologous recombination, which relies on an identical or homologous sequence to template repair, or nonhomologous end-joining. Much of our understanding of these repair mechanisms has come from the study of induced DNA cleavage by site-specific endonucleases. In addition to their biological role, these cellular pathways can be co-opted for gene editing to study gene function or for gene therapy or other applications. While the first gene editing experiments were done more than 20 years ago, the recent discovery of RNA-guided endonucleases has simplified approaches developed over the years to make gene editing an approach that is available to the entire biomedical research community. Here, we review DSB repair mechanisms and site-specific cleavage systems that have provided insight into these mechanisms and led to the current gene editing revolution.
Collapse
Affiliation(s)
- Maria Jasin
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 02454-9110, USA.
| |
Collapse
|
16
|
Emerson CH, Bertuch AA. Consider the workhorse: Nonhomologous end-joining in budding yeast. Biochem Cell Biol 2016; 94:396-406. [PMID: 27240172 DOI: 10.1139/bcb-2016-0001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
DNA double strand breaks (DSBs) are dangerous sources of genome instability and must be repaired by the cell. Nonhomologous end-joining (NHEJ) is an evolutionarily conserved pathway to repair DSBs by direct ligation of the ends, with no requirement for a homologous template. While NHEJ is the primary DSB repair pathway in mammalian cells, conservation of the core NHEJ factors throughout eukaryotes makes the pathway attractive for study in model organisms. The budding yeast, Saccharomyces cerevisiae, has been used extensively to develop a functional picture of NHEJ. In this review, we will discuss the current understanding of NHEJ in S. cerevisiae. Topics include canonical end-joining, alternative end-joining, and pathway regulation. Particular attention will be paid to the NHEJ mechanism involving core factors, including Yku70/80, Dnl4, Lif1, and Nej1, as well as the various factors implicated in the processing of the broken ends. The relevance of chromatin dynamics to NHEJ will also be discussed. This review illustrates the use of S. cerevisiae as a powerful system to understand the principles of NHEJ, as well as in pioneering the direction of the field.
Collapse
Affiliation(s)
- Charlene H Emerson
- a Graduate Program in Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,b Departments of Pediatrics and Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alison A Bertuch
- b Departments of Pediatrics and Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
17
|
Galli A, Chan CY, Parfenova L, Cervelli T, Schiestl RH. Requirement of POL3 and POL4 on non-homologous and microhomology-mediated end joining in rad50/xrs2 mutants of Saccharomyces cerevisiae. Mutagenesis 2015; 30:841-9. [PMID: 26122113 DOI: 10.1093/mutage/gev046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Non-homologous end joining (NHEJ) directly joins two broken DNA ends without sequence homology. A distinct pathway called microhomology-mediated end joining (MMEJ) relies on a few base pairs of homology between the recombined DNA. The majority of DNA double-strand breaks caused by endogenous oxygen species or ionizing radiation contain damaged bases that hinder direct religation. End processing is required to remove mismatched nucleotides and fill in gaps during end joining of incompatible ends. POL3 in Saccharomyces cerevisiae encodes polymerase δ that is required for DNA replication and other DNA repair processes. Our previous results have shown that POL3 is involved in gap filling at 3' overhangs in POL4-independent NHEJ. Here, we studied the epistatic interaction between POL3, RAD50, XRS2 and POL4 in NHEJ using a plasmid-based endjoining assay in yeast. We demonstrated that either rad50 or xrs2 mutation is epistatic for end joining of compatible ends in the rad50 pol3-t or xrs2 pol3-t double mutants. However, the pol3-t and rad50 or pol3-t and xrs2 mutants caused an additive decrease in the end-joining efficiency of incompatible ends, suggesting that POL3 and RAD50 or POL3 and XRS2 exhibit independent functions in NHEJ. In the rad50 pol4 mutant, end joining of incompatible ends was not detected. In the rad50 or xrs2 mutants, NHEJ events did not contain any microhomology at the rejoined junctions. The pol3-t mutation restored MMEJ in the rad50 or xrs2 mutant backgrounds. Moreover, we demonstrated that NHEJ of incompatible ends required RAD50 and POL4 more than POL3. In conclusion, POL3 and POL4 have differential functions in NHEJ, independent of the RAD50-mediated repair pathway.
Collapse
Affiliation(s)
| | - Cecilia Y Chan
- Departments of Pathology, Environmental Health, and Radiation Oncology, David Geffen School of Medicine at UCLA and UCLA School of Public Health, 71-295 CHS, 650 Charles E. Young Drive South, Los Angeles, CA, USA
| | - Liubov Parfenova
- Departments of Pathology, Environmental Health, and Radiation Oncology, David Geffen School of Medicine at UCLA and UCLA School of Public Health, 71-295 CHS, 650 Charles E. Young Drive South, Los Angeles, CA, USA
| | | | - Robert H Schiestl
- Departments of Pathology, Environmental Health, and Radiation Oncology, David Geffen School of Medicine at UCLA and UCLA School of Public Health, 71-295 CHS, 650 Charles E. Young Drive South, Los Angeles, CA, USA
| |
Collapse
|
18
|
Lopez V, Barinova N, Onishi M, Pobiega S, Pringle JR, Dubrana K, Marcand S. Cytokinesis breaks dicentric chromosomes preferentially at pericentromeric regions and telomere fusions. Genes Dev 2015; 29:322-36. [PMID: 25644606 PMCID: PMC4318148 DOI: 10.1101/gad.254664.114] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Dicentric chromosomes are unstable products of erroneous DNA repair events that can lead to further genome rearrangements and extended gene copy number variations. Lopez et al. find that dicentrics without internal telomere sequences preferentially break at pericentromeric regions. In all cases, cleavage does not occur in anaphase but instead requires cytokinesis. Dicentrics cause the spindle pole bodies and centromeres to relocate to the bud neck during cytokinesis, explaining how cytokinesis can sever dicentrics near centromeres. Dicentric chromosomes are unstable products of erroneous DNA repair events that can lead to further genome rearrangements and extended gene copy number variations. During mitosis, they form anaphase bridges, resulting in chromosome breakage by an unknown mechanism. In budding yeast, dicentrics generated by telomere fusion break at the fusion, a process that restores the parental karyotype and protects cells from rare accidental telomere fusion. Here, we observed that dicentrics lacking telomere fusion preferentially break within a 25- to 30-kb-long region next to the centromeres. In all cases, dicentric breakage requires anaphase exit, ruling out stretching by the elongated mitotic spindle as the cause of breakage. Instead, breakage requires cytokinesis. In the presence of dicentrics, the cytokinetic septa pinch the nucleus, suggesting that dicentrics are severed after actomyosin ring contraction. At this time, centromeres and spindle pole bodies relocate to the bud neck, explaining how cytokinesis can sever dicentrics near centromeres.
Collapse
Affiliation(s)
- Virginia Lopez
- Laboratoire Télomères et Réparation du Chromosome, Service Instabilité Génétique Réparation et Recombinaison, Institut de Radiobiologie Moléculaire et Cellulaire, Commissariat à l'Energie Atomique et aux Energies Alternatives, 92265 Fontenay-aux-Roses, France; UMR967, Institut National de la Santé et de la Recherche Médicale, 92265 Fontenay-aux-Roses, France
| | - Natalja Barinova
- Laboratoire Télomères et Réparation du Chromosome, Service Instabilité Génétique Réparation et Recombinaison, Institut de Radiobiologie Moléculaire et Cellulaire, Commissariat à l'Energie Atomique et aux Energies Alternatives, 92265 Fontenay-aux-Roses, France; UMR967, Institut National de la Santé et de la Recherche Médicale, 92265 Fontenay-aux-Roses, France
| | - Masayuki Onishi
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Sabrina Pobiega
- Laboratoire Télomères et Réparation du Chromosome, Service Instabilité Génétique Réparation et Recombinaison, Institut de Radiobiologie Moléculaire et Cellulaire, Commissariat à l'Energie Atomique et aux Energies Alternatives, 92265 Fontenay-aux-Roses, France; UMR967, Institut National de la Santé et de la Recherche Médicale, 92265 Fontenay-aux-Roses, France
| | - John R Pringle
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Karine Dubrana
- UMR967, Institut National de la Santé et de la Recherche Médicale, 92265 Fontenay-aux-Roses, France; Laboratoire Instabilité Génétique et Organisation Nucléaire, Service Instabilité Génétique Réparation et Recombinaison, Institut de Radiobiologie Moléculaire et Cellulaire, Commissariat à l'Energie Atomique et aux Energies Alternatives, 92265 Fontenay-aux-Roses, France
| | - Stéphane Marcand
- Laboratoire Télomères et Réparation du Chromosome, Service Instabilité Génétique Réparation et Recombinaison, Institut de Radiobiologie Moléculaire et Cellulaire, Commissariat à l'Energie Atomique et aux Energies Alternatives, 92265 Fontenay-aux-Roses, France; UMR967, Institut National de la Santé et de la Recherche Médicale, 92265 Fontenay-aux-Roses, France;
| |
Collapse
|
19
|
Morales ME, White TB, Streva VA, DeFreece CB, Hedges DJ, Deininger PL. The contribution of alu elements to mutagenic DNA double-strand break repair. PLoS Genet 2015; 11:e1005016. [PMID: 25761216 PMCID: PMC4356517 DOI: 10.1371/journal.pgen.1005016] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/22/2015] [Indexed: 11/18/2022] Open
Abstract
Alu elements make up the largest family of human mobile elements, numbering 1.1 million copies and comprising 11% of the human genome. As a consequence of evolution and genetic drift, Alu elements of various sequence divergence exist throughout the human genome. Alu/Alu recombination has been shown to cause approximately 0.5% of new human genetic diseases and contribute to extensive genomic structural variation. To begin understanding the molecular mechanisms leading to these rearrangements in mammalian cells, we constructed Alu/Alu recombination reporter cell lines containing Alu elements ranging in sequence divergence from 0%-30% that allow detection of both Alu/Alu recombination and large non-homologous end joining (NHEJ) deletions that range from 1.0 to 1.9 kb in size. Introduction of as little as 0.7% sequence divergence between Alu elements resulted in a significant reduction in recombination, which indicates even small degrees of sequence divergence reduce the efficiency of homology-directed DNA double-strand break (DSB) repair. Further reduction in recombination was observed in a sequence divergence-dependent manner for diverged Alu/Alu recombination constructs with up to 10% sequence divergence. With greater levels of sequence divergence (15%-30%), we observed a significant increase in DSB repair due to a shift from Alu/Alu recombination to variable-length NHEJ which removes sequence between the two Alu elements. This increase in NHEJ deletions depends on the presence of Alu sequence homeology (similar but not identical sequences). Analysis of recombination products revealed that Alu/Alu recombination junctions occur more frequently in the first 100 bp of the Alu element within our reporter assay, just as they do in genomic Alu/Alu recombination events. This is the first extensive study characterizing the influence of Alu element sequence divergence on DNA repair, which will inform predictions regarding the effect of Alu element sequence divergence on both the rate and nature of DNA repair events. DNA double-strand breaks (DSBs) are a highly mutagenic form of DNA damage that can be repaired through one of several pathways with varied degrees of sequence preservation. Faithful repair of DSBs often occurs through gene conversion in which a sister chromatid is used as a repair template. Unfaithful repair of DSBs can occur through non-allelic homologous or homeologous recombination, which leads to chromosomal abnormalities such as deletions, duplications, and translocations and has been shown to cause several human genetic diseases. Substrates for these homologous and homeologous events include Alu elements, which are approximately 300 bp elements that comprise ~11% of the human genome. We use a new reporter assay to show that repair of DSBs results in Alu-mediated deletions that resolve through several distinct repair pathways. Either single-strand annealing (SSA) repair or microhomology-mediated end joining occurs ‘in register’ between two Alu elements when Alu sequence divergence is low. However, with more diverged Alu elements, like those typically found in the human genome, repair of DSBs appears to use the Alu/Alu homeology to direct non-homologous end joining in the general vicinity of the Alu elements. Mutagenic NHEJ repair involving divergent Alu elements may represent a common repair event in primate genomes.
Collapse
Affiliation(s)
- Maria E. Morales
- Tulane Cancer Center and Department of Epidemiology, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Travis B. White
- Tulane Cancer Center and Department of Epidemiology, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Vincent A. Streva
- Tulane Cancer Center and Department of Epidemiology, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Cecily B. DeFreece
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
| | - Dale J. Hedges
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Prescott L. Deininger
- Tulane Cancer Center and Department of Epidemiology, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
20
|
DNA double-strand breaks and telomeres play important roles in trypanosoma brucei antigenic variation. EUKARYOTIC CELL 2015; 14:196-205. [PMID: 25576484 DOI: 10.1128/ec.00207-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human-infecting microbial pathogens all face a serious problem of elimination by the host immune response. Antigenic variation is an effective immune evasion mechanism where the pathogen regularly switches its major surface antigen. In many cases, the major surface antigen is encoded by genes from the same gene family, and its expression is strictly monoallelic. Among pathogens that undergo antigenic variation, Trypanosoma brucei (a kinetoplastid), which causes human African trypanosomiasis, Plasmodium falciparum (an apicomplexan), which causes malaria, Pneumocystis jirovecii (a fungus), which causes pneumonia, and Borrelia burgdorferi (a bacterium), which causes Lyme disease, also express their major surface antigens from loci next to the telomere. Except for Plasmodium, DNA recombination-mediated gene conversion is a major pathway for surface antigen switching in these pathogens. In the last decade, more sophisticated molecular and genetic tools have been developed in T. brucei, and our knowledge of functions of DNA recombination in antigenic variation has been greatly advanced. VSG is the major surface antigen in T. brucei. In subtelomeric VSG expression sites (ESs), VSG genes invariably are flanked by a long stretch of upstream 70-bp repeats. Recent studies have shown that DNA double-strand breaks (DSBs), particularly those in 70-bp repeats in the active ES, are a natural potent trigger for antigenic variation in T. brucei. In addition, telomere proteins can influence VSG switching by reducing the DSB amount at subtelomeric regions. These findings will be summarized and their implications will be discussed in this review.
Collapse
|
21
|
Zhang J, Zuo T, Wang D, Peterson T. Transposition-mediated DNA re-replication in maize. eLife 2014; 3:e03724. [PMID: 25406063 PMCID: PMC4270019 DOI: 10.7554/elife.03724] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 11/17/2014] [Indexed: 02/03/2023] Open
Abstract
Every DNA segment in a eukaryotic genome normally replicates once and only once per cell cycle to maintain genome stability. We show here that this restriction can be bypassed through alternative transposition, a transposition reaction that utilizes the termini of two separate, nearby transposable elements (TEs). Our results suggest that alternative transposition during S phase can induce re-replication of the TEs and their flanking sequences. The DNA re-replication can spontaneously abort to generate double-strand breaks, which can be repaired to generate Composite Insertions composed of transposon termini flanking segmental duplications of various lengths. These results show how alternative transposition coupled with DNA replication and repair can significantly alter genome structure and may have contributed to rapid genome evolution in maize and possibly other eukaryotes.
Collapse
Affiliation(s)
- Jianbo Zhang
- Department of Genetics,
Development and Cell Biology, Iowa State
University, Ames, United States
- Department of
Agronomy, Iowa State University,
Ames,
United States
| | - Tao Zuo
- Department of Genetics,
Development and Cell Biology, Iowa State
University, Ames, United States
- Department of
Agronomy, Iowa State University,
Ames,
United States
| | - Dafang Wang
- Department of Genetics,
Development and Cell Biology, Iowa State
University, Ames, United States
- Department of
Agronomy, Iowa State University,
Ames,
United States
| | - Thomas Peterson
- Department of Genetics,
Development and Cell Biology, Iowa State
University, Ames, United States
- Department of
Agronomy, Iowa State University,
Ames,
United States
| |
Collapse
|
22
|
Mehta A, Haber JE. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb Perspect Biol 2014; 6:a016428. [PMID: 25104768 PMCID: PMC4142968 DOI: 10.1101/cshperspect.a016428] [Citation(s) in RCA: 511] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA is subject to many endogenous and exogenous insults that impair DNA replication and proper chromosome segregation. DNA double-strand breaks (DSBs) are one of the most toxic of these lesions and must be repaired to preserve chromosomal integrity. Eukaryotes are equipped with several different, but related, repair mechanisms involving homologous recombination, including single-strand annealing, gene conversion, and break-induced replication. In this review, we highlight the chief sources of DSBs and crucial requirements for each of these repair processes, as well as the methods to identify and study intermediate steps in DSB repair by homologous recombination.
Collapse
Affiliation(s)
- Anuja Mehta
- Rosenstiel Basic Medical Sciences Research Center, MS029 Rosenstiel Center, Brandeis University, Waltham, Massachusetts 02454-9110
| | - James E Haber
- Rosenstiel Basic Medical Sciences Research Center, MS029 Rosenstiel Center, Brandeis University, Waltham, Massachusetts 02454-9110
| |
Collapse
|
23
|
Martin MJ, Blanco L. Decision-making during NHEJ: a network of interactions in human Polμ implicated in substrate recognition and end-bridging. Nucleic Acids Res 2014; 42:7923-34. [PMID: 24878922 PMCID: PMC4081086 DOI: 10.1093/nar/gku475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human Polμ is a DNA polymerase belonging to the X family that has been implicated in the non-homologous end-joining (NHEJ) pathway during repair of double-strand breaks in DNA. Loop1 is a flexible piece of Polμ which has a critical role during terminal transferase and end-joining activities: it acts as a pseudo-template when the template strand is discontinuous or unavailable, whilst diffusing away if present to avoid steric clashes. Mutational analysis and inspection of the 3D structures available allowed us to identify a network of residues in charge of sensing the presence or absence of discontinuities in the template strand, which will in turn determine the final position adopted by Loop1. This network is formed by the previously uncharacterized thumb mini-loop (NSH motif) and the positively charged helix N, which contribute to the correct positioning of Loop1 and to juxtapose the discontinuous template strand during NHEJ of incompatible ends. Accordingly, single mutation of specific conserved residues in these motifs, whilst irrelevant in most of the cases for gap filling, largely affected terminal transferase and end-joining activities. Other point mutations in the ‘hinges’ of Loop1, such as residues Phe385 or Phe389, corroborated the flexibility requirements of this motif.
Collapse
Affiliation(s)
- Maria Jose Martin
- Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
| | - Luis Blanco
- Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
| |
Collapse
|
24
|
Renkawitz J, Lademann CA, Jentsch S. Mechanisms and principles of homology search during recombination. Nat Rev Mol Cell Biol 2014; 15:369-83. [PMID: 24824069 DOI: 10.1038/nrm3805] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Homologous recombination is crucial for genome stability and for genetic exchange. Although our knowledge of the principle steps in recombination and its machinery is well advanced, homology search, the critical step of exploring the genome for homologous sequences to enable recombination, has remained mostly enigmatic. However, recent methodological advances have provided considerable new insights into this fundamental step in recombination that can be integrated into a mechanistic model. These advances emphasize the importance of genomic proximity and nuclear organization for homology search and the critical role of homology search mediators in this process. They also aid our understanding of how homology search might lead to unwanted and potentially disease-promoting recombination events.
Collapse
Affiliation(s)
- Jörg Renkawitz
- 1] Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany. [2] Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria. [3]
| | - Claudio A Lademann
- 1] Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany. [2]
| | - Stefan Jentsch
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
25
|
Non-homologous end joining often uses microhomology: implications for alternative end joining. DNA Repair (Amst) 2014; 17:74-80. [PMID: 24613510 DOI: 10.1016/j.dnarep.2014.02.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/27/2014] [Accepted: 02/10/2014] [Indexed: 11/20/2022]
Abstract
Artemis and PALF (also called APLF) appear to be among the primary nucleases involved in non-homologous end joining (NHEJ) and responsible for most nucleolytic end processing in NHEJ. About 60% of NHEJ events show an alignment of the DNA ends that use 1 or 2bp of microhomology (MH) between the two DNA termini. Thus, MH is a common feature of NHEJ. For most naturally occurring human chromosomal deletions (e.g., after oxidative damage or radiation) and translocations, such as those seen in human neoplasms and as well as inherited chromosomal structural variations, MH usage occurs at a frequency that is typical of NHEJ, and does not suggest major involvement of alternative pathways that require more extensive MH. Though we mainly focus on human NHEJ at double-strand breaks, comparison on these points to other eukaryotes, primarily S. cerevisiae, is informative.
Collapse
|
26
|
Martin MJ, Garcia-Ortiz MV, Gomez-Bedoya A, Esteban V, Guerra S, Blanco L. A specific N-terminal extension of the 8 kDa domain is required for DNA end-bridging by human Polμ and Polλ. Nucleic Acids Res 2013; 41:9105-16. [PMID: 23935073 PMCID: PMC3799444 DOI: 10.1093/nar/gkt681] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human DNA polymerases mu (Polµ) and lambda (Polλ) are X family members involved in the repair of double-strand breaks in DNA during non-homologous end joining. Crucial abilities of these enzymes include bridging of the two 3′ single-stranded overhangs and trans-polymerization using one 3′ end as primer and the other as template, to minimize sequence loss. In this context, we have studied the importance of a previously uncharacterised sequence (‘brooch’), located at the N-terminal boundary of the Polß-like polymerase core, and formed by Tyr141, Ala142, Cys143, Gln144 and Arg145 in Polµ, and by Trp239, Val240, Cys241, Ala242 and Gln243 in Polλ. The brooch is potentially implicated in the maintenance of a closed conformation throughout the catalytic cycle, and our studies indicate that it could be a target of Cdk phosphorylation in Polµ. The brooch is irrelevant for 1 nt gap filling, but of specific importance during end joining: single mutations in the conserved residues reduced the formation of two ended synapses and strongly diminished the ability of Polµ and polymerase lambda to perform non-homologous end joining reactions in vitro.
Collapse
Affiliation(s)
- Maria Jose Martin
- Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
27
|
Decottignies A. Alternative end-joining mechanisms: a historical perspective. Front Genet 2013; 4:48. [PMID: 23565119 PMCID: PMC3613618 DOI: 10.3389/fgene.2013.00048] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 03/15/2013] [Indexed: 12/29/2022] Open
Abstract
In the presence of functional DNA repair pathways, DNA double-strand breaks (DSBs) are mainly repaired by non-homologous end-joining (NHEJ) or homologous recombination (HR), two conserved pathways that protect cells from aberrant chromosomal rearrangements. During the past two decades however, unusual and presumably distinct DNA end-joining repair activities have been unraveled in NHEJ-deficient cells and these are likely to operate in various chromosomal contexts and species. Most alternative DNA end-joining events reported so far appear to involve microhomologous sequences and are likely to rely on a subset of HR enzymes, namely those responsible for the single-strand annealing mechanism of HR, and on DNA Ligase III. Usually, microhomologies are not initially present at DSB ends and thus need to be unmasked through DNA end resection, a process that can lead to extensive nucleotide loss and is therefore highly mutagenic. In addition to microhomology-mediated end-joining events, recent studies in mammalian cells point toward the existence of a distinct and still ill defined alternative end-joining pathway that does not appear to rely on pre-existing microhomologies and may possibly involve DNA Ligase I. Whether dependent on microhomologies or not, alternative DNA end-joining mechanisms are likely to be highly mutagenic in vivo, being able to drive telomere fusion events and cancer-associated chromosomal translocations in mouse models. In the future, it will be important to better characterize the genetic requirements of these mutagenic alternative mechanisms of DNA end-joining.
Collapse
Affiliation(s)
- Anabelle Decottignies
- Genetic and Epigenetic Alterations of Genomes, de Duve Institute, Faculty of Pharmacy and Biomedical Sciences, Catholic University of Louvain Brussels, Belgium
| |
Collapse
|
28
|
Nonrandom distribution of interhomolog recombination events induced by breakage of a dicentric chromosome in Saccharomyces cerevisiae. Genetics 2013; 194:69-80. [PMID: 23410835 PMCID: PMC3632482 DOI: 10.1534/genetics.113.150144] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dicentric chromosomes undergo breakage in mitosis, resulting in chromosome deletions, duplications, and translocations. In this study, we map chromosome break sites of dicentrics in Saccharomyces cerevisiae by a mitotic recombination assay. The assay uses a diploid strain in which one homolog has a conditional centromere in addition to a wild-type centromere, and the other homolog has only the wild-type centromere; the conditional centromere is inactive when cells are grown in galactose and is activated when the cells are switched to glucose. In addition, the two homologs are distinguishable by multiple single-nucleotide polymorphisms (SNPs). Under conditions in which the conditional centromere is activated, the functionally dicentric chromosome undergoes double-stranded DNA breaks (DSBs) that can be repaired by mitotic recombination with the homolog. Such recombination events often lead to loss of heterozygosity (LOH) of SNPs that are centromere distal to the crossover. Using a PCR-based assay, we determined the position of LOH in multiple independent recombination events to a resolution of ∼4 kb. This analysis shows that dicentric chromosomes have recombination breakpoints that are broadly distributed between the two centromeres, although there is a clustering of breakpoints within 10 kb of the conditional centromere.
Collapse
|
29
|
The Saccharomyces cerevisiae chromatin remodeler Fun30 regulates DNA end resection and checkpoint deactivation. Mol Cell Biol 2012; 32:4727-40. [PMID: 23007155 DOI: 10.1128/mcb.00566-12] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fun30 is a Swi2/Snf2 homolog in budding yeast that has been shown to remodel chromatin both in vitro and in vivo. We report that Fun30 plays a key role in homologous recombination, by facilitating 5'-to-3' resection of double-strand break (DSB) ends, apparently by facilitating exonuclease digestion of nucleosome-bound DNA adjacent to the DSB. Fun30 is recruited to an HO endonuclease-induced DSB and acts in both the Exo1-dependent and Sgs1-dependent resection pathways. Deletion of FUN30 slows the rate of 5'-to-3' resection from 4 kb/h to about 1.2 kb/h. We also found that the resection rate is reduced by DNA damage-induced phosphorylation of histone H2A-S129 (γ-H2AX) and that Fun30 interacts preferentially with nucleosomes in which H2A-S129 is not phosphorylated. Fun30 is not required for later steps in homologous recombination. Like its homolog Rdh54/Tid1, Fun30 is required to allow the adaptation of DNA damage checkpoint-arrested cells with an unrepaired DSB to resume cell cycle progression.
Collapse
|
30
|
Abstract
Mating type in Saccharomyces cerevisiae is determined by two nonhomologous alleles, MATa and MATα. These sequences encode regulators of the two different haploid mating types and of the diploids formed by their conjugation. Analysis of the MATa1, MATα1, and MATα2 alleles provided one of the earliest models of cell-type specification by transcriptional activators and repressors. Remarkably, homothallic yeast cells can switch their mating type as often as every generation by a highly choreographed, site-specific homologous recombination event that replaces one MAT allele with different DNA sequences encoding the opposite MAT allele. This replacement process involves the participation of two intact but unexpressed copies of mating-type information at the heterochromatic loci, HMLα and HMRa, which are located at opposite ends of the same chromosome-encoding MAT. The study of MAT switching has yielded important insights into the control of cell lineage, the silencing of gene expression, the formation of heterochromatin, and the regulation of accessibility of the donor sequences. Real-time analysis of MAT switching has provided the most detailed description of the molecular events that occur during the homologous recombinational repair of a programmed double-strand chromosome break.
Collapse
|
31
|
Ramsden DA. Polymerases in nonhomologous end joining: building a bridge over broken chromosomes. Antioxid Redox Signal 2011; 14:2509-19. [PMID: 20649463 PMCID: PMC3113452 DOI: 10.1089/ars.2010.3429] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Repair of double-strand breaks in chromosomal DNA is essential. Unfortunately, a paradigm central to most DNA repair pathways--damaged DNA is replaced by polymerases, by using an intact, undamaged complementary strand as a template--no longer works. The nonhomologous end joining (NHEJ) pathway nevertheless still uses DNA polymerases to help repair double-strand breaks. Bacteria use a member of the archaeo-eukaryal primase superfamily, whereas eukaryotes use multiple members of the polymerase X family. These polymerases can, depending on the biologic context, accurately replace break-associated damage, mitigate loss of flanking DNA, or diversify products of repair. Polymerases specifically implicated in NHEJ are uniquely effective in these roles: relative to canonic polymerases, NHEJ polymerases have been engineered to do more with less.
Collapse
Affiliation(s)
- Dale A Ramsden
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, and Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, NC 27599, USA.
| |
Collapse
|
32
|
Chan CY, Zhu J, Schiestl RH. Effect of rad50 mutation on illegitimate recombination in Saccharomyces cerevisiae. Mol Genet Genomics 2011; 285:471-84. [PMID: 21512733 DOI: 10.1007/s00438-011-0619-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 03/31/2011] [Indexed: 11/28/2022]
Abstract
Genes in the RAD52 epistasis group are involved in repairing DNA double-stranded breaks via homologous recombination. We have previously shown that RAD50 is involved in mitotic nonhomologous integration but not in homologous integration. However, the role of Rad50 in nonhomologous integration has not previously been examined. In the current work, we report that the rad50∆ mutation caused a tenfold decrease in the frequency of nonhomologous integration with the majority of nonhomologous integrants showing an unstable Ura(+) phenotype. Sequencing analysis of the integration target sites showed that integration events of both ends of the integrating vector in the rad50∆ mutant occurred at different chromosomal locations, resulting in large deletions or translocations on the genomic insertion sites. Interestingly, 47% of events in the rad50∆ mutant were integrated into repetitive sequences including rDNA locus, telomeres and Ty elements and 27% of events were integrated into non-repetitive sequences as compared to 11% of events integrated into rDNA and 70% into non-repetitive sequences in the wild-type cells. These results showed that deletion of RAD50 significantly changes the distribution of different classes of integration events, suggesting that Rad50 is required for nonhomologous integration at non-repetitive sequences more so than at repetitive ones. Furthermore, Southern analysis indicated that half of the events contained deletions at one or at both ends of the integrating DNA fragment, suggesting that Rad50 might have a role in protecting free ends of double-strand breaks. In contrast to the rad50∆ mutant, the rad50S mutant (separation of function allele) slightly increases the frequency of nonhomologous integration but the distribution of integration events is similar to that of wild-type cells with the majority of events integrated into a chromosomal locus. Our results suggest that deletion of RAD50 may block the major pathway of nonhomologous integration into a non-repetitive chromosomal locus and Rad50 may be involved in tethering two ends of the integrating DNA into close proximity that facilitates nonhomologous integration of both ends into a single chromosomal locus.
Collapse
Affiliation(s)
- Cecilia Y Chan
- Departments of Pathology, Environmental Health, and Radiation Oncology, David Geffen School of Medicine at UCLA and UCLA School of Public Health, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
33
|
Datta K, Purkayastha S, Neumann RD, Pastwa E, Winters TA. Base damage immediately upstream from double-strand break ends is a more severe impediment to nonhomologous end joining than blocked 3'-termini. Radiat Res 2011; 175:97-112. [PMID: 21175352 PMCID: PMC3518376 DOI: 10.1667/rr2332.1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Radiation-induced DNA double-strand breaks (DSBs) are critical cytotoxic lesions that are typically repaired by nonhomologous end joining (NHEJ) in human cells. Our previous work indicated that the highly cytotoxic DSBs formed by (125)I decay possess base damage clustered within 8 to 10 bases of the break and 3'-phosphate (P) and 3'-OH ends. This study examined the effect of such structures on NHEJ in in vitro assays employing either (125)I decay-induced DSB linearized plasmid DNA or structurally defined duplex oligonucleotides. Duplex oligonucleotides that possess either a 3'-P or 3'-phosphoglycolate (PG) or a ligatable 3'-OH end with either an AP site or an 8-oxo-dG 1 nucleotide upstream (-1n) from the 3'-terminus have been examined for reparability. Moderate to severe end-joining inhibition was observed for modified DSB ends or 8-oxo-dG upstream from a 3'-OH end. In contrast, abolition of end joining was observed with duplexes possessing an AP site upstream from a ligatable 3'-OH end or for a lesion combination involving 3'-P plus an upstream 8-oxo-dG. In addition, base mismatches at the -1n position were also strong inhibitors of NHEJ in this system, suggesting that destabilization of the DSB terminus as a result of base loss or improper base pairing may play a role in the inhibitory effects of these structures. Furthermore, we provide data indicating that DSB end joining is likely to occur prior to removal or repair of base lesions proximal to the DSB terminus. Our results show that base damage or base loss near a DSB end may be a severe block to NHEJ and that complex combinations of lesions presented in the context of a DSB may be more inhibitory than the individual lesions alone. In contrast, blocked DSB 3'-ends alone are only modestly inhibitory to NHEJ. Finally, DNA ligase activity is implicated as being responsible for these effects.
Collapse
Affiliation(s)
- Kamal Datta
- Nuclear Medicine Department, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Shubhadeep Purkayastha
- Nuclear Medicine Department, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Ronald D. Neumann
- Nuclear Medicine Department, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Elzbieta Pastwa
- Department of Medicinal Chemistry, Medical University of Lodz, Lodz, Poland 92-215
| | - Thomas A. Winters
- Nuclear Medicine Department, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
34
|
Ma W, Westmoreland J, Nakai W, Malkova A, Resnick MA. Characterizing resection at random and unique chromosome double-strand breaks and telomere ends. Methods Mol Biol 2011; 745:15-31. [PMID: 21660686 PMCID: PMC4857595 DOI: 10.1007/978-1-61779-129-1_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Resection of DNA double-strand break (DSB) ends, which results in 3(') single-stranded tails, is an early event of DSB repair and can be a critical determinant in choice of repair pathways and eventual genome stability. Current techniques for examining resection are restricted to model in vivo systems with defined substrates (i.e., HO-endonuclease targets). We present here a robust assay that can analyze not only the resection of site-specific DSBs which typically have "clean" double-strand ends but also random "dirty-ended" DSBs such as those generated by ionizing radiation and chemotherapeutic agents. The assay is based on our finding that yeast chromosomes with single-stranded DNA tails caused by resection are less mobile during pulsed-field gel electrophoresis (PFGE) than those without a tail. In combination with the use of a circular chromosome and enzymatic trimming of single-stranded DNA, resection of random DSBs can be easily detected and analyzed. This mobility-shift assay provides a unique opportunity to examine the mechanisms of resection, early events in DSB repair, as well as factors involved in pathway regulation.
Collapse
Affiliation(s)
- Wenjian Ma
- Chromosome Stability Section, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, NC 27709, USA.
| | | | | | | | | |
Collapse
|
35
|
Abstract
Nonhomologous end-joining (NHEJ) inhibition at telomeres ensures that native chromosome ends do not fuse together. But the occurrence and consequences of rare telomere fusions are not well understood. It is notably unclear whether a telomere fusion could be processed to restore telomere ends. Here we address the behavior of individual dicentrics formed by telomere fusion in the yeast Saccharomyces cerevisiae. Our approach was to first stabilize and amplify fusions between two chromosomes by temporarily inactivating one centromere. Next we analyzed dicentric breakage following centromere reactivation. Unexpectedly, dicentrics often break at the telomere fusions during progression through mitosis, a process that restores the parental chromosomes. This unforeseen result suggests a rescue pathway able to process telomere fusions and to back up NHEJ inhibition at telomeres.
Collapse
Affiliation(s)
- Sabrina Pobiega
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Radiobiologie Cellulaire et Moléculaire, Service Instabilité Génétique Réparation et Recombinaison, Laboratoire Télmère et Réparation du Chromosome, Fontenay-aux-roses 92260, France
| | | |
Collapse
|
36
|
Iacovoni JS, Caron P, Lassadi I, Nicolas E, Massip L, Trouche D, Legube G. High-resolution profiling of gammaH2AX around DNA double strand breaks in the mammalian genome. EMBO J 2010; 29:1446-57. [PMID: 20360682 DOI: 10.1038/emboj.2010.38] [Citation(s) in RCA: 375] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 02/19/2010] [Indexed: 01/16/2023] Open
Abstract
Chromatin acts as a key regulator of DNA-related processes such as DNA damage repair. Although ChIP-chip is a powerful technique to provide high-resolution maps of protein-genome interactions, its use to study DNA double strand break (DSB) repair has been hindered by the limitations of the available damage induction methods. We have developed a human cell line that permits induction of multiple DSBs randomly distributed and unambiguously positioned within the genome. Using this system, we have generated the first genome-wide mapping of gammaH2AX around DSBs. We found that all DSBs trigger large gammaH2AX domains, which spread out from the DSB in a bidirectional, discontinuous and not necessarily symmetrical manner. The distribution of gammaH2AX within domains is influenced by gene transcription, as parallel mappings of RNA Polymerase II and strand-specific expression showed that gammaH2AX does not propagate on active genes. In addition, we showed that transcription is accurately maintained within gammaH2AX domains, indicating that mechanisms may exist to protect gene transcription from gammaH2AX spreading and from the chromatin rearrangements induced by DSBs.
Collapse
|
37
|
Nielsen I, Bentsen IB, Lisby M, Hansen S, Mundbjerg K, Andersen AH, Bjergbaek L. A Flp-nick system to study repair of a single protein-bound nick in vivo. Nat Methods 2009; 6:753-7. [PMID: 19749762 DOI: 10.1038/nmeth.1372] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 08/18/2009] [Indexed: 01/19/2023]
Abstract
We present the Flp-nick system, which allows introduction of a protein-bound nick at a single genomic site in Saccharomyces cerevisiae and thus mimics a stabilized topoisomerase I-DNA cleavage complex. We took advantage of a mutant Flp recombinase that can introduce a nick at a specific Flp recombinase recognition target site that has been integrated in the yeast genome. The genetic requirement for cells to cope with this insult is the same as for cells treated with camptothecin, which traps topoisomerase I-DNA cleavage complexes genome-wide. Hence, a single protein-bound nick is enough to kill cells if functional repair pathways are lacking. The Flp-nick system can be used to dissect repair, checkpoint and replication fork management pathways activated by a single genomic insult, and it allows the study of events at the damage site, which so far has been impossible to address.
Collapse
Affiliation(s)
- Ida Nielsen
- Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
| | | | | | | | | | | | | |
Collapse
|
38
|
Chan CY, Schiestl RH. Rad1, rad10 and rad52 mutations reduce the increase of microhomology length during radiation-induced microhomology-mediated illegitimate recombination in saccharomyces cerevisiae. Radiat Res 2009; 172:141-51. [PMID: 19630519 DOI: 10.1667/rr1675.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Abstract Illegitimate recombination can repair DNA double-strand breaks in one of two ways, either without sequence homology or by using a few base pairs of homology at the junctions. The second process is known as microhomology-mediated recombination. Previous studies showed that ionizing radiation and restriction enzymes increase the frequency of microhomology-mediated recombination in trans during rejoining of unirradiated plasmids or during integration of plasmids into the genome. Here we show that radiation-induced microhomology-mediated recombination is reduced by deletion of RAD52, RAD1 and RAD10 but is not affected by deletion of RAD51 and RAD2. The rad52 mutant did not change the frequency of radiation-induced microhomology-mediated recombination but rather reduced the length of microhomology required to undergo repair during radiation-induced recombination. The rad1 and rad10 mutants exhibited a smaller increase in the frequency of radiation-induced microhomology-mediated recombination, and the radiation-induced integration junctions from these mutants did not show more than 4 bp of microhomology. These results suggest that Rad52 facilitates annealing of short homologous sequences during integration and that Rad1/Rad10 endonuclease mediates removal of the displaced 3' single-stranded DNA ends after base-pairing of microhomology sequences, when more than 4 bp of microhomology are used. Taken together, these results suggest that radiation-induced microhomology-mediated recombination is under the same genetic control as the single-strand annealing apparatus that requires the RAD52, RAD1 and RAD10 genes.
Collapse
Affiliation(s)
- Cecilia Y Chan
- Departments of Pathology, Environmental Health and Radiation Oncology, Geffen School of Medicine and School of Public Health, UCLA, Los Angeles, California 90095, USA
| | | |
Collapse
|
39
|
Stabilization of dicentric translocations through secondary rearrangements mediated by multiple mechanisms in S. cerevisiae. PLoS One 2009; 4:e6389. [PMID: 19636429 PMCID: PMC2712687 DOI: 10.1371/journal.pone.0006389] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 06/25/2009] [Indexed: 02/05/2023] Open
Abstract
Background The gross chromosomal rearrangements (GCRs) observed in S. cerevisiae mutants with increased rates of accumulating GCRs include predicted dicentric GCRs such as translocations, chromosome fusions and isoduplications. These GCRs resemble the genome rearrangements found as mutations underlying inherited diseases as well as in the karyotypes of many cancers exhibiting ongoing genome instability Methodology/Principal Findings The structures of predicted dicentric GCRs were analyzed using multiple strategies including array-comparative genomic hybridization, pulse field gel electrophoresis, PCR amplification of predicted breakpoints and sequencing. The dicentric GCRs were found to be unstable and to have undergone secondary rearrangements to produce stable monocentric GCRs. The types of secondary rearrangements observed included: non-homologous end joining (NHEJ)-dependent intramolecular deletion of centromeres; chromosome breakage followed by NHEJ-mediated circularization or broken-end fusion to another chromosome telomere; and homologous recombination (HR)-dependent non-reciprocal translocations apparently mediated by break-induced replication. A number of these GCRs appeared to have undergone multiple bridge-fusion-breakage cycles. We also observed examples of chromosomes with extensive ongoing end decay in mec1 tlc1 mutants, suggesting that Mec1 protects chromosome ends from degradation and contributes to telomere maintenance by HR. Conclusions/Significance HR between repeated sequences resulting in secondary rearrangements was the most prevalent pathway for resolution of dicentric GCRs regardless of the structure of the initial dicentric GCR, although at least three other resolution mechanisms were observed. The resolution of dicentric GCRs to stable rearranged chromosomes could in part account for the complex karyotypes seen in some cancers.
Collapse
|
40
|
Scuric Z, Chan CY, Hafer K, Schiestl RH. Ionizing radiation induces microhomology-mediated end joining in trans in yeast and mammalian cells. Radiat Res 2009; 171:454-63. [PMID: 19397446 DOI: 10.1667/rr1329.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
DNA double-strand breaks repaired through nonhomologous end joining require no extended sequence homology as a template for the repair. A subset of end-joining events, termed microhomology-mediated end joining, occur between a few base pairs of homology, and such pathways have been implicated in different human cancers and genetic diseases. Here we investigated the effect of exposure of yeast and mammalian cells to ionizing radiation on the frequency and mechanism of rejoining of transfected unirradiated linear plasmid DNA. Cells were exposed to gamma radiation prior to plasmid transfection; subsequently the rejoined plasmids were recovered and the junction sequences were analyzed. In irradiated yeast cells, 68% of recovered plasmids contained microhomologies, compared to only 30% from unirradiated cells. Among them 57% of events used>or=4 bp of microhomology compared to only 11% from unirradiated cells. In irradiated mammalian cells, 54% of plasmids used>or=4 bp of microhomology compared to none from unirradiated cells. We conclude that exposure of yeast and mammalian cells to radiation prior to plasmid transfection enhances the frequency of microhomology-mediated end-joining events in trans. If such events occur within genomic locations, they may be involved in the generation of large deletions and other chromosomal aberrations that occur in cancer cells.
Collapse
Affiliation(s)
- Zorica Scuric
- David Geffen School of Medicine at UCLA, Department of Pathology, Los Angeles, California, USA
| | | | | | | |
Collapse
|
41
|
Schorsch C, Köhler T, Boles E. Knockout of the DNA ligase IV homolog gene in the sphingoid base producing yeast Pichia ciferrii significantly increases gene targeting efficiency. Curr Genet 2009; 55:381-9. [PMID: 19468735 DOI: 10.1007/s00294-009-0252-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 04/29/2009] [Accepted: 05/08/2009] [Indexed: 11/28/2022]
Abstract
The yeast Pichia ciferrii produces large quantities of the sphingoid base tetraacetyl phytosphingosine (TAPS) and is an interesting platform organism for the biotechnological production of sphingolipids and ceramides. Ceramides have attracted great attention as a specialty ingredient for moisture retention and protection of the skin in the cosmetics industry. First attempts have been started to metabolically engineer P. ciferrii for improved production of TAPS and other sphingoid bases. However, rational metabolic engineering of P. ciferrii is difficult due to a low gene targeting efficiency. In eukaryotes, two major pathways coexist, which are responsible for genomic DNA integration, homologous recombination (HR) and non-homologous end joining (NHEJ). Integration via HR is targeted, while NHEJ involves ectopic (non-targeted) integration depending on a ligation step mediated by DNA ligase IV (Lig4). Here, we demonstrate a dramatical increase in gene targeting efficiency in a P. ciferrii lig4 knockout strain, deficient in NHEJ. Furthermore, a quick and easy to use freeze-thaw method was developed to transform P. ciferrii with high efficiency. Owing to the ability of targeting genomic DNA integration our results pave the way for further genetic and metabolic engineering approaches with P. ciferrii by means of knocking out or overexpressing predestinated genes.
Collapse
Affiliation(s)
- Christoph Schorsch
- Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, 60438, Frankfurt, Germany.
| | | | | |
Collapse
|
42
|
Hirano Y, Reddy J, Sugimoto K. Role of budding yeast Rad18 in repair of HO-induced double-strand breaks. DNA Repair (Amst) 2008; 8:51-9. [PMID: 18824138 DOI: 10.1016/j.dnarep.2008.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 07/22/2008] [Accepted: 08/29/2008] [Indexed: 10/21/2022]
Abstract
The Rad6-Rad18 complex mono-ubiquitinates proliferating cell nuclear antigen (PCNA) at the lysine 164 residue after DNA damage and promotes DNA polymerase eta (Poleta)- and Polzeta/Rev1-dependent DNA synthesis. Double-strand breaks (DSBs) of DNA can be repaired by homologous recombination (HR) or non-homologous end-joining (NHEJ), both of which require new DNA synthesis. HO endonuclease introduces DSBs into specific DNA sequences. We have shown that Polzeta and Rev1 localize to HO-induced DSBs in a Mec1-dependent manner and promote Ku-dependent DSB repair. However, Polzeta and Rev1 localize to DSBs independently of PCNA ubiquitination. Here we provide evidence indicating that Rad18-mediated PCNA ubiquitination stimulates DNA synthesis by Polzeta and Rev1 in repair of HO-induced DSBs. Ubiquitination defective PCNA mutation or rad18Delta mutation confers the same DSB repair defect as rev1Delta mutation. Consistent with a role in DSB repair, Rad18 localizes to HO-induced DSBs in a Rad6-dependent manner. Unlike Polzeta or Rev1, Poleta is dispensable for repair of HO-induced DSBs. Ku and DNA ligase IV constitute a central NHEJ pathway. We also show that Polzeta and Rev1 act in the same pathway as DNA ligase IV, suggesting that Polzeta and Rev1 are involved in DNA synthesis during NHEJ. Our results suggest that Polzeta-Rev1 accumulates at regions near DSBs independently of PCNA ubiquitination and then interacts with ubiquitinated PCNA to facilitate DNA synthesis.
Collapse
Affiliation(s)
- Yukinori Hirano
- Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ 07103, United States
| | | | | |
Collapse
|
43
|
Guirouilh-Barbat J, Rass E, Plo I, Bertrand P, Lopez BS. Defects in XRCC4 and KU80 differentially affect the joining of distal nonhomologous ends. Proc Natl Acad Sci U S A 2007; 104:20902-7. [PMID: 18093953 PMCID: PMC2409239 DOI: 10.1073/pnas.0708541104] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Indexed: 11/18/2022] Open
Abstract
XRCC4-null mice have a more severe phenotype than KU80-null mice. Here, we address whether this difference in phenotype is connected to nonhomologous end-joining (NHEJ). We used intrachromosomal substrates to monitor NHEJ of two distal double-strand breaks (DSBs) targeted by I-SceI, in living cells. In xrcc4-defective XR-1 cells, a residual but significant end-joining process exists, which primarily uses microhomologies distal from the DSB. However, NHEJ efficiency was strongly reduced in xrcc4-defective XR-1 cells versus complemented cells, contrasting with KU-deficient xrs6 cells, which showed levels of end-joining similar to those of complemented cells. Nevertheless, sequence analysis of the repair junctions indicated that the accuracy of end-joining was strongly affected in both xrcc4-deficient and KU-deficient cells. More specifically, these data showed that the KU80/XRCC4 pathway is conservative and not intrinsically error-prone but can accommodate non-fully complementary ends at the cost of limited mutagenesis.
Collapse
Affiliation(s)
- Josée Guirouilh-Barbat
- Commissariat à l'Energie Atomique, Unité Mixte de Recherche 217, Centre National de la Recherche Scientifique/Commissariat à l'Energie Atomique, Institut de Radiobiologie Cellulaire et Moléculaire, Direction des Sciences du Vivant, 18 Route du Panorama, BP06, 92265 Fontenay aux Roses, Cedex, France
| | - Emilie Rass
- Commissariat à l'Energie Atomique, Unité Mixte de Recherche 217, Centre National de la Recherche Scientifique/Commissariat à l'Energie Atomique, Institut de Radiobiologie Cellulaire et Moléculaire, Direction des Sciences du Vivant, 18 Route du Panorama, BP06, 92265 Fontenay aux Roses, Cedex, France
| | - Isabelle Plo
- Commissariat à l'Energie Atomique, Unité Mixte de Recherche 217, Centre National de la Recherche Scientifique/Commissariat à l'Energie Atomique, Institut de Radiobiologie Cellulaire et Moléculaire, Direction des Sciences du Vivant, 18 Route du Panorama, BP06, 92265 Fontenay aux Roses, Cedex, France
| | - Pascale Bertrand
- Commissariat à l'Energie Atomique, Unité Mixte de Recherche 217, Centre National de la Recherche Scientifique/Commissariat à l'Energie Atomique, Institut de Radiobiologie Cellulaire et Moléculaire, Direction des Sciences du Vivant, 18 Route du Panorama, BP06, 92265 Fontenay aux Roses, Cedex, France
| | - Bernard S. Lopez
- Commissariat à l'Energie Atomique, Unité Mixte de Recherche 217, Centre National de la Recherche Scientifique/Commissariat à l'Energie Atomique, Institut de Radiobiologie Cellulaire et Moléculaire, Direction des Sciences du Vivant, 18 Route du Panorama, BP06, 92265 Fontenay aux Roses, Cedex, France
| |
Collapse
|
44
|
Malyarchuk S, Wright D, Castore R, Klepper E, Weiss B, Doherty AJ, Harrison L. Expression of Mycobacterium tuberculosis Ku and Ligase D in Escherichia coli results in RecA and RecB-independent DNA end-joining at regions of microhomology. DNA Repair (Amst) 2007; 6:1413-24. [PMID: 17560174 PMCID: PMC2739044 DOI: 10.1016/j.dnarep.2007.04.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 03/27/2007] [Accepted: 04/03/2007] [Indexed: 12/31/2022]
Abstract
Unlike Escherichia coli, Mycobacterium tuberculosis (Mt) expresses a Ku-like protein and an ATP-dependent DNA ligase that can perform non-homologous end-joining (NHEJ). We have expressed the Mt-Ku and Mt-Ligase D in E. coli using an arabinose-inducible promoter and expression vectors that integrate into specific sites in the E. coli chromosome. E. coli strains have been generated that express the Mt-Ku and Mt-Ligase D on a genetic background that is wild-type for repair, or deficient in either the RecA or RecB protein. Transformation of these strains with linearized plasmid DNA containing a 2bp overhang has demonstrated that expression of both the Mt-Ku and Mt-Ligase D is required for DNA end-joining and that loss of RecA does not prevent this double-strand break repair. Analysis of the re-joined plasmid has shown that repair is predominantly inaccurate and results in the deletion of sequences. Loss of RecB did not prevent the formation of large deletions, but did increase the amount of end-joining. Sequencing the junctions has revealed that the majority of the ligations occurred at regions of microhomology (1-4bps), eliminating one copy of the homologous sequence at the junction. The Mt-Ku and Mt-Ligase D can therefore function in E. coli to re-circularize linear plasmid.
Collapse
Affiliation(s)
- Svitlana Malyarchuk
- Department of Molecular and Cellular Physiology, Louisiana Health Sciences Center, Shreveport, LA, USA
| | - Douglas Wright
- Department of Molecular and Cellular Physiology, Louisiana Health Sciences Center, Shreveport, LA, USA
| | - Reneau Castore
- Department of Molecular and Cellular Physiology, Louisiana Health Sciences Center, Shreveport, LA, USA
| | - Emily Klepper
- Department of Molecular and Cellular Physiology, Louisiana Health Sciences Center, Shreveport, LA, USA
| | - Bernard Weiss
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Aidan J. Doherty
- Genome Damage and Stability Center, University of Sussex, Falmer, Brighton, UK
| | - Lynn Harrison
- Department of Molecular and Cellular Physiology, Louisiana Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
45
|
Chan CY, Kiechle M, Manivasakam P, Schiestl RH. Ionizing radiation and restriction enzymes induce microhomology-mediated illegitimate recombination in Saccharomyces cerevisiae. Nucleic Acids Res 2007; 35:5051-9. [PMID: 17652322 PMCID: PMC1976441 DOI: 10.1093/nar/gkm442] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DNA double-strand breaks can be repaired by illegitimate recombination without extended sequence homology. A distinct mechanism namely microhomology-mediated recombination occurs between a few basepairs of homology that is associated with deletions. Ionizing radiation and restriction enzymes have been shown to increase the frequency of nonhomologous integration in yeast. However, the mechanism of such enhanced recombination events is not known. Here, we report that both ionizing radiation and restriction enzymes increase the frequency of microhomology-mediated integration. Irradiated yeast cells displayed 77% microhomology-mediated integration, compared to 27% in unirradiated cells. Radiation-induced integration exhibited lack of deletions at genomic insertion sites, implying that such events are likely to occur at undamaged sites. Restriction enzymes also enhanced integration events at random non-restriction sites via microhomology-mediated recombination. Furthermore, generation of a site-specific I-SceI-mediated double-strand break induces microhomology-mediated integration randomly throughout the genome. Taken together, these results suggest that double-strand breaks induce a genome-wide microhomology-mediated illegitimate recombination pathway that facilitates integration probably in trans at non-targeted sites and might be involved in generation of large deletions and other genomic rearrangements.
Collapse
Affiliation(s)
| | | | | | - Robert H. Schiestl
- *To whom correspondence should be addressed.+1 310 267 2087+1 310 267 2578
| |
Collapse
|
46
|
Affiliation(s)
- James E Haber
- Rosenstiel Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454-9110, USA.
| |
Collapse
|
47
|
Affiliation(s)
- Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, 27599-3280, USA
| | | | | |
Collapse
|
48
|
Hepfer CE, Arnold-Croop S, Fogell H, Steudel KG, Moon M, Roff A, Zaikoski S, Rickman A, Komsisky K, Harbaugh DL, Lang GI, Keil RL. DEG1, encoding the tRNA:pseudouridine synthase Pus3p, impacts HOT1-stimulated recombination in Saccharomyces cerevisiae. Mol Genet Genomics 2005; 274:528-38. [PMID: 16231152 DOI: 10.1007/s00438-005-0042-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Accepted: 08/06/2005] [Indexed: 11/28/2022]
Abstract
In Saccharomyces cerevisiae, HOT1-stimulated recombination has been implicated in maintaining homology between repeated ribosomal RNA genes. The ability of HOT1 to stimulate genetic exchange requires RNA polymerase I transcription across the recombining sequences. The trans-acting nuclear mutation hrm3-1 specifically reduces HOT1-dependent recombination and prevents cell growth at 37 degrees . The HRM3 gene is identical to DEG1. Excisive, but not gene replacement, recombination is reduced in HOT1-adjacent sequences in deg1Delta mutants. Excisive recombination within the genomic rDNA repeats is also decreased. The hypo-recombination and temperature-sensitive phenotypes of deg1Delta mutants are recessive. Deletion of DEG1 did not affect the rate of transcription from HOT1 or rDNA suggesting that while transcription is necessary it is not sufficient for HOT1 activity. Pseudouridine synthase 3 (Pus3p), the DEG1 gene product, modifies the anticodon arm of transfer RNA at positions 38 and 39 by catalyzing the conversion of uridine to pseudouridine. Cells deficient in pseudouridine synthases encoded by PUS1, PUS2 or PUS4 displayed no recombination defects, indicating that Pus3p plays a specific role in HOT1 activity. Pus3p is unique in its ability to modulate frameshifting and readthrough events during translation, and this aspect of its activity may be responsible for HOT1 recombination phenotypes observed in deg1 mutants.
Collapse
Affiliation(s)
- C E Hepfer
- Department of Biology, Millersville University, 50 East Frederick Street, PO Box 1002, Millersville, PA 17551, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Proper repair of DNA double-strand breaks (DSBs) is necessary for the maintenance of genomic integrity. Here, a new simple assay was used to study extrachromosomal DSB repair in Schizosaccharomyces pombe. Strikingly, DSB repair was associated with the capture of fission yeast mitochondrial DNA (mtDNA) at high frequency. Capture of mtDNA fragments required the Lig4p/Pku70p nonhomologous end-joining (NHEJ) machinery and its frequency was highly increased in fission yeast cells grown to stationary phase. The fission yeast Mre11 complex Rad32p/Rad50p/Nbs1p was also required for efficient capture of mtDNA at DSBs, supporting a role for the complex in promoting intermolecular ligation. Competition assays further revealed that microsatellite DNA from higher eukaryotes was preferentially captured at yeast DSBs. Finally, cotransformation experiments indicated that, in NHEJ-deficient cells, capture of extranuclear DNA at DSBs was observed if homologies--as short as 8 bp--were present between DNA substrate and DSB ends. Hence, whether driven by NHEJ, microhomology-mediated end-joining, or homologous recombination, DNA capture associated with DSB repair is a mutagenic process threatening genomic stability.
Collapse
Affiliation(s)
- Anabelle Decottignies
- Cellular Genetics, Christian de Duve Institute of Cellular Pathology, Catholic University of Louvain, Avenue Hippocrate 74+3, 1200 Brussels, Belgium.
| |
Collapse
|
50
|
Putnam CD, Pennaneach V, Kolodner RD. Saccharomyces cerevisiae as a model system to define the chromosomal instability phenotype. Mol Cell Biol 2005; 25:7226-38. [PMID: 16055731 PMCID: PMC1190249 DOI: 10.1128/mcb.25.16.7226-7238.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 04/07/2005] [Accepted: 05/03/2005] [Indexed: 11/20/2022] Open
Abstract
Translocations, deletions, and chromosome fusions are frequent events seen in cancers with genome instability. Here we analyzed 358 genome rearrangements generated in Saccharomyces cerevisiae selected by the loss of the nonessential terminal segment of chromosome V. The rearrangements appeared to be generated by both nonhomologous end joining and homologous recombination and targeted all chromosomes. Fifteen percent of the rearrangements occurred independently more than once. High levels of specific classes of rearrangements were isolated from strains with specific mutations: translocations to Ty elements were increased in telomerase-defective mutants, potential dicentric translocations and dicentric isochromosomes were associated with cell cycle checkpoint defects, chromosome fusions were frequent in strains with both telomerase and cell cycle checkpoint defects, and translocations to homolog genes were seen in strains with defects allowing homoeologous recombination. An analysis of human cancer-associated rearrangements revealed parallels to the effects that strain genotypes have on classes of rearrangement in S. cerevisiae.
Collapse
Affiliation(s)
- Christopher D Putnam
- Ludwig Institute for Cancer Research, University of California, San Diego School of Medicine, La Jolla, 92093-0669, USA
| | | | | |
Collapse
|