1
|
Moucaud B, Prince E, Jagla K, Soler C. Developmental origin of tendon diversity in Drosophila melanogaster. Front Physiol 2023; 14:1176148. [PMID: 37143929 PMCID: PMC10151533 DOI: 10.3389/fphys.2023.1176148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023] Open
Abstract
Myogenesis is a developmental process that is largely conserved in both Drosophila and higher organisms. Consequently, the fruit fly is an excellent in vivo model for identifying the genes and mechanisms involved in muscle development. Moreover, there is growing evidence indicating that specific conserved genes and signaling pathways govern the formation of tissues that connect the muscles to the skeleton. In this review, we present an overview of the different stages of tendon development, from the specification of tendon progenitors to the assembly of a stable myotendinous junction across three different myogenic contexts in Drosophila: larval, flight and leg muscle development. We underline the different aspects of tendon cell specification and differentiation in embryo and during metamorphosis that result into tendon morphological and functional diversity.
Collapse
|
2
|
Carayon A, Bataillé L, Lebreton G, Dubois L, Pelletier A, Carrier Y, Wystrach A, Vincent A, Frendo JL. Intrinsic control of muscle attachment sites matching. eLife 2020; 9:57547. [PMID: 32706334 PMCID: PMC7431191 DOI: 10.7554/elife.57547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/23/2020] [Indexed: 11/13/2022] Open
Abstract
Myogenesis is an evolutionarily conserved process. Little known, however, is how the morphology of each muscle is determined, such that movements relying upon contraction of many muscles are both precise and coordinated. Each Drosophila larval muscle is a single multinucleated fibre whose morphology reflects expression of distinctive identity Transcription Factors (iTFs). By deleting transcription cis-regulatory modules of one iTF, Collier, we generated viable muscle identity mutants, allowing live imaging and locomotion assays. We show that both selection of muscle attachment sites and muscle/muscle matching is intrinsic to muscle identity and requires transcriptional reprogramming of syncytial nuclei. Live-imaging shows that the staggered muscle pattern involves attraction to tendon cells and heterotypic muscle-muscle adhesion. Unbalance leads to formation of branched muscles, and this correlates with locomotor behavior deficit. Thus, engineering Drosophila muscle identity mutants allows to investigate, in vivo, physiological and mechanical properties of abnormal muscles.
Collapse
Affiliation(s)
- Alexandre Carayon
- Centre de Biologie du Développement (CBD), Toulouse, France.,Centre de Recherche sur la Cognition Animale (CRCA), Toulouse, France.,Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laetitia Bataillé
- Centre de Biologie du Développement (CBD), Toulouse, France.,Centre de Recherche sur la Cognition Animale (CRCA), Toulouse, France.,Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Gaëlle Lebreton
- Centre de Biologie du Développement (CBD), Toulouse, France.,Centre de Recherche sur la Cognition Animale (CRCA), Toulouse, France.,Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laurence Dubois
- Centre de Biologie du Développement (CBD), Toulouse, France.,Centre de Recherche sur la Cognition Animale (CRCA), Toulouse, France.,Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Aurore Pelletier
- Centre de Biologie du Développement (CBD), Toulouse, France.,Centre de Recherche sur la Cognition Animale (CRCA), Toulouse, France.,Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yannick Carrier
- Centre de Biologie du Développement (CBD), Toulouse, France.,Centre de Recherche sur la Cognition Animale (CRCA), Toulouse, France.,Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Antoine Wystrach
- Centre de Recherche sur la Cognition Animale (CRCA), Toulouse, France.,Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Alain Vincent
- Centre de Biologie du Développement (CBD), Toulouse, France.,Centre de Recherche sur la Cognition Animale (CRCA), Toulouse, France.,Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Louis Frendo
- Centre de Biologie du Développement (CBD), Toulouse, France.,Centre de Recherche sur la Cognition Animale (CRCA), Toulouse, France.,Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
3
|
Ou J, Deng HM, Zheng SC, Huang LH, Feng QL, Liu L. Transcriptomic analysis of developmental features of Bombyx mori wing disc during metamorphosis. BMC Genomics 2014; 15:820. [PMID: 25261999 PMCID: PMC4196006 DOI: 10.1186/1471-2164-15-820] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 09/17/2014] [Indexed: 12/27/2022] Open
Abstract
Background Wing discs of B. mori are transformed to pupal wings during the larva-to-pupa metamorphosis with dramatic morphological and structural changes. To understand these changes at a transcriptional level, RNA-seq of the wing discs from 6-day-old fifth instar larvae (L5D6), prepupae (PP) and pupae (P0) was performed. Results In total, 12,254 transcripts were obtained from the wing disc, out of which 5,287 were identified to be differentially expressed from L5D6 to PP and from PP to P0. The results of comprehensive analysis of RNA-seq data showed that during larvae-to-pupae metamorphosis, many genes of 20E signaling pathway were up-regulated and those of JH signaling pathway were down-regulated. Seventeen transcription factors were significantly up-regulated. Cuticle protein genes (especially wing cuticle protein genes), were most abundant and significantly up-regulated at P0 stage. Genes responsible for the degradation and de novo synthesis of chitin were significantly up-regulated. There were A and B two types of chitin synthases in B. mori, whereas only chitin synthase A was up-regulated. Both trehalose and D-fructose, which are precursors of chitin synthesis, were detected in the hemolymph of L5D6, PP and P0, suggesting de novo synthesis of chitin. However, most of the genes that are related to early wing disc differentiation were down-regulated. Conclusions Extensive transcriptome and DGE profiling data of wing disc during metamorphosis of silkworm have been generated, which provided comprehensive gene expression information at the transcriptional level. These results implied that during the larva-to-pupa metamorphosis, pupal wing development and transition might be mainly controlled by 20E signaling in B. mori. The 17 up-regulated transcription factors might be involved in wing development. Chitin required for pupal wing development might be generated from both degradation of componential chitin and de novo synthesis. Chitin synthase A might be responsible for the chitin synthesis in the pupal wing, while both trehalose and D-fructose might contribute to the de novo synthesis of chitin during the formation of pupal wing. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-820) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Qi-Li Feng
- Laboratory of Molecular and Developmental Entomology, Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | | |
Collapse
|
4
|
Staudt N, Molitor A, Somogyi K, Mata J, Curado S, Eulenberg K, Meise M, Siegmund T, Häder T, Hilfiker A, Brönner G, Ephrussi A, Rørth P, Cohen SM, Fellert S, Chung HR, Piepenburg O, Schäfer U, Jäckle H, Vorbrüggen G. Gain-of-function screen for genes that affect Drosophila muscle pattern formation. PLoS Genet 2005; 1:e55. [PMID: 16254604 PMCID: PMC1270011 DOI: 10.1371/journal.pgen.0010055] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 09/29/2005] [Indexed: 12/01/2022] Open
Abstract
This article reports the production of an EP-element insertion library with more than 3,700 unique target sites within the Drosophila melanogaster genome and its use to systematically identify genes that affect embryonic muscle pattern formation. We designed a UAS/GAL4 system to drive GAL4-responsive expression of the EP-targeted genes in developing apodeme cells to which migrating myotubes finally attach and in an intrasegmental pattern of cells that serve myotubes as a migration substrate on their way towards the apodemes. The results suggest that misexpression of more than 1.5% of the Drosophila genes can interfere with proper myotube guidance and/or muscle attachment. In addition to factors already known to participate in these processes, we identified a number of enzymes that participate in the synthesis or modification of protein carbohydrate side chains and in Ubiquitin modifications and/or the Ubiquitin-dependent degradation of proteins, suggesting that these processes are relevant for muscle pattern formation. Muscle pattern formation during embryogenesis requires the activity of a distinct network of genes. In the model organism Drosophila, this process involves the determination of stem-cell-like muscle founder cells, their differentiation, and their attraction to tendon-like epidermal cells, termed apodemes, to which the muscles attach. In order to systematically identify genes involved in these processes, a collection of fruit fly strains was generated that can be used for the ectopic expression of more than 3,700 individual fruit fly genes in a spatiotemporally restricted manner. In order to address muscle pattern formation, the collection was used to express the genes in the developing apodemes and in a series of distinct epidermal cells that serve as migration substrate for developing muscles towards the apodemes. In addition to already known factors, some 60 novel gene activities were found to interfere under these circumstances with the formation of the muscle pattern. In addition to providing a most valuable tool for the Drosophila community of researchers, the results provide a framework for a detailed analysis of the gene network and insight into molecular mechanisms underlying embryonic muscle pattern formation.
Collapse
Affiliation(s)
- Nicole Staudt
- Max Planck Institut für biophysikalische Chemie, Göttingen, Germany
| | - Andreas Molitor
- Max Planck Institut für biophysikalische Chemie, Göttingen, Germany
- DeveloGen, Göttingen, Germany
| | - Kalman Somogyi
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Juan Mata
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Silvia Curado
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | | | | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Pernille Rørth
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Stephen M Cohen
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Sonja Fellert
- Max Planck Institut für biophysikalische Chemie, Göttingen, Germany
| | - Ho-Ryun Chung
- Max Planck Institut für biophysikalische Chemie, Göttingen, Germany
| | - Olaf Piepenburg
- Max Planck Institut für biophysikalische Chemie, Göttingen, Germany
| | - Ulrich Schäfer
- Max Planck Institut für biophysikalische Chemie, Göttingen, Germany
| | - Herbert Jäckle
- Max Planck Institut für biophysikalische Chemie, Göttingen, Germany
| | - Gerd Vorbrüggen
- Max Planck Institut für biophysikalische Chemie, Göttingen, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
5
|
Coulson M, Robert S, Saint R. Drosophila starvin encodes a tissue-specific BAG-domain protein required for larval food uptake. Genetics 2005; 171:1799-812. [PMID: 16143622 PMCID: PMC1456105 DOI: 10.1534/genetics.105.043265] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We describe a developmental, genetic, and molecular analysis of the sole Drosophila member of the BAG family of genes, which is implicated in stress response and survival in mammalian cells. We show that the gene, termed starvin (stv), is expressed in a highly tissue-specific manner, accumulating primarily in tendon cells following germ-band retraction and later in somatic muscles and the esophagus during embryonic stage 15. We show that stv expression falls within known tendon and muscle cell transcriptional regulatory cascades, being downstream of stripe, but not of another tendon transcriptional regulator, delilah, and downstream of the muscle regulator, mef-2. We generated a series of stv alleles and, surprisingly, given the muscle and tendon-specific embryonic expression of stv, found that the gross morphology and function of somatic muscles is normal in stv mutants. Nonetheless, stv mutant larvae exhibit a striking and fully penetrant mutant phenotype of failure to grow after hatching and a severely impaired ability to take up food. Our study provides the first report of an essential, developmentally regulated BAG-family gene.
Collapse
Affiliation(s)
- Michelle Coulson
- ARC Special Research Centre for the Molecular Genetics of Development, School of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | | | | |
Collapse
|
6
|
Powell LM, Zur Lage PI, Prentice DRA, Senthinathan B, Jarman AP. The proneural proteins Atonal and Scute regulate neural target genes through different E-box binding sites. Mol Cell Biol 2004; 24:9517-26. [PMID: 15485919 PMCID: PMC522279 DOI: 10.1128/mcb.24.21.9517-9526.2004] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For a particular functional family of basic helix-loop-helix (bHLH) transcription factors, there is ample evidence that different factors regulate different target genes but little idea of how these different target genes are distinguished. We investigated the contribution of DNA binding site differences to the specificities of two functionally related proneural bHLH transcription factors required for the genesis of Drosophila sense organ precursors (Atonal and Scute). We show that the proneural target gene, Bearded, is regulated by both Scute and Atonal via distinct E-box consensus binding sites. By comparing with other Ato-dependent enhancer sequences, we define an Ato-specific binding consensus that differs from the previously defined Scute-specific E-box consensus, thereby defining distinct E(Ato) and E(Sc) sites. These E-box variants are crucial for function. First, tandem repeats of 20-bp sequences containing E(Ato) and E(Sc) sites are sufficient to confer Atonal- and Scute-specific expression patterns, respectively, on a reporter gene in vivo. Second, interchanging E(Ato) and E(Sc) sites within enhancers almost abolishes enhancer activity. While the latter finding shows that enhancer context is also important in defining how proneural proteins interact with these sites, it is clear that differential utilization of DNA binding sites underlies proneural protein specificity.
Collapse
Affiliation(s)
- Lynn M Powell
- Division of Biomedical Sciences, University of Edinburgh, George Square, Edinburgh EH8 9XD, United Kingdom
| | | | | | | | | |
Collapse
|
7
|
Ledent V, Vervoort M. The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis. Genome Res 2001; 11:754-70. [PMID: 11337472 PMCID: PMC311049 DOI: 10.1101/gr.177001] [Citation(s) in RCA: 318] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The basic Helix-Loop-Helix (bHLH) proteins are transcription factors that play important roles during the development of various metazoans including fly, nematode, and vertebrates. They are also involved in human diseases, particularly in cancerogenesis. We made an extensive search for bHLH sequences in the completely sequenced genomes of Caenorhabditis elegans and of Drosophila melanogaster. We found 35 and 56 different genes, respectively, which may represent the complete set of bHLH of these organisms. A phylogenetic analysis of these genes, together with a large number (>350) of bHLH from other sources, led us to define 44 orthologous families among which 36 include bHLH from animals only, and two have representatives in both yeasts and animals. In addition, we identified two bHLH motifs present only in yeast, and four that are present only in plants; however, the latter number is certainly an underestimate. Most animal families (35/38) comprise fly, nematode, and vertebrate genes, suggesting that their common ancestor, which lived in pre-Cambrian times (600 million years ago) already owned as many as 35 different bHLH genes.
Collapse
Affiliation(s)
- V Ledent
- Belgian EMBnet Node, Bioinformatics Laboratory, Université Libre de Bruxelles, Department of Molecular Biology, B-6041 Gosselies, Belgium
| | | |
Collapse
|
8
|
Strumpf D, Volk T. Kakapo, a novel cytoskeletal-associated protein is essential for the restricted localization of the neuregulin-like factor, vein, at the muscle-tendon junction site. J Biophys Biochem Cytol 1998; 143:1259-70. [PMID: 9832554 PMCID: PMC2133081 DOI: 10.1083/jcb.143.5.1259] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the Drosophila embryo, the correct association of muscles with their specific tendon cells is achieved through reciprocal interactions between these two distinct cell types. Tendon cell differentiation is initiated by activation of the EGF-receptor signaling pathway within these cells by Vein, a neuregulin-like factor secreted by the approaching myotube. Here, we describe the cloning and the molecular and genetic analyses of kakapo, a Drosophila gene, expressed in the tendons, that is essential for muscle-dependent tendon cell differentiation. Kakapo is a large intracellular protein and contains structural domains also found in cytoskeletal-related vertebrate proteins (including plakin, dystrophin, and Gas2 family members). kakapo mutant embryos exhibit abnormal muscle-dependent tendon cell differentiation. A major defect in the kakapo mutant tendon cells is the failure of Vein to be localized at the muscle-tendon junctional site; instead, Vein is dispersed and its levels are reduced. This may lead to aberrant differentiation of tendon cells and consequently to the kakapo mutant deranged somatic muscle phenotype.
Collapse
Affiliation(s)
- D Strumpf
- Department of Molecular Genetics, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | | |
Collapse
|
9
|
Yarnitzky T, Min L, Volk T. The Drosophila neuregulin homolog Vein mediates inductive interactions between myotubes and their epidermal attachment cells. Genes Dev 1997; 11:2691-700. [PMID: 9334331 PMCID: PMC316610 DOI: 10.1101/gad.11.20.2691] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Inductive interactions between cells of distinct fates underlie the basis for morphogenesis and organogenesis across species. In the Drosophila embryo, somatic myotubes form specific interactions with their epidermal muscle attachment (EMA) cells. The establishment of these interactions is a first step toward further differentiation of the EMA cells into elongated tendon cells containing an organized array of microtubules and microfilaments. Here we show that the molecular signal for terminal differentiation of tendon cells is the secreted Drosophila neuregulin-like growth factor Vein produced by the myotubes. Although vein mRNA is produced by all of the myotubes, Vein protein is secreted and accumulates specifically at the muscle-tendon cell junctional site. In loss-of-function vein mutant embryos, muscle-dependent differentiation of tendon cells, measured by the level of expression of specific markers (Delilah and beta1 tubulin) is blocked. When Vein is expressed in ectopic ectodermal cells, it induces the ectopic expression of these genes. Our results favor the possibility that the Drosophila EGF receptor DER/Egfr expressed by the EMA cells functions as a receptor for Vein. We show that Vein/Egfr binding activates the Ras pathway in the EMA cells leading to the transcription of the tendon-specific genes, stripe, delilah, and beta1 tubulin. In Egfr1F26 mutant embryos that lack functional Egfr expression, the levels of Delilah and beta1 tubulin are very low. In addition, the ability of ectopic Vein to induce the expression of Delilah and beta1 tubulin depends on the presence of functional Egfrs. Finally, activation of the Egfr signaling pathway by either ectopically secreted Spitz, or activated Ras, leads to the ectopic expression of Delilah. These results suggest that inductive interactions between myotubes and their epidermal muscle attachment cells are initiated by the binding of Vein, to the Egfr on the surface of EMA cells.
Collapse
Affiliation(s)
- T Yarnitzky
- Department of Molecular Genetics, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | |
Collapse
|
10
|
Vorbrüggen G, Jäckle H. Epidermal muscle attachment site-specific target gene expression and interference with myotube guidance in response to ectopic stripe expression in the developing Drosophila epidermis. Proc Natl Acad Sci U S A 1997; 94:8606-11. [PMID: 9238024 PMCID: PMC23040 DOI: 10.1073/pnas.94.16.8606] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The egr-type zinc-finger transcription factor encoded by the Drosophila gene stripe (sr) is expressed in a subset of epidermal cells to which muscles attach during late stages of embryogenesis. We report loss-of-function and gain-of-function experiments indicating that sr activity provides ectodermal cells with properties required for the establishment of a normal muscle pattern during embryogenesis and for the differentiation of tendon-like epidermal muscle attachment sites (EMA). Our results show that sr encodes a transcriptional activator which acts as an autoregulated developmental switch gene. sr activity controls the expression of EMA-specific target genes in cells of ectodermal but not of mesodermal origin. sr-expressing ectodermal cells generate long-range signals that interfere with the spatial orientation of the elongating myotubes.
Collapse
Affiliation(s)
- G Vorbrüggen
- Max-Planck-Institut für biophysikalische Chemie, Abteilung Molekulare Entwicklungsbiologie, Am Fassberg, D-37077 Göttingen, Germany
| | | |
Collapse
|
11
|
Martin-Bermudo MD, Brown NH. Intracellular signals direct integrin localization to sites of function in embryonic muscles. J Cell Biol 1996; 134:217-26. [PMID: 8698816 PMCID: PMC2120927 DOI: 10.1083/jcb.134.1.217] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In the Drosophila embryo, the alphaPS2betaPS integrin heterodimer is localized tightly at the termini of the multinucleate muscles where they attach to the alphaPS1betaPS-containing epidermal tendon cells. Here we examine the basis for alphaPS2betaPS integrin subcellular localization. We show that the betaPS cytoplasmic tail is sufficient to direct the localization of a heterologous transmembrane protein, CD2, to the muscle termini in vivo. This localization does not occur via an association with structures set up by the endogenous betaPS integrins, since it can occur even in the absence of the betaPS protein. Furthermore, the subcellular localization of the alphaPS2betaPS integrin is not dependent on any other interactions between the muscles and the tendon cells. In embryos that lack the segmental tendon cells, due to a mutation removing the related segment polarity genes engrailed and invected, alphaPS2betaPS is still localized to the muscle termini even though the ventral longitudinal muscles are not attached to the epidermis, but instead are attached end to end. Thus the alphaPS2betaPS integrin can be localized by an intracellular mechanism within the muscles. Our results challenge the view that the transmission of signals from the extracellular environment via integrins is required for the organization of the cytoskeleton and the resultant cellular polarity.
Collapse
|