Miclaus M, Xu JH, Messing J. Differential gene expression and epiregulation of alpha zein gene copies in maize haplotypes.
PLoS Genet 2011;
7:e1002131. [PMID:
21731501 PMCID:
PMC3121756 DOI:
10.1371/journal.pgen.1002131]
[Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 04/27/2011] [Indexed: 12/27/2022] Open
Abstract
Multigenic traits are very common in plants and cause diversity. Nutritional quality is such a trait, and one of its factors is the composition and relative expression of storage protein genes. In maize, they represent a medium-size gene family distributed over several chromosomes and unlinked locations. Two inbreds, B73 and BSSS53, both from the Iowa Stiff Stock Synthetic collection, have been selected to analyze allelic and non-allelic variability in these regions that span between 80–500 kb of chromosomal DNA. Genes were copied to unlinked sites before and after allotetraploidization of maize, but before transposition enlarged intergenic regions in a haplotype-specific manner. Once genes are copied, expression of donor genes is reduced relative to new copies. Epigenetic regulation seems to contribute to silencing older copies, because some of them can be reactivated when endosperm is maintained as cultured cells, indicating that copy number variation might contribute to a reserve of gene copies. Bisulfite sequencing of the promoter region also shows different methylation patterns among gene clusters as well as differences between tissues, suggesting a possible position effect on regulatory mechanisms as a result of inserting copies at unlinked locations. The observations offer a potential paradigm for how different gene families evolve and the impact this has on their expression and regulation of their members.
We present here how the structure and function of a multigene family has shaped the architecture of the maize genome in a haplotype-specific manner, before and after allotetraploidization. The alpha zein gene family, the main component of storage protein genes, provides us with a model of how multicopy gene families evolve and are regulated in the plant kingdom. Indeed, gene copying might be the mechanism that helps plants adapt to variable environmental conditions. In this context, the alpha zein genes have evolved from a common ancestral copy, located on the short arm of chromosome 1, to become a 41-member gene family in the reference maize genome, B73. Different haplotypes can vary, though, as we show here, both in gene copy number and in their sequence context, the latter one being the result of the tremendous transposable element activity that the maize genome has undergone after its allotetraploidization. That had impact not only on the expression patterns of the gene family members, with newest copies contributing the most of the mRNA pool, but also on the mechanisms employed in their regulation, such as methylation of promoter sequences, which seems to be locus-specific.
Collapse