1
|
Hussey BJ, McMillen DR. Programmable T7-based synthetic transcription factors. Nucleic Acids Res 2019; 46:9842-9854. [PMID: 30169636 PMCID: PMC6182181 DOI: 10.1093/nar/gky785] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/21/2018] [Indexed: 12/31/2022] Open
Abstract
Despite recent progress on synthetic transcription factor generation in eukaryotes, there remains a need for high-activity bacterial versions of these systems. In synthetic biology applications, it is useful for transcription factors to have two key features: they should be orthogonal (influencing only their own targets, with minimal off-target effects), and programmable (able to be directed to a wide range of user-specified transcriptional start sites). The RNA polymerase of the bacteriophage T7 has a number of appealing properties for synthetic biological designs: it can produce high transcription rates; it is a compact, single-subunit polymerase that has been functionally expressed in a variety of organisms; and its viral origin reduces the connection between its activity and that of its host's transcriptional machinery. We have created a system where a T7 RNA polymerase is recruited to transcriptional start sites by DNA binding proteins, either directly or bridged through protein–protein interactions, yielding a modular and programmable system for strong transcriptional activation of multiple orthogonal synthetic transcription factor variants in Escherichia coli. To our knowledge this is the first exogenous, programmable activator system in bacteria.
Collapse
Affiliation(s)
- Brendan J Hussey
- Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada.,Cell and Systems Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada.,Impact Centre, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| | - David R McMillen
- Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada.,Cell and Systems Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada.,Impact Centre, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| |
Collapse
|
2
|
Steakley DL, Rine J. On the Mechanism of Gene Silencing in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2015; 5:1751-63. [PMID: 26082137 PMCID: PMC4528331 DOI: 10.1534/g3.115.018515] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 06/15/2015] [Indexed: 11/18/2022]
Abstract
Multiple mechanisms have been proposed for gene silencing in Saccharomyces cerevisiae, ranging from steric occlusion of DNA binding proteins from their recognition sequences in silenced chromatin to a specific block in the formation of the preinitiation complex to a block in transcriptional elongation. This study provided strong support for the steric occlusion mechanism by the discovery that RNA polymerase of bacteriophage T7 could be substantially blocked from transcribing from its cognate promoter when embedded in silenced chromatin. Moreover, unlike previous suggestions, we found no evidence for stalled RNA polymerase II within silenced chromatin. The effectiveness of the Sir protein-based silencing mechanism to block transcription activated by Gal4 at promoters in the domain of silenced chromatin was marginal, yet it improved when tested against mutant forms of the Gal4 protein, highlighting a role for specific activators in their sensitivity to gene silencing.
Collapse
Affiliation(s)
- David Lee Steakley
- Department of Molecular and Cell Biology, California Institute of Quantitative Biosciences, Stanley Hall, University of California Berkeley, Berkeley, California 94720
| | - Jasper Rine
- Department of Molecular and Cell Biology, California Institute of Quantitative Biosciences, Stanley Hall, University of California Berkeley, Berkeley, California 94720
| |
Collapse
|
3
|
Wang X, Yang JG, Chen L, Wang JL, Cheng Q, Dixon R, Wang YP. Using synthetic biology to distinguish and overcome regulatory and functional barriers related to nitrogen fixation. PLoS One 2013; 8:e68677. [PMID: 23935879 PMCID: PMC3723869 DOI: 10.1371/journal.pone.0068677] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/07/2013] [Indexed: 01/14/2023] Open
Abstract
Biological nitrogen fixation is a complex process requiring multiple genes working in concert. To date, the Klebsiella pneumoniae nif gene cluster, divided into seven operons, is one of the most studied systems. Its nitrogen fixation capacity is subject to complex cascade regulation and physiological limitations. In this report, the entire K. pneumoniae nif gene cluster was reassembled as operon-based BioBrick parts in Escherichia coli. It provided ~100% activity of native K. pneumoniae system. Based on the expression levels of these BioBrick parts, a T7 RNA polymerase-LacI expression system was used to replace the σ(54)-dependent promoters located upstream of nif operons. Expression patterns of nif operons were critical for the maximum activity of the recombinant system. By mimicking these expression levels with variable-strength T7-dependent promoters, ~42% of the nitrogenase activity of the σ(54)-dependent nif system was achieved in E. coli. When the newly constructed T7-dependent nif system was challenged with different genetic and physiological conditions, it bypassed the original complex regulatory circuits, with minor physiological limitations. Therefore, we have successfully replaced the nif regulatory elements with a simple expression system that may provide the first step for further research of introducing nif genes into eukaryotic organelles, which has considerable potentials in agro-biotechnology.
Collapse
Affiliation(s)
- Xia Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Jian-Guo Yang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Li Chen
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Ji-Long Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Qi Cheng
- Biotechnology Research Institute, Chinese Academy of Agriculture Science, Beijing, China
| | - Ray Dixon
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- * E-mail: (RD); (YPW)
| | - Yi-Ping Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
- * E-mail: (RD); (YPW)
| |
Collapse
|
4
|
Williams EH, Bsat N, Bonnefoy N, Butler CA, Fox TD. Alteration of a novel dispensable mitochondrial ribosomal small-subunit protein, Rsm28p, allows translation of defective COX2 mRNAs. EUKARYOTIC CELL 2005; 4:337-45. [PMID: 15701796 PMCID: PMC549345 DOI: 10.1128/ec.4.2.337-345.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations affecting the RNA sequence of the first 10 codons of the Saccharomyces cerevisiae mitochondrial gene COX2 strongly reduce translation of the mRNA, which encodes the precursor of cytochrome c oxidase subunit II. A dominant chromosomal mutation that suppresses these defects is an internal in-frame deletion of 67 codons from the gene YDR494w. Wild-type YDR494w encodes a 361-residue polypeptide with no similarity to proteins of known function. The epitope-tagged product of this gene, now named RSM28, is both peripherally associated with the inner surface of the inner mitochondrial membrane and soluble in the matrix. Epitope-tagged Rsm28p from Triton X-100-solubilized mitochondria sedimented with the small subunit of mitochondrial ribosomes in a sucrose gradient containing 500 mM NH4Cl. Complete deletion of RSM28 caused only a modest decrease in growth on nonfermentable carbon sources in otherwise wild-type strains and enhanced the respiratory defect of the suppressible cox2 mutations. The rsm28 null mutation also reduced translation of an ARG8m reporter sequence inserted at the COX1, COX2, and COX3 mitochondrial loci. We tested the ability of RSM28-1 to suppress a variety of cox2 and cox3 mutations and found that initiation codon mutations in both genes were suppressed. We conclude that Rsm28p is a dispensable small-subunit mitochondrial ribosomal protein previously undetected in systematic investigations of these ribosomes, with a positive role in translation of several mitochondrial mRNAs.
Collapse
Affiliation(s)
- Elizabeth H Williams
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| | | | | | | | | |
Collapse
|
5
|
Yoon YG, Koob MD. Transformation of isolated mammalian mitochondria by bacterial conjugation. Nucleic Acids Res 2005; 33:e139. [PMID: 16157861 PMCID: PMC1201378 DOI: 10.1093/nar/gni140] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have developed a method for transferring exogenous DNA molecules into isolated mammalian mitochondria using bacterial conjugation. In general, we accomplish this by (i) inserting an origin of DNA transfer (oriT) sequence into a DNA construct, (ii) transforming the construct into an appropriate Escherichia coli strain and then (iii) introducing the mobilizable DNA into mitochondria through conjugation. We tested this approach by transferring plasmid DNA containing a T7 promoter sequence into mitochondria that we had engineered to contain T7 RNA polymerase. After conjugation between E.coli and mitochondria, we detected robust levels of T7 transcription from the DNA constructs that had been transferred into the mitochondria. This approach for engineering DNA constructs in vitro and subsequent transfer into mitochondria by conjugation offers an attractive experimental system for studying many aspects of vertebrate mitochondrial gene expression and is a potential route for transforming mitochondrial networks within mammalian cells.
Collapse
Affiliation(s)
- Young Geol Yoon
- Department of Laboratory Medicine and Pathology, University of Minnesota420 Delaware Street SE, Minneapolis, MN 55455, USA
- Institute of Human Genetics, University of Minnesota420 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Michael D. Koob
- Department of Laboratory Medicine and Pathology, University of Minnesota420 Delaware Street SE, Minneapolis, MN 55455, USA
- Institute of Human Genetics, University of Minnesota420 Delaware Street SE, Minneapolis, MN 55455, USA
- To whom correspondence should be addressed. Tel: +1 612 626 6516; Fax: +1 612 626 7031;
| |
Collapse
|
6
|
Williams EH, Perez-Martinez X, Fox TD. MrpL36p, a highly diverged L31 ribosomal protein homolog with additional functional domains in Saccharomyces cerevisiae mitochondria. Genetics 2005; 167:65-75. [PMID: 15166137 PMCID: PMC1470847 DOI: 10.1534/genetics.167.1.65] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Translation in mitochondria utilizes a large complement of ribosomal proteins. Many mitochondrial ribosomal components are clearly homologous to eubacterial ribosomal proteins, but others appear unique to the mitochondrial system. A handful of mitochondrial ribosomal proteins appear to be eubacterial in origin but to have evolved additional functional domains. MrpL36p is an essential mitochondrial ribosomal large-subunit component in Saccharomyces cerevisiae. Increased dosage of MRPL36 also has been shown to suppress certain types of translation defects encoded within the mitochondrial COX2 mRNA. A central domain of MrpL36p that is similar to eubacterial ribosomal large-subunit protein L31 is sufficient for general mitochondrial translation but not suppression, and proteins bearing this domain sediment with the ribosomal large subunit in sucrose gradients. In contrast, proteins lacking the L31 domain, but retaining a novel N-terminal sequence and a C-terminal sequence with weak similarity to the Escherichia coli signal recognition particle component Ffh, are sufficient for dosage suppression and do not sediment with the large subunit of the ribosome. Interestingly, the activity of MrpL36p as a dosage suppressor exhibits gene and allele specificity. We propose that MrpL36p represents a highly diverged L31 homolog with derived domains functioning in mRNA selection in yeast mitochondria.
Collapse
Affiliation(s)
- Elizabeth H Williams
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | | | |
Collapse
|
7
|
Datta K, Fuentes JL, Maddock JR. The yeast GTPase Mtg2p is required for mitochondrial translation and partially suppresses an rRNA methyltransferase mutant, mrm2. Mol Biol Cell 2004; 16:954-63. [PMID: 15591131 PMCID: PMC545925 DOI: 10.1091/mbc.e04-07-0622] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The assembly of ribosomes involves the coordinated processing and modification of rRNAs with the temporal association of ribosomal proteins. This process is regulated by assembly factors such as helicases, modifying enzymes, and GTPases. In contrast to the assembly of cytoplasmic ribosomes, there is a paucity of information concerning the role of assembly proteins in the biogenesis of mitochondrial ribosomes. In this study, we demonstrate that the Saccharomyces cerevisiae GTPase Mtg2p (Yhr168wp) is essential for mitochondrial ribosome function. Cells lacking MTG2 lose their mitochondrial DNA, giving rise to petite cells. In addition, cells expressing a temperature-sensitive mgt2-1 allele are defective in mitochondrial protein synthesis and contain lowered levels of mitochondrial ribosomal subunits. Significantly, elevated levels of Mtg2p partially suppress the thermosensitive loss of mitochondrial DNA in a 21S rRNA methyltransferase mutant, mrm2. We propose that Mtg2p is involved in mitochondrial ribosome biogenesis. Consistent with this role, we show that Mtg2p is peripherally localized to the mitochondrial inner membrane and associates with the 54S large ribosomal subunit in a salt-dependent manner.
Collapse
Affiliation(s)
- Kaustuv Datta
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | | | |
Collapse
|
8
|
Demlow CM, Fox TD. Activity of mitochondrially synthesized reporter proteins is lower than that of imported proteins and is increased by lowering cAMP in glucose-grown Saccharomyces cerevisiae cells. Genetics 2004; 165:961-74. [PMID: 14668357 PMCID: PMC1462836 DOI: 10.1093/genetics/165.3.961] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We selected for increased phenotypic expression of a synthetic cox2::arg8m-G66S reporter gene inserted into Saccharomyces cerevisiae mtDNA in place of COX2. Recessive mutations in ras2 and cyr1, as well as elevated dosage of PDE2, allowed cox2::arg8m-G66S to support Arg prototrophy. Each of these genetic alterations should decrease cellular cAMP levels. The resulting signal was transduced through redundant action of the three cAMP-dependent protein kinases, TPK1, TPK2, and TPK3. ras2 had little or no effect on the level of wild-type Arg8p encoded by cox2::ARG8m, but did increase Arg8p activity, as judged by growth phenotype. ras2 also caused increased fluorescence in cells carrying the synthetic cox3::GFPm reporter in mtDNA, but had little effect on the steady-state level of GFP polypeptide detected immunologically. Thus, decreased cAMP levels did not affect the synthesis of mitochondrially coded protein reporters in glucose-grown cells, but rather elevated activities in the matrix that promote efficient folding. Furthermore, we show that when Arg8p is synthesized in the cytoplasm and imported into mitochondria, it has greater activity than when it is synthesized in the matrix. Thus, mitochondrially synthesized proteins may not have the same access to matrix chaperones as cytoplasmically synthesized proteins emerging from the import apparatus.
Collapse
Affiliation(s)
- Christina M Demlow
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
9
|
Saracco SA, Fox TD. Cox18p is required for export of the mitochondrially encoded Saccharomyces cerevisiae Cox2p C-tail and interacts with Pnt1p and Mss2p in the inner membrane. Mol Biol Cell 2002; 13:1122-31. [PMID: 11950926 PMCID: PMC102256 DOI: 10.1091/mbc.01-12-0580] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2001] [Revised: 12/03/2001] [Accepted: 12/24/2001] [Indexed: 11/11/2022] Open
Abstract
The amino- and carboxy-terminal domains of mitochondrially encoded cytochrome c oxidase subunit II (Cox2p) are translocated out of the matrix to the intermembrane space. We have carried out a genetic screen to identify components required to export the biosynthetic enzyme Arg8p, tethered to the Cox2p C terminus by a translational gene fusion inserted into mtDNA. We obtained multiple alleles of COX18, PNT1, and MSS2, as well as mutations in CBP1 and PET309. Focusing on Cox18p, we found that its activity is required to export the C-tail of Cox2p bearing a short C-terminal epitope tag. This is not a consequence of reduced membrane potential due to loss of cytochrome oxidase activity because Cox2p C-tail export was not blocked in mitochondria lacking Cox4p. Cox18p is not required to export the Cox2p N-tail, indicating that these two domains of Cox2p are translocated by genetically distinct mechanisms. Cox18p is a mitochondrial integral inner membrane protein. The inner membrane proteins Mss2p and Pnt1p both coimmunoprecipitate with Cox18p, suggesting that they work together in translocation of Cox2p domains, an inference supported by functional interactions among the three genes.
Collapse
Affiliation(s)
- Scott A Saracco
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | |
Collapse
|
10
|
Broadley SA, Demlow CM, Fox TD. Peripheral mitochondrial inner membrane protein, Mss2p, required for export of the mitochondrially coded Cox2p C tail in Saccharomyces cerevisiae. Mol Cell Biol 2001; 21:7663-72. [PMID: 11604502 PMCID: PMC99937 DOI: 10.1128/mcb.21.22.7663-7672.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytochrome oxidase subunit 2 (Cox2p) is synthesized on the matrix side of the mitochondrial inner membrane, and its N- and C-terminal domains are exported across the inner membrane by distinct mechanisms. The Saccharomyces cerevisiae nuclear gene MSS2 was previously shown to be necessary for Cox2p accumulation. We have used pulse-labeling studies and the expression of the ARG8(m) reporter at the COX2 locus in an mss2 mutant to demonstrate that Mss2p is not required for Cox2p synthesis but rather for its accumulation. Mutational inactivation of the proteolytic function of the matrix-localized Yta10p (Afg3p) AAA-protease partially stabilizes Cox2p in an mss2 mutant but does not restore assembly of cytochrome oxidase. In the absence of Mss2p, the Cox2p N terminus is exported, but Cox2p C-terminal export and assembly of Cox2p into cytochrome oxidase is blocked. Epitope-tagged Mss2p is tightly, but peripherally, associated with the inner membrane and protected by it from externally added proteases. Taken together, these data indicate that Mss2p plays a role in recognizing the Cox2p C tail in the matrix and promoting its export.
Collapse
Affiliation(s)
- S A Broadley
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
11
|
Bonnefoy N, Bsat N, Fox TD. Mitochondrial translation of Saccharomyces cerevisiae COX2 mRNA is controlled by the nucleotide sequence specifying the pre-Cox2p leader peptide. Mol Cell Biol 2001; 21:2359-72. [PMID: 11259585 PMCID: PMC86869 DOI: 10.1128/mcb.21.7.2359-2372.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mitochondrial gene encoding yeast cytochrome oxidase subunit II (Cox2p) specifies a precursor protein with a 15-amino-acid leader peptide. Deletion of the entire leader peptide coding region is known to block Cox2p accumulation posttranscriptionally. Here, we examined in vivo the role of the pre-Cox2p leader peptide and the mRNA sequence that encodes it in the expression of a mitochondrial reporter gene, ARG8m, fused to the 91st codon of COX2. We found within the coding sequence antagonistic elements that control translation: the positive element includes sequences in the first 14 codons specifying the leader peptide, while the negative element appears to be within codons 15 to 91. Partial deletions, point mutations, and local frameshifts within the leader peptide coding region were placed in both the cox2::ARG8m reporter and in COX2 itself. Surprisingly, the mRNA sequence of the first six codons specifying the leader peptide plays an important role in positively controlling translation, while the amino acid sequence of the leader peptide itself is relatively unconstrained. Two mutations that partially block translation can be suppressed by nearby sequence substitutions that weaken a predicted stem structure and by overproduction of either the COX2 mRNA-specific translational activator Pet111p or the large-subunit mitochondrial ribosomal protein MrpL36p. We propose that regulatory elements embedded in the translated COX2 mRNA sequence could play a role, together with trans-acting factors, in coupling regulated synthesis of nascent pre-Cox2p to its insertion in the mitochondrial inner membrane.
Collapse
Affiliation(s)
- N Bonnefoy
- Centre de Génétique Moléculaire, Laboratoire propre du CNRS associé à l'Université Pierre et Marie Curie, 91198 Gif-sur-Yvette Cedex, France
| | | | | |
Collapse
|
12
|
He S, Fox TD. Mutations affecting a yeast mitochondrial inner membrane protein, pnt1p, block export of a mitochondrially synthesized fusion protein from the matrix. Mol Cell Biol 1999; 19:6598-607. [PMID: 10490599 PMCID: PMC84629 DOI: 10.1128/mcb.19.10.6598] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The machinery that inserts mitochondrially encoded proteins into the inner membrane and translocates their hydrophilic domains through the membrane is poorly understood. We have developed a genetic screen for Saccharomyces cerevisiae mutants defective in this export process. The screen is based on the fact that the hydrophilic polypeptide Arg8(m)p is exported from the matrix if it is synthesized within mitochondria as a bifunctional Cox2p-Arg8(m)p fusion protein. Since export of Arg8(m)p causes an Arg(-) phenotype, defective mutants can be selected as Arg(+). Here we show that mutations in the nuclear gene PNT1 block the translocation of mitochondrially encoded fusion proteins across the inner membrane. Pnt1p is a mitochondrial integral inner membrane protein that appears to have two hydrophilic domains in the matrix, flanking a central hydrophobic hairpin-like anchor. While an S. cerevisiae pnt1 deletion mutant was more sensitive to H(2)O(2) than the wild type was, it was respiration competent and able to export wild-type Cox2p. However, deletion of the PNT1 orthologue from Kluyveromyces lactis, KlPNT1, caused a clear nonrespiratory phenotype, absence of cytochrome oxidase activity, and a defect in the assembly of KlCox2p that appears to be due to a block of C-tail export. Since PNT1 was previously described as a gene affecting resistance to the antibiotic pentamidine, our data support a mitochondrial target for this drug.
Collapse
Affiliation(s)
- S He
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | |
Collapse
|
13
|
He S, Fox TD. Membrane translocation of mitochondrially coded Cox2p: distinct requirements for export of N and C termini and dependence on the conserved protein Oxa1p. Mol Biol Cell 1997; 8:1449-60. [PMID: 9285818 PMCID: PMC276169 DOI: 10.1091/mbc.8.8.1449] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To study in vivo the export of mitochondrially synthesized protein from the matrix to the intermembrane space, we have fused a synthetic mitochondrial gene, ARG8m, to the Saccharomyces cerevisiae COX2 gene in mitochondrial DNA. The Arg8mp moiety was translocated through the inner membrane when fused to the Cox2p C terminus by a mechanism dependent on topogenic information at least partially contained within the exported Cox2p C-terminal tail. The pre-Cox2p leader peptide did not signal translocation. Export of the Cox2p C-terminal tail, but not the N-terminal tail, was dependent on the inner membrane potential. The mitochondrial export system does not closely resemble the bacterial Sec translocase. However, normal translocation of both exported domains of Cox2p was defective in cells lacking the widely conserved inner membrane protein Oxa1p.
Collapse
Affiliation(s)
- S He
- Section of Genetics and Development, Cornell University, Ithaca, New York 14853-2703, USA
| | | |
Collapse
|
14
|
Wiesenberger G, Fox TD. Pet127p, a membrane-associated protein involved in stability and processing of Saccharomyces cerevisiae mitochondrial RNAs. Mol Cell Biol 1997; 17:2816-24. [PMID: 9111353 PMCID: PMC232133 DOI: 10.1128/mcb.17.5.2816] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nuclear mutations that inactivate the Saccharomyces cerevisiae gene PET127 dramatically increased the levels of mutant COX3 and COX2 mitochondrial mRNAs that were destabilized by mutations in their 5' untranslated leaders. The stabilizing effect of pet127 delta mutations occurred both in the presence and in the absence of translation. In addition, pet127 delta mutations had pleiotropic effects on the stability and 5' end processing of some wild-type mRNAs and the 15S rRNA but produced only a leaky nonrespiratory phenotype at 37 degrees C. Overexpression of PET127 completely blocked respiratory growth and caused cells to lose wild-type mitochondrial DNA, suggesting that too much Pet127p prevents mitochondrial gene expression. Epitope-tagged Pet127p was specifically located in mitochondria and associated with membranes. These findings suggest that Pet127p plays a role in RNA surveillance and/or RNA processing and that these functions may be membrane bound in yeast mitochondria.
Collapse
Affiliation(s)
- G Wiesenberger
- Section of Genetics and Development, Cornell University, Ithaca, New York 14853-2703, USA
| | | |
Collapse
|
15
|
Steele DF, Butler CA, Fox TD. Expression of a recoded nuclear gene inserted into yeast mitochondrial DNA is limited by mRNA-specific translational activation. Proc Natl Acad Sci U S A 1996; 93:5253-7. [PMID: 8643562 PMCID: PMC39231 DOI: 10.1073/pnas.93.11.5253] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Genetic code differences prevent expression of nuclear genes within Saccharomyces cerevisiae mitochondria. To bridge this gap a synthetic gene, ARG8m, designed to specify an arginine biosynthetic enzyme when expressed inside mitochondria, has been inserted into yeast mtDNA in place of the COX3 structural gene. This mitochondrial cox3::ARG8m gene fully complements a nuclear arg8 deletion at the level of cell growth, and it is dependent for expression upon nuclear genes that encode subunits of the COX3 mRNA-specific translational activator. Thus, cox3::ARG8m serves as a mitochondrial reporter gene. Measurement of cox3::ARG8m expression at the levels of steady-state protein and enzymatic activity reveals that glucose repression operates within mitochondria. The levels of this reporter vary among strains whose nuclear genotypes lead to under- and overexpression of translational activator subunits, in particular Pet494p, indicating that mRNA-specific translational activation is a rate-limiting step in this organellar system. Whereas the steady-state level of cox3::ARG8m mRNA was also glucose repressed in an otherwise wild-type strain, absence of translational activation led to essentially repressed mRNA levels even under derepressing growth conditions. Thus, the mRNA is stabilized by translational activation, and variation in its level may be largely due to modulation of translation.
Collapse
Affiliation(s)
- D F Steele
- Section of Genetics and Development, Cornell University, Ithaca, NY 14853-2703, USA
| | | | | |
Collapse
|