1
|
Chen Y, Zhao G, Zahumensky J, Honey S, Futcher B. Differential Scaling of Gene Expression with Cell Size May Explain Size Control in Budding Yeast. Mol Cell 2020; 78:359-370.e6. [PMID: 32246903 DOI: 10.1016/j.molcel.2020.03.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 12/14/2019] [Accepted: 03/10/2020] [Indexed: 01/25/2023]
Abstract
Yeast cells must grow to a critical size before committing to division. It is unknown how size is measured. We find that as cells grow, mRNAs for some cell-cycle activators scale faster than size, increasing in concentration, while mRNAs for some inhibitors scale slower than size, decreasing in concentration. Size-scaled gene expression could cause an increasing ratio of activators to inhibitors with size, triggering cell-cycle entry. Consistent with this, expression of the CLN2 activator from the promoter of the WHI5 inhibitor, or vice versa, interfered with cell size homeostasis, yielding a broader distribution of cell sizes. We suggest that size homeostasis comes from differential scaling of gene expression with size. Differential regulation of gene expression as a function of cell size could affect many cellular processes.
Collapse
Affiliation(s)
- Yuping Chen
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | - Gang Zhao
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | - Jakub Zahumensky
- Department of Functional Organization of Biomembranes, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 142 20, Czech Republic
| | - Sangeet Honey
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | - Bruce Futcher
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794-5222, USA.
| |
Collapse
|
2
|
Transcriptional timing and noise of yeast cell cycle regulators-a single cell and single molecule approach. NPJ Syst Biol Appl 2018; 4:17. [PMID: 29844922 PMCID: PMC5962571 DOI: 10.1038/s41540-018-0053-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/05/2018] [Accepted: 04/19/2018] [Indexed: 12/12/2022] Open
Abstract
Gene expression is a stochastic process and its appropriate regulation is critical for cell cycle progression. Cellular stress response necessitates expression reprogramming and cell cycle arrest. While previous studies are mostly based on bulk experiments influenced by synchronization effects or lack temporal distribution, time-resolved methods on single cells are needed to understand eukaryotic cell cycle in context of noisy gene expression and external perturbations. Using smFISH, microscopy and morphological markers, we monitored mRNA abundances over cell cycle phases and calculated transcriptional noise for SIC1, CLN2, and CLB5, the main G1/S transition regulators in budding yeast. We employed mathematical modeling for in silico synchronization and for derivation of time-courses from single cell data. This approach disclosed detailed quantitative insights into transcriptional regulation with and without stress, not available from bulk experiments before. First, besides the main peak in G1 we found an upshift of CLN2 and CLB5 expression in late mitosis. Second, all three genes showed basal expression throughout cell cycle enlightening that transcription is not divided in on and off but rather in high and low phases. Finally, exposing cells to osmotic stress revealed different periods of transcriptional inhibition for CLN2 and CLB5 and the impact of stress on cell cycle phase duration. Combining experimental and computational approaches allowed us to precisely assess cell cycle progression timing, as well as gene expression dynamics.
Collapse
|
3
|
Yan C, Zhang D, Raygoza Garay JA, Mwangi MM, Bai L. Decoupling of divergent gene regulation by sequence-specific DNA binding factors. Nucleic Acids Res 2015; 43:7292-305. [PMID: 26082499 PMCID: PMC4551913 DOI: 10.1093/nar/gkv618] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/03/2015] [Indexed: 01/30/2023] Open
Abstract
Divergent gene pairs (DGPs) are abundant in eukaryotic genomes. Since two genes in a DGP potentially share the same regulatory sequence, one might expect that they should be co-regulated. However, an inspection of yeast DGPs containing cell-cycle or stress response genes revealed that most DGPs are differentially-regulated. The mechanism underlying DGP differential regulation is not understood. Here, we showed that co- versus differential regulation cannot be explained by genetic features including promoter length, binding site orientation, TATA elements, nucleosome distribution, or presence of non-coding RNAs. Using time-lapse fluorescence microscopy, we carried out an in-depth study of a differentially regulated DGP, PFK26-MOB1. We found that their differential regulation is mainly achieved through two DNA-binding factors, Tbf1 and Mcm1. Similar to 'enhancer-blocking insulators' in higher eukaryotes, these factors shield the proximal promoter from the action of more distant transcription regulators. We confirmed the blockage function of Tbf1 using synthetic promoters. We further presented evidence that the blockage mechanism is widely used among genome-wide DGPs. Besides elucidating the DGP regulatory mechanism, our work revealed a novel class of insulators in yeast.
Collapse
Affiliation(s)
- Chao Yan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Daoyong Zhang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Juan Antonio Raygoza Garay
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michael M Mwangi
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
4
|
Hog1 targets Whi5 and Msa1 transcription factors to downregulate cyclin expression upon stress. Mol Cell Biol 2015; 35:1606-18. [PMID: 25733686 DOI: 10.1128/mcb.01279-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/20/2015] [Indexed: 12/17/2022] Open
Abstract
Yeast cells have developed complex mechanisms to cope with extracellular insults. An increase in external osmolarity leads to activation of the stress-activated protein kinase Hog1, which is the main regulator of adaptive responses, such as gene expression and cell cycle progression, that are essential for cellular survival. Upon osmostress, the G1-to-S transition is regulated by Hog1 through stabilization of the cyclin-dependent kinase inhibitor Sic1 and the downregulation of G1 cyclin expression by an unclear mechanism. Here, we show that Hog1 interacts with and phosphorylates components of the core cell cycle transcriptional machinery such as Whi5 and the coregulator Msa1. Phosphorylation of these two transcriptional regulators by Hog1 is essential for inhibition of G1 cyclin expression, for control of cell morphogenesis, and for maximal cell survival upon stress. The control of both Whi5 and Msa1 by Hog1 also revealed the necessity for proper coordination of budding and DNA replication. Thus, Hog1 regulates G1 cyclin transcription upon osmostress to ensure coherent passage through Start.
Collapse
|
5
|
Abstract
Nearly 20% of the budding yeast genome is transcribed periodically during the cell division cycle. The precise temporal execution of this large transcriptional program is controlled by a large interacting network of transcriptional regulators, kinases, and ubiquitin ligases. Historically, this network has been viewed as a collection of four coregulated gene clusters that are associated with each phase of the cell cycle. Although the broad outlines of these gene clusters were described nearly 20 years ago, new technologies have enabled major advances in our understanding of the genes comprising those clusters, their regulation, and the complex regulatory interplay between clusters. More recently, advances are being made in understanding the roles of chromatin in the control of the transcriptional program. We are also beginning to discover important regulatory interactions between the cell-cycle transcriptional program and other cell-cycle regulatory mechanisms such as checkpoints and metabolic networks. Here we review recent advances and contemporary models of the transcriptional network and consider these models in the context of eukaryotic cell-cycle controls.
Collapse
|
6
|
Bastajian N, Friesen H, Andrews BJ. Bck2 acts through the MADS box protein Mcm1 to activate cell-cycle-regulated genes in budding yeast. PLoS Genet 2013; 9:e1003507. [PMID: 23675312 PMCID: PMC3649975 DOI: 10.1371/journal.pgen.1003507] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 03/27/2013] [Indexed: 11/19/2022] Open
Abstract
The Bck2 protein is a potent genetic regulator of cell-cycle-dependent gene expression in budding yeast. To date, most experiments have focused on assessing a potential role for Bck2 in activation of the G1/S-specific transcription factors SBF (Swi4, Swi6) and MBF (Mbp1, Swi6), yet the mechanism of gene activation by Bck2 has remained obscure. We performed a yeast two-hybrid screen using a truncated version of Bck2 and discovered six novel Bck2-binding partners including Mcm1, an essential protein that binds to and activates M/G1 promoters through Early Cell cycle Box (ECB) elements as well as to G2/M promoters. At M/G1 promoters Mcm1 is inhibited by association with two repressors, Yox1 or Yhp1, and gene activation ensues once repression is relieved by an unknown activating signal. Here, we show that Bck2 interacts physically with Mcm1 to activate genes during G1 phase. We used chromatin immunoprecipitation (ChIP) experiments to show that Bck2 localizes to the promoters of M/G1-specific genes, in a manner dependent on functional ECB elements, as well as to the promoters of G1/S and G2/M genes. The Bck2-Mcm1 interaction requires valine 69 on Mcm1, a residue known to be required for interaction with Yox1. Overexpression of BCK2 decreases Yox1 localization to the early G1-specific CLN3 promoter and rescues the lethality caused by overexpression of YOX1. Our data suggest that Yox1 and Bck2 may compete for access to the Mcm1-ECB scaffold to ensure appropriate activation of the initial suite of genes required for cell cycle commitment.
Collapse
Affiliation(s)
- Nazareth Bastajian
- The Donnelly Centre and the Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Helena Friesen
- The Donnelly Centre and the Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Brenda J. Andrews
- The Donnelly Centre and the Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
7
|
Thorburn RR, Gonzalez C, Brar GA, Christen S, Carlile TM, Ingolia NT, Sauer U, Weissman JS, Amon A. Aneuploid yeast strains exhibit defects in cell growth and passage through START. Mol Biol Cell 2013; 24:1274-89. [PMID: 23468524 PMCID: PMC3639041 DOI: 10.1091/mbc.e12-07-0520] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Aneuploidy causes cell proliferation defects in budding yeast, with many aneuploid strains exhibiting a G1 delay. This study shows that the G1 delay in aneuploid budding yeast is caused by a growth defect and delayed passage through START due to delayed G1 cyclin accumulation. Aneuploidy, a chromosome content that is not a multiple of the haploid karyotype, is associated with reduced fitness in all organisms analyzed to date. In budding yeast aneuploidy causes cell proliferation defects, with many different aneuploid strains exhibiting a delay in G1, a cell cycle stage governed by extracellular cues, growth rate, and cell cycle events. Here we characterize this G1 delay. We show that 10 of 14 aneuploid yeast strains exhibit a growth defect during G1. Furthermore, 10 of 14 aneuploid strains display a cell cycle entry delay that correlates with the size of the additional chromosome. This cell cycle entry delay is due to a delayed accumulation of G1 cyclins that can be suppressed by supplying cells with high levels of a G1 cyclin. Our results indicate that aneuploidy frequently interferes with the ability of cells to grow and, as with many other cellular stresses, entry into the cell cycle.
Collapse
Affiliation(s)
- Rebecca R Thorburn
- David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Bai L, Ondracka A, Cross FR. Multiple sequence-specific factors generate the nucleosome-depleted region on CLN2 promoter. Mol Cell 2011; 42:465-76. [PMID: 21596311 PMCID: PMC3119483 DOI: 10.1016/j.molcel.2011.03.028] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/12/2011] [Accepted: 03/30/2011] [Indexed: 01/29/2023]
Abstract
Nucleosome-depleted regions (NDRs) are ubiquitous on eukaryotic promoters. The formation of many NDRs cannot be readily explained by previously proposed mechanisms. Here, we carry out a focused study on a physiologically important NDR in the yeast CLN2 promoter (CLN2pr). We show that this NDR does not result from intrinsically unfavorable histone-DNA interaction. Instead, we identified eight conserved factor binding sites, including that of Reb1, Mcm1, and Rsc3, that cause the local nucleosome depletion. These nucleosome-depleting factors (NDFs) work redundantly, and simultaneously mutating all their binding sites eliminates CLN2pr NDR. The loss of the NDR induces unreliable "on/off" expression in individual cell cycles, but in the presence of the NDR, NDFs have little direct effect on transcription. We present bioinformatic evidence that the formation of many NDRs across the genome involves multiple NDFs. Our findings also provide significant insight into the composition and spatial organization of functional promoters.
Collapse
Affiliation(s)
- Lu Bai
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York, NY, 10065, USA.
| | | | | |
Collapse
|
9
|
Nair DR, D'Ausilio CA, Occhipinti P, Borsuk ME, Gladfelter AS. A conserved G₁ regulatory circuit promotes asynchronous behavior of nuclei sharing a common cytoplasm. Cell Cycle 2010; 9:3771-9. [PMID: 20930528 DOI: 10.4161/cc.9.18.12999] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Synthesis and accumulation of conserved cell cycle regulators such as cyclins are thought to promote G₁/S and G₂/M transitions in most eukaryotes. When cells at different stages of the cell cycle are fused to form heterokaryons, the shared complement of regulators in the cytoplasm induces the nuclei to become synchronized. However, multinucleate fungi often display asynchronous nuclear division cycles, even though the nuclei inhabit a shared cytoplasm. Similarly, checkpoints can induce nuclear asynchrony in multinucleate cells by arresting only the nucleus that receives damage. The cell biological basis for nuclear autonomy in a common cytoplasm is not known. Here we show that in the filamentous fungus Ashbya gossypii, sister nuclei born from one mitosis immediately lose synchrony in the subsequent G₁ interval. A conserved G₁ transcriptional regulatory circuit involving the Rb-analogue Whi5p promotes the asynchronous behavior yet Whi5 protein is uniformly distributed among nuclei throughout the cell cycle. The homologous Whi5p circuit in S. cerevisiae employs positive feedback to promote robust and coherent entry into the cell cycle. We propose that positive feedback in this same circuit generates timing variability in a multinucleate cell. These unexpected findings indicate that a regulatory program whose products (mRNA transcripts) are translated in a common cytoplasm can nevertheless promote variability in the individual behavior of sister nuclei.
Collapse
|
10
|
Bai L, Charvin G, Siggia ED, Cross FR. Nucleosome-depleted regions in cell-cycle-regulated promoters ensure reliable gene expression in every cell cycle. Dev Cell 2010; 18:544-55. [PMID: 20412770 PMCID: PMC2867244 DOI: 10.1016/j.devcel.2010.02.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 12/17/2009] [Accepted: 02/24/2010] [Indexed: 12/21/2022]
Abstract
Many promoters in eukaryotes have nucleosome-depleted regions (NDRs) containing transcription factor binding sites. However, the functional significance of NDRs is not well understood. Here, we examine NDR function in two cell cycle-regulated promoters, CLN2pr and HOpr, by varying nucleosomal coverage of the binding sites of their activator, Swi4/Swi6 cell-cycle box (SCB)-binding factor (SBF), and probing the corresponding transcriptional activity in individual cells with time-lapse microscopy. Nucleosome-embedded SCBs do not significantly alter peak expression levels. Instead, they induce bimodal, "on/off" activation in individual cell cycles, which displays short-term memory, or epigenetic inheritance, from the mother cycle. In striking contrast, the same SCBs localized in NDR lead to highly reliable activation, once in every cell cycle. We further demonstrate that the high variability in Cln2p expression induced by the nucleosomal SCBs reduces cell fitness. Therefore, we propose that the NDR function in limiting stochasticity in gene expression promotes the ubiquity and conservation of promoter NDR. PAPERCLIP:
Collapse
Affiliation(s)
- Lu Bai
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA.
| | | | | | | |
Collapse
|
11
|
Li L, Quinton T, Miles S, Breeden LL. Genetic interactions between mediator and the late G1-specific transcription factor Swi6 in Saccharomyces cerevisiae. Genetics 2005; 171:477-88. [PMID: 15998722 PMCID: PMC1456765 DOI: 10.1534/genetics.105.043893] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Swi6 associates with Swi4 to activate HO and many other late G(1)-specific transcripts in budding yeast. Genetic screens for suppressors of SWI6 mutants have been carried out. A total of 112 of these mutants have been identified and most fall into seven complementation groups. Six of these genes have been cloned and identified and they all encode subunits of the mediator complex. These mutants restore transcription to the HO-lacZ reporter in the absence of Swi6 and have variable effects on other Swi6 target genes. Deletions of other nonessential mediator components have been tested directly for suppression of, or genetic interaction with, swi6. Mutations in half of the known subunits of mediator show suppression and/or growth defects in combination with swi6. These phenotypes are highly variable and do not correlate with a specific module of the mediator. Mutations in tail module components sin4 and pgd1 showed both growth defects and suppression when combined with swi6, but a third tail component, gal11, showed neither. A truncated form of the essential Srb7 mediator subunit also suppresses swi6 mutations and shows a defect in recruitment of the tail module components Sin4, Pgd1, and Gal11 to the mediator complex.
Collapse
Affiliation(s)
- Lihong Li
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | | | | | | |
Collapse
|
12
|
Bean JM, Siggia ED, Cross FR. High functional overlap between MluI cell-cycle box binding factor and Swi4/6 cell-cycle box binding factor in the G1/S transcriptional program in Saccharomyces cerevisiae. Genetics 2005; 171:49-61. [PMID: 15965243 PMCID: PMC1456534 DOI: 10.1534/genetics.105.044560] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In budding yeast, many genes are induced early in the cell cycle. Induction of these genes has been predominantly attributed to two transcription factors, Swi4-Swi6 (SBF) and Mbp1-Swi6 (MBF). Swi4 and Mbp1 are related DNA-binding proteins with dissimilar target sequences. For most G1/S-regulated genes that we tested in a cdc20 block-release protocol for cell-cycle synchronization, removal of both Swi4 and Mbp1 was necessary and sufficient to essentially eliminate cell-cycle-regulated expression. Detectable SBF or MBF binding sites (SCBs or MCBs) in the promoters or available genome-wide promoter occupancy data do not consistently explain this functional overlap. The overlapping ability of these transcription factors to regulate many promoters with very similar cell-cycle kinetics may provide robustness to the G1/S transcriptional response, but poses a puzzle with respect to promoter-transcription factor specificity. In addition, for some genes, deletion of Mbp1 or Swi4 enhances transcription, suggesting that these factors can also function as transcriptional repressors. Finally, we observe residual G1/S transcriptional regulation in the absence of Swi4 and Mbp1.
Collapse
Affiliation(s)
- James M Bean
- Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
13
|
Flick K, Wittenberg C. Multiple pathways for suppression of mutants affecting G1-specific transcription in Saccharomyces cerevisiae. Genetics 2005; 169:37-49. [PMID: 15677747 PMCID: PMC1448864 DOI: 10.1534/genetics.104.032169] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the budding yeast, Saccharomyces cerevisiae, control of cell proliferation is exerted primarily during G(1) phase. The G(1)-specific transcription of several hundred genes, many with roles in early cell cycle events, requires the transcription factors SBF and MBF, each composed of Swi6 and a DNA-binding protein, Swi4 or Mbp1, respectively. Binding of these factors to promoters is essential but insufficient for robust transcription. Timely transcriptional activation requires Cln3/CDK activity. To identify potential targets for Cln3/CDK, we identified multicopy suppressors of the temperature sensitivity of new conditional alleles of SWI6. A bck2Delta background was used to render SWI6 essential. Seven multicopy suppressors of bck2Delta swi6-ts mutants were identified. Three genes, SWI4, RME1, and CLN2, were identified previously in related screens and shown to activate G(1)-specific expression of genes independent of CLN3 and SWI6. The other four genes, FBA1, RPL40a/UBI1, GIN4, and PAB1, act via apparently unrelated pathways downstream of SBF and MBF. Each depends upon CLN2, but not CLN1, for its suppressing activity. Together with additional characterization these findings indicate that multiple independent pathways are sufficient for proliferation in the absence of G(1)-specific transcriptional activators.
Collapse
Affiliation(s)
- Karin Flick
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
14
|
Su NY, Flick K, Kaiser P. The F-box protein Met30 is required for multiple steps in the budding yeast cell cycle. Mol Cell Biol 2005; 25:3875-85. [PMID: 15870262 PMCID: PMC1087702 DOI: 10.1128/mcb.25.10.3875-3885.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae ubiquitin ligase SCF(Met30) is essential for cell cycle progression. To identify and characterize SCF(Met30)-dependent cell cycle steps, we used temperature-sensitive met30 mutants in cell cycle synchrony experiments. These experiments revealed a requirement for Met30 during both G(1)/S transition and M phase, while progression through S phase was unaffected by loss of Met30 function. Expression of the G(1)-specific transcripts CLN1, CLN2, and CLB5 was very low in met30 mutants, whereas expression of CLN3 was unaffected. However, overexpression of Cln2 could not overcome the G(1) arrest. Interestingly, overexpression of Clb5 could induce DNA replication in met30 mutants, albeit very inefficiently. Increased levels of Clb5 could not, however, suppress the cell proliferation defect of met30 mutants. Consistent with the DNA replication defects, chromatin immunoprecipitation experiments revealed significantly lower levels of the replication factors Mcm4, Mcm7, and Cdc45 at replication origins in met30 mutants than in wild-type cells. These data suggest that Met30 regulates several aspects of the cell cycle, including G(1)-specific transcription, initiation of DNA replication, and progression through M phase.
Collapse
Affiliation(s)
- Ning Yuan Su
- University of California, Irvine, Department of Biological Chemistry, College of Medicine, 240D Med Sci I, Irvine, CA 92697-1700, USA
| | | | | |
Collapse
|
15
|
Prado F, Aguilera A. Impairment of replication fork progression mediates RNA polII transcription-associated recombination. EMBO J 2005; 24:1267-76. [PMID: 15775982 PMCID: PMC556405 DOI: 10.1038/sj.emboj.7600602] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Accepted: 02/07/2005] [Indexed: 01/27/2023] Open
Abstract
Homologous recombination safeguards genome integrity, but it can also cause genome instability of important consequences for cell proliferation and organism development. Transcription induces recombination, as shown in prokaryotes and eukaryotes for both spontaneous and developmentally regulated events such as those responsible for immunoglobulin class switching. Deciphering the molecular basis of transcription-associated recombination (TAR) is important in understanding genome instability. Using novel plasmid-borne recombination constructs in Saccharomyces cerevisiae, we show that RNA polymerase II (RNAPII) transcription induces recombination by impairing replication fork progression. RNAPII transcription concomitant to head-on oncoming replication causes a replication fork pause (RFP) that is linked to a significant increase in recombination. However, transcription that is codirectional with replication has little effect on replication fork progression and recombination. Transcription occurring in the absence of replication does not affect either recombination or replication fork progression. The Rrm3 helicase, which is required for replication fork progression through nucleoprotein complexes, facilitates replication through the transcription-dependent RFP site and reduces recombination. Therefore, our work provides evidence that one mechanism responsible for TAR is RNAP-mediated replication impairment.
Collapse
Affiliation(s)
- Félix Prado
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Andrés Aguilera
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes 6, 41012 Sevilla, Spain. Tel.: +34 95 455 7107; Fax: +34 95 455 7104; E-mail:
| |
Collapse
|
16
|
Raithatha SA, Stuart DT. Meiosis-specific regulation of the Saccharomyces cerevisiae S-phase cyclin CLB5 is dependent on MluI cell cycle box (MCB) elements in its promoter but is independent of MCB-binding factor activity. Genetics 2005; 169:1329-42. [PMID: 15654101 PMCID: PMC1449548 DOI: 10.1534/genetics.104.036103] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In proliferating S. cerevisiae, genes whose products function in DNA replication are regulated by the MBF transcription factor composed of Mbp1 and Swi6 that binds to consensus MCB sequences in target promoters. We find that during meiotic development a subset of DNA replication genes exemplified by TMP1 and RNR1 are regulated by Mbp1. Deletion of Mbp1 deregulated TMP1 and RNR1 but did not interfere with premeiotic S-phase, meiotic recombination, or spore formation. Surprisingly, deletion of MBP1 had no effect on the expression of CLB5, which is purportedly controlled by MBF. Extensive analysis of the CLB5 promoter revealed that the gene is largely regulated by elements within a 100-bp fragment containing a cluster of MCB sequences. Surprisingly, induction of the CLB5 promoter requires MCB sequences, but not Mbp1, implying that another MCB-binding factor may exist in cells undergoing meiosis. In addition, full activation of CLB5 during meiosis requires Clb5 activity, suggesting that CLB5 may be regulated by a positive feedback mechanism. We further demonstrate that during meiosis MCBs function as effective transcriptional activators independent of MBP1.
Collapse
|
17
|
Costanzo M, Schub O, Andrews B. G1 transcription factors are differentially regulated in Saccharomyces cerevisiae by the Swi6-binding protein Stb1. Mol Cell Biol 2003; 23:5064-77. [PMID: 12832490 PMCID: PMC162210 DOI: 10.1128/mcb.23.14.5064-5077.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2003] [Revised: 03/14/2003] [Accepted: 04/10/2003] [Indexed: 01/13/2023] Open
Abstract
Stage-specific transcriptional programs are an integral feature of cell cycle regulation. In the budding yeast Saccharomyces cerevisiae, over 120 genes are coordinately induced in late G(1) phase by two heterodimeric transcription factors called SBF and MBF. Activation of SBF and MBF is an upstream initiator of key cell cycle events, including budding and DNA replication. SBF and MBF regulation is complex and genetically redundant, and the precise mechanism of G(1) transcriptional activation is unclear. Assays using SBF- and MBF-specific reporter genes revealed that the STB1 gene specifically affected MBF-dependent transcription. STB1 encodes a known Swi6-binding protein, but an MBF-specific function had not been previously suspected. Consistent with a specific role in regulating MBF, a STB1 deletion strain requires SBF for viability and microarray studies show a decrease in MBF-regulated transcripts in a swi4Delta mutant following depletion of Stb1. Chromatin immunoprecipitation experiments confirm that Stb1 localizes to promoters of MBF-regulated genes. Our data indicate that, contrary to previous models, MBF and SBF have unique components and might be distinctly regulated.
Collapse
Affiliation(s)
- Michael Costanzo
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | |
Collapse
|
18
|
MacKay VL, Mai B, Waters L, Breeden LL. Early cell cycle box-mediated transcription of CLN3 and SWI4 contributes to the proper timing of the G(1)-to-S transition in budding yeast. Mol Cell Biol 2001; 21:4140-8. [PMID: 11390643 PMCID: PMC87075 DOI: 10.1128/mcb.21.13.4140-4148.2001] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Cln3-Cdc28 kinase is required to activate the Swi4-Swi6 transcription complex which induces CLN1 and CLN2 transcription in late G(1) and drives the transition to S. Cln3 and Swi4 are both rate limiting for G(1) progression, and they are coordinately transcribed to peak at the M/G(1) boundary. Early cell cycle box (ECB) elements, which confer M/G(1)-specific transcription, have been found in both promoters, and elimination of all ECB elements from the CLN3 promoter causes both a loss of periodicity and Cln3-deficient phenotypes, which include an extended G(1) interval and increased cell volume. Mutants lacking the ECB elements in both the CLN3 and SWI4 promoters have low and deregulated levels of CLN transcripts, and the G(1)-to-S transition for these mutants is delayed and highly variable. These observations support the view that the coordinated rise of Cln3 and Swi4 levels mediated by ECB-dependent transcription controls the timing of the G(1)-to-S phase transition.
Collapse
Affiliation(s)
- V L MacKay
- Fred Hutchinson Cancer Research Center, Basic Sciences Division, Seattle, Washington 98109-1024, USA
| | | | | | | |
Collapse
|
19
|
Tsukihashi Y, Miyake T, Kawaichi M, Kokubo T. Impaired core promoter recognition caused by novel yeast TAF145 mutations can be restored by creating a canonical TATA element within the promoter region of the TUB2 gene. Mol Cell Biol 2000; 20:2385-99. [PMID: 10713163 PMCID: PMC85416 DOI: 10.1128/mcb.20.7.2385-2399.2000] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/1999] [Accepted: 01/10/2000] [Indexed: 11/20/2022] Open
Abstract
The general transcription factor TFIID, which is composed of TATA-binding protein (TBP) and an array of TBP-associated factors (TAFs), has been shown to play a crucial role in recognition of the core promoters of eukaryotic genes. We isolated Saccharomyces cerevisiae yeast TAF145 (yTAF145) temperature-sensitive mutants in which transcription of a specific subset of genes was impaired at restrictive temperatures. The set of genes affected in these mutants overlapped with but was not identical to the set of genes affected by a previously reported yTAF145 mutant (W.-C. Shen and M. R. Green, Cell 90:615-624, 1997). To identify sequences which rendered transcription yTAF145 dependent, we conducted deletion analysis of the TUB2 promoter using a novel mini-CLN2 hybrid gene reporter system. The results showed that the yTAF145 mutations we isolated impaired core promoter recognition but did not affect activation by any of the transcriptional activators we tested. These observations are consistent with the reported yTAF145 dependence of the CLN2 core promoter in the mutant isolated by Shen and Green, although the CLN2 core promoter functioned normally in the mutants we report here. These results suggest that different promoters require different yTAF145 functions for efficient transcription. Interestingly, insertion of a canonical TATA element into the TATA-less TUB2 promoter rescued impaired transcription in the yTAF145 mutants we studied. It therefore appears that strong binding of TBP to the core promoter can alleviate the requirement for at least one yTAF145 function.
Collapse
Affiliation(s)
- Y Tsukihashi
- Division of Gene Function in Animals, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | | | | | | |
Collapse
|
20
|
Ho Y, Costanzo M, Moore L, Kobayashi R, Andrews BJ. Regulation of transcription at the Saccharomyces cerevisiae start transition by Stb1, a Swi6-binding protein. Mol Cell Biol 1999; 19:5267-78. [PMID: 10409718 PMCID: PMC84370 DOI: 10.1128/mcb.19.8.5267] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, gene expression in the late G(1) phase is activated by two transcription factors, SBF and MBF. SBF contains the Swi4 and Swi6 proteins and activates the transcription of G(1) cyclin genes, cell wall biosynthesis genes, and the HO gene. MBF is composed of Mbp1 and Swi6 and activates the transcription of genes required for DNA synthesis. Mbp1 and Swi4 are the DNA binding subunits for MBF and SBF, while the common subunit, Swi6, is presumed to play a regulatory role in both complexes. We show that Stb1, a protein first identified in a two-hybrid screen with the transcriptional repressor Sin3, binds Swi6 in vitro. The STB1 transcript was cell cycle periodic and peaked in late G(1) phase. In vivo accumulation of Stb1 phosphoforms was dependent on CLN1, CLN2, and CLN3, which encode G(1)-specific cyclins for the cyclin-dependent kinase Cdc28, and Stb1 was phosphorylated by Cln-Cdc28 kinases in vitro. Deletion of STB1 caused an exacerbated delay in G(1) progression and the onset of Start transcription in a cln3Delta strain. Our results suggest a role for STB1 in controlling the timing of Start transcription that is revealed in the absence of the G(1) regulator CLN3, and they implicate Stb1 as an in vivo target of G(1)-specific cyclin-dependent kinases.
Collapse
Affiliation(s)
- Y Ho
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Canada M5S 1A8
| | | | | | | | | |
Collapse
|
21
|
Leza MA, Elion EA. POG1, a novel yeast gene, promotes recovery from pheromone arrest via the G1 cyclin CLN2. Genetics 1999; 151:531-43. [PMID: 9927449 PMCID: PMC1460478 DOI: 10.1093/genetics/151.2.531] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the absence of a successful mating, pheromone-arrested Saccharomyces cerevisiae cells reenter the mitotic cycle through a recovery process that involves downregulation of the mating mitogen-activated protein kinase (MAPK) cascade. We have isolated a novel gene, POG1, whose promotion of recovery parallels that of the MAPK phosphatase Msg5. POG1 confers alpha-factor resistance when overexpressed and enhances alpha-factor sensitivity when deleted in the background of an msg5 mutant. Overexpression of POG1 inhibits alpha-factor-induced G1 arrest and transcriptional repression of the CLN1 and CLN2 genes. The block in transcriptional repression occurs at SCB/MCB promoter elements by a mechanism that requires Bck1 but not Cln3. Genetic tests strongly argue that POG1 promotes recovery through upregulation of the CLN2 gene and that the resulting Cln2 protein promotes recovery primarily through an effect on Ste20, an activator of the mating MAPK cascade. A pog1 cln3 double mutant displays synthetic mutant phenotypes shared by cell-wall integrity and actin cytoskeleton mutants, with no synthetic defect in the expression of CLN1 or CLN2. These and other results suggest that POG1 may regulate additional genes during vegetative growth and recovery.
Collapse
Affiliation(s)
- M A Leza
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
22
|
Gustin MC, Albertyn J, Alexander M, Davenport K. MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1998; 62:1264-300. [PMID: 9841672 PMCID: PMC98946 DOI: 10.1128/mmbr.62.4.1264-1300.1998] [Citation(s) in RCA: 715] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A cascade of three protein kinases known as a mitogen-activated protein kinase (MAPK) cascade is commonly found as part of the signaling pathways in eukaryotic cells. Almost two decades of genetic and biochemical experimentation plus the recently completed DNA sequence of the Saccharomyces cerevisiae genome have revealed just five functionally distinct MAPK cascades in this yeast. Sexual conjugation, cell growth, and adaptation to stress, for example, all require MAPK-mediated cellular responses. A primary function of these cascades appears to be the regulation of gene expression in response to extracellular signals or as part of specific developmental processes. In addition, the MAPK cascades often appear to regulate the cell cycle and vice versa. Despite the success of the gene hunter era in revealing these pathways, there are still many significant gaps in our knowledge of the molecular mechanisms for activation of these cascades and how the cascades regulate cell function. For example, comparison of different yeast signaling pathways reveals a surprising variety of different types of upstream signaling proteins that function to activate a MAPK cascade, yet how the upstream proteins actually activate the cascade remains unclear. We also know that the yeast MAPK pathways regulate each other and interact with other signaling pathways to produce a coordinated pattern of gene expression, but the molecular mechanisms of this cross talk are poorly understood. This review is therefore an attempt to present the current knowledge of MAPK pathways in yeast and some directions for future research in this area.
Collapse
Affiliation(s)
- M C Gustin
- Department of Biochemistry and Cell Biology Rice University, Houston, Texas 77251-1892, USA.
| | | | | | | |
Collapse
|
23
|
Mendenhall MD, Hodge AE. Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1998; 62:1191-243. [PMID: 9841670 PMCID: PMC98944 DOI: 10.1128/mmbr.62.4.1191-1243.1998] [Citation(s) in RCA: 308] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cyclin-dependent protein kinase (CDK) encoded by CDC28 is the master regulator of cell division in the budding yeast Saccharomyces cerevisiae. By mechanisms that, for the most part, remain to be delineated, Cdc28 activity controls the timing of mitotic commitment, bud initiation, DNA replication, spindle formation, and chromosome separation. Environmental stimuli and progress through the cell cycle are monitored through checkpoint mechanisms that influence Cdc28 activity at key cell cycle stages. A vast body of information concerning how Cdc28 activity is timed and coordinated with various mitotic events has accrued. This article reviews that literature. Following an introduction to the properties of CDKs common to many eukaryotic species, the key influences on Cdc28 activity-cyclin-CKI binding and phosphorylation-dephosphorylation events-are examined. The processes controlling the abundance and activity of key Cdc28 regulators, especially transcriptional and proteolytic mechanisms, are then discussed in detail. Finally, the mechanisms by which environmental stimuli influence Cdc28 activity are summarized.
Collapse
Affiliation(s)
- M D Mendenhall
- L. P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536-0096, USA.
| | | |
Collapse
|
24
|
Philpott CC, Rashford J, Yamaguchi-Iwai Y, Rouault TA, Dancis A, Klausner RD. Cell-cycle arrest and inhibition of G1 cyclin translation by iron in AFT1-1(up) yeast. EMBO J 1998; 17:5026-36. [PMID: 9724638 PMCID: PMC1170830 DOI: 10.1093/emboj/17.17.5026] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although iron is an essential nutrient, it is also a potent cellular toxin, and the acquisition of iron is a highly regulated process in eukaryotes. In yeast, iron uptake is homeostatically regulated by the transcription factor encoded by AFT1. Expression of AFT1-1(up), a dominant mutant allele, results in inappropriately high rates of iron uptake, and AFT1-1(up) mutants grow slowly in the presence of high concentrations of iron. We present evidence that when Aft1-1(up) mutants are exposed to iron, they arrest the cell division cycle at the G1 regulatory point Start. This arrest is dependent on high-affinity iron uptake and does not require the activation of the DNA damage checkpoint governed by RAD9. The iron-induced arrest is bypassed by overexpression of a mutant G1 cyclin, cln3-2, and expression of the G1-specific cyclins Cln1 and Cln2 is reduced when yeast are exposed to increasing amounts of iron, which may account for the arrest. This reduction is not due to changes in transcription of CLN1 or CLN2, nor is it due to accelerated degradation of the protein. Instead, this reduction occurs at the level of Cln2 translation, a recently recognized locus of cell-cycle control in yeast.
Collapse
Affiliation(s)
- C C Philpott
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-5430, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Stuart D, Wittenberg C. CLB5 and CLB6 are required for premeiotic DNA replication and activation of the meiotic S/M checkpoint. Genes Dev 1998; 12:2698-710. [PMID: 9732268 PMCID: PMC317137 DOI: 10.1101/gad.12.17.2698] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/1998] [Accepted: 07/08/1998] [Indexed: 11/25/2022]
Abstract
Initiation of DNA replication during the mitotic cell cycle requires the activation of a cyclin-dependent protein kinase (CDK). The B-type cyclins Clb5 and Clb6 are the primary activators of the S phase function of the budding yeast CDK Cdc28. However, in mitotically growing cells this role can be fulfilled by the other B-type cyclins Clb1-Clb4. We report here that cells undergoing meiotic development also require Clb dependent CDK activity for DNA replication. Diploid clb5/clb5 clb6/clb6 mutants are unable to perform premeiotic DNA replication. Despite this defect, the mutant cells progress into the meiotic program and undergo lethal segregation of unreplicated DNA suggesting that they fail to activate a checkpoint that restrains meiotic M phase until DNA replication is complete. We have found that a DNA replication checkpoint dependent on the ATM homolog MEC1 operates in wild-type cells during meiosis and can be invoked in response to inhibition of DNA synthesis. Although cells that lack clb5 and clb6 are unable to activate the meiotic DNA replication checkpoint, they do possess an intact DNA damage checkpoint which can restrain chromosome segregation in the face of DNA damage. We conclude that CLB5 and CLB6 are essential for premeiotic DNA replication and, consequently, for activation of a meiotic DNA replication checkpoint.
Collapse
Affiliation(s)
- D Stuart
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
26
|
Flick K, Chapman-Shimshoni D, Stuart D, Guaderrama M, Wittenberg C. Regulation of cell size by glucose is exerted via repression of the CLN1 promoter. Mol Cell Biol 1998; 18:2492-501. [PMID: 9566870 PMCID: PMC110629 DOI: 10.1128/mcb.18.5.2492] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/1997] [Accepted: 02/04/1998] [Indexed: 02/07/2023] Open
Abstract
Yeast cells are keenly sensitive to the availability and quality of nutrients. Addition of glucose to cells growing on a poorer carbon source elicits a cell cycle delay during G1 phase and a concomitant increase in the cell size. The signal is transduced through the RAS-cyclic AMP pathway. Using synchronized populations of G1 cells, we show that the increase in cell size required for budding depends upon CLN1 but not other G1 cyclins. This delay in cell cycle initiation is associated specifically with transcriptional repression of CLN1. CLN2 is not repressed. Repression of CLN1 is not limited to the first cycle following glucose addition but occurs in each cell cycle during growth on glucose. A 106-bp fragment of the CLN1 promoter containing the three MluI cell cycle box (MCB) core elements responsible for the majority of CLN1-associated upstream activation sequence activity is sufficient to confer glucose-induced repression on a heterologous reporter. A mutant CLN2 promoter that is rendered dependent upon its three MCB core elements due to inactivation of its Swi4-dependent cell cycle box (SCB) elements is also repressed by glucose. The response to glucose is partially suppressed by inactivation of SWI4, but not MBP1, which is consistent with the dependence of MCB core elements upon the SCB-binding transcription factor (SBF). We suggest that differential regulation of CLN1 and CLN2 by glucose results from differences in the capacity of SBF to activate transcription driven by SCB and MCB core elements. Finally, we show that transcriptional repression is sufficient to explain the cell cycle delay that occurs in response to glucose.
Collapse
Affiliation(s)
- K Flick
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
27
|
Sidorova JM, Breeden LL. Rad53-dependent phosphorylation of Swi6 and down-regulation of CLN1 and CLN2 transcription occur in response to DNA damage in Saccharomyces cerevisiae. Genes Dev 1997; 11:3032-45. [PMID: 9367985 PMCID: PMC316703 DOI: 10.1101/gad.11.22.3032] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/1997] [Accepted: 09/12/1997] [Indexed: 02/05/2023]
Abstract
Budding yeast possesses a checkpoint-dependent mechanism of delaying G1 progression in response to UV and ionizing radiation DNA damage. We have shown that after a pulse of DNA damage in G1 with the alkylating agent MMS, there is also a MEC1-, RAD53-, and RAD9-dependent delay in G1. This delay occurs at or before Start, as the MMS-treated cells do not bud, remain sensitive to alpha-factor, and have low CLN1 and CLN2 transcript levels for a longer time than untreated cells. We further show that MMS directly and reversibly down-regulates CLN1 and CLN2 transcript levels. The initial drop in CLN transcript levels in MMS is not RAD53 dependent, but the kinetics of reaccumulation of CLN messages as cells recover from the damage is faster in rad53-11 cells than in wild type cells. This is not an indirect effect of faster progression through G1, because CLN transcripts reaccumulate faster in rad53-11 mutants arrested in G1 as well. In addition, the recovery of CLN mRNA levels can be also hastened by a SWI6 deletion or by overexpression of the truncated Swi4 (Swi4-t) that lacks the carboxy-terminal domain through which Swi4 associates with Swi6. This indicates that both Rad53 and Swi6 are negative regulators of CLN expression after DNA damage. Finally, Swi6 undergoes an MMS-inducible, RAD53-dependent phosphorylation in G1 cells, and Rad53, immunoprecipitated from MMS-treated cells, phosphorylates Swi6 in vitro. On the basis of these observations, we suggest that the Rad53-dependent phosphorylation of Swi6 may delay the transition to S phase by inhibiting CLN transcription.
Collapse
Affiliation(s)
- J M Sidorova
- Fred Hutchinson Cancer Research Center (FHCRC), Basic Sciences Division, Seattle, Washington 98109-1024, USA
| | | |
Collapse
|
28
|
Ho Y, Mason S, Kobayashi R, Hoekstra M, Andrews B. Role of the casein kinase I isoform, Hrr25, and the cell cycle-regulatory transcription factor, SBF, in the transcriptional response to DNA damage in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1997; 94:581-6. [PMID: 9012827 PMCID: PMC19556 DOI: 10.1073/pnas.94.2.581] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/1996] [Accepted: 11/01/1996] [Indexed: 02/03/2023] Open
Abstract
In the budding yeast, Saccharomyces cerevisiae, DNA damage or ribonucleotide depletion causes the transcriptional induction of an array of genes with known or putative roles in DNA repair. The ATM-like kinase, Mec1, and the serine/threonine protein kinases, Rad53 and Dun1, are required for this transcriptional response. In this paper, we provide evidence suggesting that another kinase, Hrr25, is also involved in the transcriptional response to DNA damage through its interaction with the transcription factor, Swi6. The Swi6 protein interacts with Swi4 to form the SBF complex and with Mbp1 to form the MBF complex. SBF and MBF are required for the G1-specific expression of G1 cyclins and genes required for S-phase. We show that Swi6 associates with and is phosphorylated by Hrr25 in vitro. We find that swi4, swi6, and hrr25 mutants, but not mbp1 mutants, are sensitive to hydroxyurea and the DNA-damaging agent methyl methane-sulfonate and are defective in the transcriptional induction of a subset of DNA damage-inducible genes. Both the sensitivity of swi6 mutants to methyl methanesulfonate and hydroxyurea and the transcriptional defect of hrr25 mutants are rescued by overexpression of SWI4, implicating the SBF complex in the Hrr25/Swi6-dependent response to DNA damage.
Collapse
Affiliation(s)
- Y Ho
- Department of Molecular and Medical Genetics, University of Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
29
|
Sia RA, Herald HA, Lew DJ. Cdc28 tyrosine phosphorylation and the morphogenesis checkpoint in budding yeast. Mol Biol Cell 1996; 7:1657-66. [PMID: 8930890 PMCID: PMC276016 DOI: 10.1091/mbc.7.11.1657] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A morphogenesis checkpoint in budding yeast delays nuclear division (and subsequent cell cycle progression) in cells that have failed to make a bud. We show that the ability of this checkpoint to delay nuclear division requires the SWE1 gene, encoding a protein kinase that inhibits the master cell cycle regulatory kinase Cdc28. The timing of nuclear division in cells that cannot make a bud is exquisitely sensitive to the dosage of SWE1 and MIH1 genes, which control phosphorylation of Cdc28 at tyrosine 19. In contrast, the timing of nuclear division in budded cells does not rely on Cdc28 phosphorylation, suggesting that the morphogenesis checkpoint somehow turns on this regulatory pathway. We show that SWE1 mRNA levels fluctuate during the cell cycle and are elevated in cells that cannot make a bud. However, regulation of SWE1 mRNA levels by the checkpoint is indirect, acting through a feedback loop requiring Swe1 activity. Further, the checkpoint is capable of delaying nuclear division even when SWE1 transcription is deregulated. We propose that the checkpoint delays nuclear division through post-translational regulation of Swe1 and that transcriptional feedback loops enhance the efficacy of the checkpoint.
Collapse
Affiliation(s)
- R A Sia
- Department of Molecular Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
30
|
Luke MM, Della Seta F, Di Como CJ, Sugimoto H, Kobayashi R, Arndt KT. The SAP, a new family of proteins, associate and function positively with the SIT4 phosphatase. Mol Cell Biol 1996; 16:2744-55. [PMID: 8649382 PMCID: PMC231265 DOI: 10.1128/mcb.16.6.2744] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
SIT4 is the catalytic subunit of a type 2A-related protein phosphatase in Saccharomyces cerevisiae that is required for G1 cyclin transcription and for bud formation. SIT4 associates with several high-molecular-mass proteins in a cell cycle-dependent fashion. We purified two SIT4-associated proteins, SAP155 and SAP190, and cloned the corresponding genes. By sequence homology, we isolated two additional SAP genes, SAP185 and SAP4. Through such an association is not yet proven for SAP4, each of SAP155, SAP185, and SAP190 physically associates with SIT4 in separate complexes. The SAPs function positively with SIT4, and by several criteria, the loss of all four SAPs is equivalent to the loss of SIT4. The data suggest that the SAPs are not functional in the absence of SIT4 and likewise that SIT4 is not functional in the absence of the SAPs. The SAPs are hyperphoshorylated in cells lacking SIT4, raising the possibility that the SAPs are substrates of SIT4. By sequence similarity, the SAPs fall into two groups, the SAP4/SAP155 group and the SAP185/SAP190 group. Overexpression of a SAP from one group does not suppress the defects due to the loss of the other group. These findings and others indicate that the SAPs have distinct functions.
Collapse
Affiliation(s)
- M M Luke
- Cold Spring Harbor Laboratory, New York 11724-2212, USA
| | | | | | | | | | | |
Collapse
|
31
|
Harrington LA, Andrews BJ. Binding to the yeast SwI4,6-dependent cell cycle box, CACGAAA, is cell cycle regulated in vivo. Nucleic Acids Res 1996; 24:558-65. [PMID: 8604294 PMCID: PMC145676 DOI: 10.1093/nar/24.4.558] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In Saccharomyces cerevisiae commitment to cell division occurs late in the G1 phase of the cell cycle at a point called Start and requires the activity of the Cdc28 protein kinase and its associated G1 cyclins. The Swi4,6-dependent cell cycle box binding factor, SBF, is important for maximal expression of the G1 cyclin and HO endonuclease genes at Start. The cell cycle regulation of these genes is modulated through an upstream regulatory element termed the SCB (SwI4,6-dependent cell cycle box, CACGAAA), which is dependent on both SWI4 and SWI6. Although binding of SWI4 and SWI6 to SCB sequences has been well characterized in vitro, the binding of SBF in vivo has not been examined. We used in vivo dimethyl sulfate footprinting to examine the occupancy of SCB sequences throughout the cell cycle. We found that binding to SCB sequences occurred in the G1 phase of the cell cycle and was greatly reduced in G2. In the absence of either SWI4 or SWI6, SCB sequences were not occupied at any cell cycle stage. These results suggest that the G1-specific expression of SCB-dependent genes is regulated at the level of DNA binding in vivo.
Collapse
Affiliation(s)
- L A Harrington
- Department of Molecular and Medical Genetics, University of Toronto, Ontario, Canada
| | | |
Collapse
|
32
|
Sidorova JM, Mikesell GE, Breeden LL. Cell cycle-regulated phosphorylation of Swi6 controls its nuclear localization. Mol Biol Cell 1995; 6:1641-58. [PMID: 8590795 PMCID: PMC301322 DOI: 10.1091/mbc.6.12.1641] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The Swi6 transcription factor, required for G1/S-specific gene expression in Saccharomyces cerevisiae, is highly phosphorylated in vivo. Within the limits of resolution of the peptide analysis, the synchrony, and the time intervals tested, serine 160 appears to be the only site of phosphorylation in Swi6 that varies during the cell cycle. Serine 160 resides within a Cdc28 consensus phosphorylation site and its phosphorylation occurs at about the time of maximal transcription of Swi6- and Cdc28-dependent genes containing SCB or MCB elements. However, phosphorylation at this site is not Cdc28-dependent, nor does it control G1/S-specific transcription. The role of the cell cycle-regulated phosphorylation is to control the subcellular localization of Swi6. Phosphorylation of serine 160 persists from late G1 until late M phase, and Swi6 is predominantly cytoplasmic during this time. Aspartate substitution for serine 160 inhibits nuclear localization throughout the cycle. Swi6 enters the nucleus late in M phase and throughout G1, when serine 160 is hypophosphorylated. Alanine substitution at position 160 allows nuclear entry of Swi6 throughout the cell cycle. GFP fusions with the N-terminal one-third of Swi6 display the same cell cycle-regulated localization as Swi6.
Collapse
Affiliation(s)
- J M Sidorova
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98104, USA
| | | | | |
Collapse
|
33
|
Affiliation(s)
- J Pines
- Wellcome/CRC Institute, Cambridge, U.K
| |
Collapse
|
34
|
Di Como CJ, Chang H, Arndt KT. Activation of CLN1 and CLN2 G1 cyclin gene expression by BCK2. Mol Cell Biol 1995; 15:1835-46. [PMID: 7891677 PMCID: PMC230409 DOI: 10.1128/mcb.15.4.1835] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Saccharomyces cerevisiae CLN3 protein, a G1 cyclin, positively regulates the expression of CLN1 and CLN2, two additional G1 cyclins whose expression during late G1 is activated, in part, by the transcription factors SWI4 and SWI6. We isolated 12 complementation groups of mutants that require CLN3. The members of one of these complementation groups have mutations in the BCK2 gene. In a wild-type CLN3 genetic background, bck2 mutants have a normal growth rate but have a larger cell size, are more sensitive to alpha-factor, and have a modest defect in the accumulation of CLN1 and CLN2 RNA. In the absence of CLN3, bck2 mutations cause an extremely slow growth rate: the cells accumulate in late G1 with very low levels of CLN1 and CLN2 RNA. The slow growth rate and long G1 delay of bck2 cln3 mutants are cured by heterologous expression of CLN2. Moreover, overexpression of BCK2 induces very high levels of CLN1, CLN2, and HCS26 RNAs. The results suggest that BCK2 and CLN3 provide parallel activation pathways for the expression of CLN1 and CLN2 during late G1.
Collapse
Affiliation(s)
- C J Di Como
- Cold Spring Harbor Laboratory, New York 11724-2212
| | | | | |
Collapse
|