1
|
Cao X, Liu X, Li H, Fan Y, Duan J, Liu Y, He Q. Transcription factor CBF-1 is critical for circadian gene expression by modulating WHITE COLLAR complex recruitment to the frq locus. PLoS Genet 2018; 14:e1007570. [PMID: 30208021 PMCID: PMC6152987 DOI: 10.1371/journal.pgen.1007570] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 09/24/2018] [Accepted: 07/16/2018] [Indexed: 01/24/2023] Open
Abstract
Transcription of the Neurospora crassa circadian clock gene frequency (frq) is an essential process in the negative feedback loop that controls circadian rhythms. WHITE COLLAR 1 (WC-1) and WHITE COLLAR 2 (WC-2) forms the WC complex (WCC) that is the main activator of frq transcription by binding to its promoter. Here, we show that Centromere Binding Factor 1 (CBF-1) is a critical component of the N. crassa circadian clock by regulating frq transcription. Deletion of cbf-1 resulted in long period and low amplitude rhythms, whereas overexpression of CBF-1 abolished the circadian rhythms. Loss of CBF-1 resulted in WC-independent FRQ expression and suppression of WCC activity. As WCC, CBF-1 also binds to the C-box at the frq promoter. Overexpression of CBF-1 impaired WCC binding to the C-box to suppress frq transcription. Together, our results suggest that the proper level of CBF-1 is critical for circadian clock function by suppressing WC-independent FRQ expression and by regulating WCC binding to the frq promoter. Circadian clocks, which measure time on a scale of approximately 24 hours, are generated by a cell-autonomous circadian oscillator comprised of autoregulatory feedback loops. In the Neurospora crassa circadian oscillator, WHITE COLLAR complex (WCC) actives transcription of the frequency (frq) gene. FRQ inhibits the activity of WCC to close the negative feedback loop. Here, we showed that the transcription factor CBF-1 functions as a repressor to modulate WCC recruitment to the C-box of frq promoter. Our data showed that deletion or overexpression of CBF-1 dampened circadian rhythm due to impaired WCC binding at the frq promoter. As CBF-1 is conserved in eukaryotes, our data provide novel insights into the negative feedback mechanism that controls the biological clocks in other organisms.
Collapse
Affiliation(s)
- Xuemei Cao
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiao Liu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Hongda Li
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yumeng Fan
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiabin Duan
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Qun He
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
2
|
Nguyen T, Fischl H, Howe FS, Woloszczuk R, Serra Barros A, Xu Z, Brown D, Murray SC, Haenni S, Halstead JM, O'Connor L, Shipkovenska G, Steinmetz LM, Mellor J. Transcription mediated insulation and interference direct gene cluster expression switches. eLife 2014; 3:e03635. [PMID: 25407679 PMCID: PMC4275577 DOI: 10.7554/elife.03635] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 11/17/2014] [Indexed: 01/12/2023] Open
Abstract
In yeast, many tandemly arranged genes show peak expression in different phases of the metabolic cycle (YMC) or in different carbon sources, indicative of regulation by a bi-modal switch, but it is not clear how these switches are controlled. Using native elongating transcript analysis (NET-seq), we show that transcription itself is a component of bi-modal switches, facilitating reciprocal expression in gene clusters. HMS2, encoding a growth-regulated transcription factor, switches between sense- or antisense-dominant states that also coordinate up- and down-regulation of transcription at neighbouring genes. Engineering HMS2 reveals alternative mono-, di- or tri-cistronic and antisense transcription units (TUs), using different promoter and terminator combinations, that underlie state-switching. Promoters or terminators are excluded from functional TUs by read-through transcriptional interference, while antisense TUs insulate downstream genes from interference. We propose that the balance of transcriptional insulation and interference at gene clusters facilitates gene expression switches during intracellular and extracellular environmental change. DOI:http://dx.doi.org/10.7554/eLife.03635.001 A DNA double helix is made up of two DNA strands, which in turn are made of molecules that are each known by a single letter—A, T, C, or G. The sequence of these ‘letters’ in each DNA strand contains biological information. Genes are sections of DNA that can be ‘expressed’ to produce proteins and RNA molecules. To express a gene, the DNA strands in the double helix must first be partially separated so that one of them can be used as a template to build an RNA molecule in a process called transcription. Either of the DNA strands in a helix can be used as an RNA template, but contain different genes and are read in opposite directions. One of the two strands is called the ‘sense’ strand, the other the ‘antisense’ strand. The RNA molecule does not transcribe a whole DNA strand; instead, it transcribes a section of DNA, known as a transcription unit, which contains at least one gene. The end of a transcription unit is marked by certain signals that stop transcription. However, some transcription units in a DNA strand overlap, so there must be some way that the transcription machinery can sometimes ignore these stop signals. The activity of some genes is linked to the activity of their immediate neighbours. Furthermore, some genes are expressed in different amounts in response to changes in environmental conditions. Researchers have previously suggested that there must be some form of switch that controls when these genes are expressed. Nguyen et al. now engineer start and stop signals at a neighbouring pair of genes, called HMS2 and BAT2, in yeast. When one gene is switched on, the other is switched off and which gene is active depends on the diet of the yeast cells. On the antisense DNA strand opposite to HMS2 is another gene, SUT650. Nguyen et al. show that when this gene is transcribed, the transcription of HMS2 on the other DNA strand is blocked. This has the knock-on effect of turning on BAT2. Conversely, transcribing HMS2 switches off SUT650 and BAT2 because the end of HMS2 overlaps with the beginning of both SUT650 and BAT2. Switching between different genes relies on loops that physically link the start and stop signals of the gene to be transcribed while ignoring the start and stop signals for neighbouring genes. Proteins called transcription factors can bind to DNA and affect whether a gene is transcribed. Nguyen et al. found that a transcription factor that binds near the start of the HMS2 gene helps to control which DNA strand is transcribed. When transcription factors do not bind to the start of HMS2, antisense transcription—and the expression of SUT650—occurs instead. Overall, Nguyen et al. show that the transcription process itself makes up part of a switch that can control the expression of several genes on both the sense and antisense strands of a DNA double helix. This may also explain how many other, more complex, gene networks are activated in response to changes in the environment. DOI:http://dx.doi.org/10.7554/eLife.03635.002
Collapse
Affiliation(s)
- Tania Nguyen
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Harry Fischl
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Françoise S Howe
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Ronja Woloszczuk
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Ana Serra Barros
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Zhenyu Xu
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - David Brown
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Struan C Murray
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Simon Haenni
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - James M Halstead
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Leigh O'Connor
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Lars M Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jane Mellor
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Chambers AL, Ormerod G, Durley SC, Sing TL, Brown GW, Kent NA, Downs JA. The INO80 chromatin remodeling complex prevents polyploidy and maintains normal chromatin structure at centromeres. Genes Dev 2013. [PMID: 23207916 DOI: 10.1101/gad.199976.112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The INO80 chromatin remodeling complex functions in transcriptional regulation, DNA repair, and replication. Here we uncover a novel role for INO80 in regulating chromosome segregation. First, we show that the conserved Ies6 subunit is critical for INO80 function in vivo. Strikingly, we found that loss of either Ies6 or the Ino80 catalytic subunit results in rapid increase in ploidy. One route to polyploidy is through chromosome missegregation due to aberrant centromere structure, and we found that loss of either Ies6 or Ino80 leads to defective chromosome segregation. Importantly, we show that chromatin structure flanking centromeres is altered in cells lacking these subunits and that these alterations occur not in the Cse4-containing centromeric nucleosome, but in pericentric chromatin. We provide evidence that these effects are mediated through misincorporation of H2A.Z, and these findings indicate that H2A.Z-containing pericentric chromatin, as in higher eukaryotes with regional centromeres, is important for centromere function in budding yeast. These data reveal an important additional mechanism by which INO80 maintains genome stability.
Collapse
Affiliation(s)
- Anna L Chambers
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Centromeres are specialized chromosomal loci that are essential for proper chromosome segregation. Recent data show that a certain level of active transcription, regulated by transcription factors Cbf1 and Ste12, makes a direct contribution to centromere function in Saccharomyces cerevisiae. Here, we discuss the requirement and function of transcription at centromeres.
Collapse
|
5
|
Ohkuni K, Kitagawa K. Endogenous transcription at the centromere facilitates centromere activity in budding yeast. Curr Biol 2011; 21:1695-703. [PMID: 22000103 DOI: 10.1016/j.cub.2011.08.056] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 05/06/2011] [Accepted: 08/23/2011] [Indexed: 11/15/2022]
Abstract
BACKGROUND The centromere (CEN) DNA-kinetochore complex is the specialized chromatin structure that mediates chromosome attachment to the spindle and is required for high-fidelity chromosome segregation. Although kinetochore function is conserved from budding yeast to humans, it was thought that transcription had no role in centromere function in budding yeast, in contrast to other eukaryotes including fission yeast. RESULTS We report here that transcription at the centromere facilitates centromere activity in the budding yeast Saccharomyces cerevisiae. We identified transcripts at CEN DNA and found that Cbf1, which is a transcription factor that binds to CEN DNA, is required for transcription at CEN DNA. Chromosome instability of cbf1Δ cells is suppressed by transcription driven from an artificial promoter. Furthermore, we have identified Ste12, which is a transcription factor, and Dig1, a Ste12 inhibitor, as a novel CEN-associated protein complex by an in vitro kinetochore assembly system. Dig1 represses Ste12-dependent transcription at the centromere. CONCLUSIONS Our studies reveal that transcription at the centromere plays an important role in centromere function in budding yeast.
Collapse
Affiliation(s)
- Kentaro Ohkuni
- Center for Childhood Cancer, The Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | | |
Collapse
|
6
|
Zhou X, O'Shea EK. Integrated approaches reveal determinants of genome-wide binding and function of the transcription factor Pho4. Mol Cell 2011; 42:826-36. [PMID: 21700227 DOI: 10.1016/j.molcel.2011.05.025] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 01/08/2011] [Accepted: 05/18/2011] [Indexed: 11/15/2022]
Abstract
DNA sequences with high affinity for transcription factors occur more frequently in the genome than instances of genes bound or regulated by these factors. It is not clear what factors determine the genome-wide pattern of binding or regulation for a given transcription factor. We used an integrated approach to study how trans influences shape the binding and regulatory landscape of Pho4, a budding yeast transcription factor activated in response to phosphate limitation. We find that nucleosomes significantly restrict Pho4 binding. At nucleosome-depleted sites, competition from another transcription factor, Cbf1, determines Pho4 occupancy, raising the threshold for transcriptional activation in phosphate replete conditions and preventing Pho4 activation of genes outside the phosphate regulon during phosphate starvation. Pho4 binding is not sufficient for transcriptional activation-a cooperative interaction between Pho2 and Pho4 specifies genes that are activated. Combining these experimental observations, we are able to globally predict Pho4 binding and its functionality.
Collapse
Affiliation(s)
- Xu Zhou
- Howard Hughes Medical Institute, Harvard University Faculty of Arts and Sciences Center for Systems Biology, Northwest Labs, 52 Oxford Street, Cambridge, MA 02138, USA
| | | |
Collapse
|
7
|
Lee TA, Jorgensen P, Bognar AL, Peyraud C, Thomas D, Tyers M. Dissection of combinatorial control by the Met4 transcriptional complex. Mol Biol Cell 2010; 21:456-69. [PMID: 19940020 PMCID: PMC2814790 DOI: 10.1091/mbc.e09-05-0420] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 10/20/2009] [Accepted: 11/18/2009] [Indexed: 02/01/2023] Open
Abstract
Met4 is the transcriptional activator of the sulfur metabolic network in Saccharomyces cerevisiae. Lacking DNA-binding ability, Met4 must interact with proteins called Met4 cofactors to target promoters for transcription. Two types of DNA-binding cofactors (Cbf1 and Met31/Met32) recruit Met4 to promoters and one cofactor (Met28) stabilizes the DNA-bound Met4 complexes. To dissect this combinatorial system, we systematically deleted each category of cofactor(s) and analyzed Met4-activated transcription on a genome-wide scale. We defined a core regulon for Met4, consisting of 45 target genes. Deletion of both Met31 and Met32 eliminated activation of the core regulon, whereas loss of Met28 or Cbf1 interfered with only a subset of targets that map to distinct sectors of the sulfur metabolic network. These transcriptional dependencies roughly correlated with the presence of Cbf1 promoter motifs. Quantitative analysis of in vivo promoter binding properties indicated varying levels of cooperativity and interdependency exists between members of this combinatorial system. Cbf1 was the only cofactor to remain fully bound to target promoters under all conditions, whereas other factors exhibited different degrees of regulated binding in a promoter-specific fashion. Taken together, Met4 cofactors use a variety of mechanisms to allow differential transcription of target genes in response to various cues.
Collapse
Affiliation(s)
- Traci A Lee
- Department of Biological Sciences, University of Wisconsin-Parkside, Kenosha, WI 53144, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Caserta M, Agricola E, Churcher M, Hiriart E, Verdone L, Di Mauro E, Travers A. A translational signature for nucleosome positioning in vivo. Nucleic Acids Res 2009; 37:5309-21. [PMID: 19596807 PMCID: PMC2760819 DOI: 10.1093/nar/gkp574] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In vivo nucleosomes often occupy well-defined preferred positions on genomic DNA. An important question is to what extent these preferred positions are directly encoded by the DNA sequence itself. We derive here from in vivo positions, accurately mapped by partial micrococcal nuclease digestion, a translational positioning signal that identifies the approximate midpoint of DNA bound by a histone octamer. This midpoint is, on average, highly A/T rich (∼73%) and, in particular, the dinucleotide TpA occurs preferentially at this and other outward-facing minor grooves. We conclude that in this set of sequences the sequence code for DNA bending and nucleosome positioning differs from the other described sets and we suggest that the enrichment of AT-containing dinucleotides at the centre is required for local untwisting. We show that this signature is preferentially associated with nucleosomes flanking promoter regions and suggest that it contributes to the establishment of gene-specific nucleosome arrays.
Collapse
Affiliation(s)
- Micaela Caserta
- Fondazione Istituto Pasteur-Fondazione Cenci Bolognetti, Università La Sapienza, 00185 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
9
|
Segal E, Fondufe-Mittendorf Y, Chen L, Thåström A, Field Y, Moore IK, Wang JPZ, Widom J. A genomic code for nucleosome positioning. Nature 2006; 442:772-8. [PMID: 16862119 PMCID: PMC2623244 DOI: 10.1038/nature04979] [Citation(s) in RCA: 1119] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 06/14/2006] [Indexed: 11/08/2022]
Abstract
Eukaryotic genomes are packaged into nucleosome particles that occlude the DNA from interacting with most DNA binding proteins. Nucleosomes have higher affinity for particular DNA sequences, reflecting the ability of the sequence to bend sharply, as required by the nucleosome structure. However, it is not known whether these sequence preferences have a significant influence on nucleosome position in vivo, and thus regulate the access of other proteins to DNA. Here we isolated nucleosome-bound sequences at high resolution from yeast and used these sequences in a new computational approach to construct and validate experimentally a nucleosome-DNA interaction model, and to predict the genome-wide organization of nucleosomes. Our results demonstrate that genomes encode an intrinsic nucleosome organization and that this intrinsic organization can explain approximately 50% of the in vivo nucleosome positions. This nucleosome positioning code may facilitate specific chromosome functions including transcription factor binding, transcription initiation, and even remodelling of the nucleosomes themselves.
Collapse
Affiliation(s)
- Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Ferreiro JA, Powell NG, Karabetsou N, Kent NA, Mellor J, Waters R. Cbf1p modulates chromatin structure, transcription and repair at the Saccharomyces cerevisiae MET16 locus. Nucleic Acids Res 2004; 32:1617-26. [PMID: 15007107 PMCID: PMC390324 DOI: 10.1093/nar/gkh324] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Accepted: 02/13/2004] [Indexed: 11/12/2022] Open
Abstract
The presence of damage in the transcribed strand (TS) of active genes and its position in relation to nucleosomes influence nucleotide excision repair (NER) efficiency. We examined chromatin structure, transcription and repair at the MET16 gene of wild-type and cbf1Delta Saccharomyces cerevisiae cells under repressing or derepressing conditions. Cbf1p is a sequence-specific DNA binding protein required for MET16 chromatin remodelling. Irrespective of the level of transcription, repair at the MspI restriction fragment of MET16 exhibits periodicity in line with nucleosome positions in both strands of the regulatory region and the non-transcribed strand of the coding region. However, repair in the coding region of the TS is always faster, but exhibits periodicity only when MET16 is repressed. In general, absence of Cbf1p decreased repair in the sequences examined, although the effects were more dramatic in the Cbf1p remodelled area, with repair being reduced to the lowest levels within the nucleosome cores of this region. Our results indicate that repair at the promoter and coding regions of this lowly transcribed gene are dependent on both chromatin structure and the level of transcription. The data are discussed in light of current models relating NER and chromatin structure.
Collapse
Affiliation(s)
- J A Ferreiro
- School of Biological Sciences, University of Wales Swansea, Swansea SA2 8PP, UK
| | | | | | | | | | | |
Collapse
|
11
|
Kent NA, Karabetsou N, Politis PK, Mellor J. In vivo chromatin remodeling by yeast ISWI homologs Isw1p and Isw2p. Genes Dev 2001; 15:619-26. [PMID: 11238381 PMCID: PMC312638 DOI: 10.1101/gad.190301] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Isw1p and Isw2p are budding yeast homologs of the Drosophila ISWI chromatin-remodeling ATPase. Using indirect-end-label and chromatin immunoprecipitation analysis, we show both independent and cooperative Isw1p- and Isw2p-mediated positioning of short nucleosome arrays in gene-regulatory elements at a variety of transcription units in vivo. We present evidence that both yeast ISWI complexes regulate developmental responses to starvation and that for Isw2p, recruitment by different DNA-binding proteins controls meiosis and haploid invasive growth.
Collapse
Affiliation(s)
- N A Kent
- Division of Molecular Genetics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| | | | | | | |
Collapse
|
12
|
Chen Y, Baker RE, Keith KC, Harris K, Stoler S, Fitzgerald-Hayes M. The N terminus of the centromere H3-like protein Cse4p performs an essential function distinct from that of the histone fold domain. Mol Cell Biol 2000; 20:7037-48. [PMID: 10958698 PMCID: PMC88778 DOI: 10.1128/mcb.20.18.7037-7048.2000] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cse4p is an evolutionarily conserved histone H3-like protein that is thought to replace H3 in a specialized nucleosome at the yeast (Saccharomyces cerevisiae) centromere. All known yeast, worm, fly, and human centromere H3-like proteins have highly conserved C-terminal histone fold domains (HFD) but very different N termini. We have carried out a comprehensive and systematic mutagenesis of the Cse4p N terminus to analyze its function. Surprisingly, only a 33-amino-acid domain within the 130-amino-acid-long N terminus is required for Cse4p N-terminal function. The spacing of the essential N-terminal domain (END) relative to the HFD can be changed significantly without an apparent effect on Cse4p function. The END appears to be important for interactions between Cse4p and known kinetochore components, including the Ctf19p/Mcm21p/Okp1p complex. Genetic and biochemical evidence shows that Cse4p proteins interact with each other in vivo and that nonfunctional cse4 END and HFD mutant proteins can form functional mixed complexes. These results support different roles for the Cse4p N terminus and the HFD in centromere function and are consistent with the proposed Cse4p nucleosome model. The structure-function characteristics of the Cse4p N terminus are relevant to understanding how other H3-like proteins, such as the human homolog CENP-A, function in kinetochore assembly and chromosome segregation.
Collapse
Affiliation(s)
- Y Chen
- Department of Biochemistry and Molecular Biology, University of Massachusetts at Amherst, 01003, USA
| | | | | | | | | | | |
Collapse
|
13
|
Mai X, Chou S, Struhl K. Preferential accessibility of the yeast his3 promoter is determined by a general property of the DNA sequence, not by specific elements. Mol Cell Biol 2000; 20:6668-76. [PMID: 10958664 PMCID: PMC86173 DOI: 10.1128/mcb.20.18.6668-6676.2000] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yeast promoter regions are often more accessible to nuclear proteins than are nonpromoter regions. As assayed by HinfI endonuclease cleavage in living yeast cells, HinfI sites located in the promoters of all seven genes tested were 5- to 20-fold more accessible than sites in adjacent nonpromoter regions. HinfI hypersensitivity within the his3 promoter region is locally determined, since it was observed when this region was translocated to the middle of the ade2 structural gene. Detailed analysis of the his3 promoter indicated that preferential accessibility is not determined by specific elements such as the Gcn4 binding site, poly(dA-dT) sequences, TATA elements, or initiator elements or by transcriptional activity. However, progressive deletion of the promoter region in either direction resulted in a progressive loss of HinfI accessibility. Preferential accessibility is independent of the Swi-Snf chromatin remodeling complex, Gcn5 histone acetylase complexes Ada and SAGA, and Rad6, which ubiquitinates histone H2B. These results suggest that preferential accessibility of the his3 (and presumably other) promoter regions is determined by a general property of the DNA sequence (e.g., base composition or a related feature) rather than by defined sequence elements. The organization of the compact yeast genome into inherently distinct promoter and nonpromoter regions may ensure that transcription factors bind preferentially to appropriate sites in promoters rather than to the excess of irrelevant but equally high-affinity sites in nonpromoter regions.
Collapse
Affiliation(s)
- X Mai
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
14
|
Robinson KA, Lopes JM. SURVEY AND SUMMARY: Saccharomyces cerevisiae basic helix-loop-helix proteins regulate diverse biological processes. Nucleic Acids Res 2000; 28:1499-505. [PMID: 10710415 PMCID: PMC102793 DOI: 10.1093/nar/28.7.1499] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/1999] [Revised: 02/14/2000] [Accepted: 02/14/2000] [Indexed: 01/07/2023] Open
Abstract
Basic helix-loop-helix (bHLH) proteins are among the most well studied and functionally important regulatory proteins in all eukaryotes. The HLH domain dictates dimerization to create homo- and heterodimers. Dimerization juxtaposes the basic regions of the two monomers to create a DNA interaction surface that recognizes the consensus sequence called the E-box, 5'-CANNTG-3'. Several bHLH proteins have been identified in the yeast Saccharomyces cerevisiae using traditional genetic methodologies. These proteins regulate diverse biological pathways. The completed sequence of the yeast genome, combined with novel methodologies allowing whole-genome expression studies, now offers a unique opportunity to study the function of these bHLH proteins. It is the purpose of this review to summarize the current knowledge of bHLH protein function in yeast.
Collapse
Affiliation(s)
- K A Robinson
- Department of Molecular and Cellular Biochemistry, Loyola University of Chicago, Maywood, IL 60153, USA
| | | |
Collapse
|
15
|
Abstract
Sulfur amino acid biosynthesis in Saccharomyces cerevisiae involves a large number of enzymes required for the de novo biosynthesis of methionine and cysteine and the recycling of organic sulfur metabolites. This review summarizes the details of these processes and analyzes the molecular data which have been acquired in this metabolic area. Sulfur biochemistry appears not to be unique through terrestrial life, and S. cerevisiae is one of the species of sulfate-assimilatory organisms possessing a larger set of enzymes for sulfur metabolism. The review also deals with several enzyme deficiencies that lead to a nutritional requirement for organic sulfur, although they do not correspond to defects within the biosynthetic pathway. In S. cerevisiae, the sulfur amino acid biosynthetic pathway is tightly controlled: in response to an increase in the amount of intracellular S-adenosylmethionine (AdoMet), transcription of the coregulated genes is turned off. The second part of the review is devoted to the molecular mechanisms underlying this regulation. The coordinated response to AdoMet requires two cis-acting promoter elements. One centers on the sequence TCACGTG, which also constitutes a component of all S. cerevisiae centromeres. Situated upstream of the sulfur genes, this element is the binding site of a transcription activation complex consisting of a basic helix-loop-helix factor, Cbf1p, and two basic leucine zipper factors, Met4p and Met28p. Molecular studies have unraveled the specific functions for each subunit of the Cbf1p-Met4p-Met28p complex as well as the modalities of its assembly on the DNA. The Cbf1p-Met4p-Met28p complex contains only one transcription activation module, the Met4p subunit. Detailed mutational analysis of Met4p has elucidated its functional organization. In addition to its activation and bZIP domains, Met4p contains two regulatory domains, called the inhibitory region and the auxiliary domain. When the level of intracellular AdoMet increases, the transcription activation function of Met4 is prevented by Met30p, which binds to the Met4 inhibitory region. In addition to the Cbf1p-Met4p-Met28p complex, transcriptional regulation involves two zinc finger-containing proteins, Met31p and Met32p. The AdoMet-mediated control of the sulfur amino acid pathway illustrates the molecular strategies used by eucaryotic cells to couple gene expression to metabolic changes.
Collapse
Affiliation(s)
- D Thomas
- Centre de Génétique Moléculaire, CNRS, Gif sur Yvette, France
| | | |
Collapse
|
16
|
Kent NA, Mellor J. Chromatin structure snap-shots: rapid nuclease digestion of chromatin in yeast. Nucleic Acids Res 1995; 23:3786-7. [PMID: 7479011 PMCID: PMC307280 DOI: 10.1093/nar/23.18.3786] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- N A Kent
- Department of Biochemistry, University of Oxford, UK
| | | |
Collapse
|
17
|
Meluh PB, Koshland D. Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol Biol Cell 1995; 6:793-807. [PMID: 7579695 PMCID: PMC301241 DOI: 10.1091/mbc.6.7.793] [Citation(s) in RCA: 323] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The MIF2 gene of Saccharomyces cerevisiae has been implicated in mitosis. Here we provide genetic evidence that MIF2 encodes a centromere protein. Specifically, we found that mutations in MIF2 stabilize dicentric minichromosomes and confer high instability (i.e., a synthetic acentric phenotype) to chromosomes that bear a cis-acting mutation in element I of the yeast centromeric DNA (CDEI). Similarly, we observed synthetic phenotypes between mutations in MIF2 and trans-acting mutations in three known yeast centromere protein genes-CEP1/CBF1/CPF1, NDC10/CBF2, and CEP3/CBF3B. In addition, the mif2 temperature-sensitive phenotype can be partially rescued by increased dosage of CEP1. Synthetic lethal interactions between a cep1 null mutation and mutations in either NDC10 or CEP3 were also detected. Taken together, these data suggest that the Mif2 protein interacts with Cep1p at the centromere and that the yeast centromere indeed exists as a higher order protein-DNA complex. The Mif2 and Cep1 proteins contain motifs of known transcription factors, suggesting that assembly of the yeast centromere is analogous to that of eukaryotic enhancers and origins of replication. We also show that the predicted Mif2 protein shares two short regions of homology with the mammalian centromere Ag CENP-C and that two temperature-sensitive mutations in MIF2 lie within these regions. These results provide evidence for structural conservation between yeast and mammalian centromeres.
Collapse
Affiliation(s)
- P B Meluh
- Carnegie Institution of Washington, Department of Embryology, Baltimore, Maryland 21210, USA
| | | |
Collapse
|
18
|
O'Connell KF, Surdin-Kerjan Y, Baker RE. Role of the Saccharomyces cerevisiae general regulatory factor CP1 in methionine biosynthetic gene transcription. Mol Cell Biol 1995; 15:1879-88. [PMID: 7891681 PMCID: PMC230413 DOI: 10.1128/mcb.15.4.1879] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Saccharomyces cerevisiae general regulatory factor CP1 (encoded by the gene CEP1) is required for optimal chromosome segregation and methionine prototrophy. MET16-CYC1-lacZ reporter constructs were used to show that MET16 5'-flanking DNA contains a CP1-dependent upstream activation sequence (UAS). Activity of the UAS required an intact CP1-binding site, and the effects of cis-acting mutations on CP1 binding and UAS activity correlated. In most respects, MET16-CYC1-lacZ reporter gene expression mirrored that of chromosomal MET16; however, the endogenous gene was found to be activated in response to amino acid starvation (general control). The latter mechanism was both GCN4 and CP1 dependent. MET25 was also found to be activated by GCN4, albeit weakly. More importantly, MET25 transcription was strongly CP1 dependent in gcn4 backgrounds. The modulation of MET gene expression by GCN4 can explain discrepancies in the literature regarding CP1 dependence of MET gene transcription. Lastly, micrococcal nuclease digestion and indirect end labeling were used to analyze the chromatin structure of the MET16 locus in wild-type and cep1 cells. The results indicated that CP1 plays no major role in configuring chromatin structure in this region, although localized CP1-specific differences in nuclease sensitivity were detected.
Collapse
Affiliation(s)
- K F O'Connell
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655
| | | | | |
Collapse
|